JPH0684077A - Fire detection method - Google Patents

Fire detection method

Info

Publication number
JPH0684077A
JPH0684077A JP4260548A JP26054892A JPH0684077A JP H0684077 A JPH0684077 A JP H0684077A JP 4260548 A JP4260548 A JP 4260548A JP 26054892 A JP26054892 A JP 26054892A JP H0684077 A JPH0684077 A JP H0684077A
Authority
JP
Japan
Prior art keywords
radiation
infrared
fire
flame
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4260548A
Other languages
Japanese (ja)
Other versions
JP2608512B2 (en
Inventor
Kazunari Naya
一成 納屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP4260548A priority Critical patent/JP2608512B2/en
Publication of JPH0684077A publication Critical patent/JPH0684077A/en
Application granted granted Critical
Publication of JP2608512B2 publication Critical patent/JP2608512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To clearly distinguish fire from non-fire by calculating the temperature of a body to be detected based upon the relative ratio of intensity values of plural infrared-ray radiation bands including the intensity of infrared rays existing at least in the resonance radiation area of CO2. CONSTITUTION:Infrared rays radiated from a fire source or a similar heating source are periodically divided by a chopper and four respectively different wavelength bands are detected by four pyroelectric infrared sensors. These sensors include band pass filters capable of penetrating previously determined wavelength bands. Detected signals are aplified by an amplifier circuit and then converted into a digital signal by an A/D converter. A microprocessor applies period detection and filtering based upon the dividing period of the chopper to the digital signal to return the divided signals to a continuous signal sequence. The wavelength band of detecting infrared rays are set up so as to efficiently detect the radiation of the heating body. Then the relative ratio of intensity values of plural infrared-ray radiation bands including the intensity of infrared ray existing the resonance radiation area of CO2 is found out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火源から放射される赤
外線を検出して火災を検知する火災検知方法に関するも
のであり、特に多波長の赤外線を同時に検出して火災と
非火災の区別を明確化する火災検知方法に関する。本発
明は、燻焼火災や発炎火災などの火災の状態に関わり無
く有効な火災検知を行う方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire detection method for detecting a fire by detecting infrared rays emitted from a fire source, and particularly to detect infrared rays of multiple wavelengths simultaneously to distinguish between fire and non-fire. Fire detection method to clarify The present invention provides a method for effective fire detection regardless of the state of a fire such as a smoky fire or a flaming fire.

【0002】[0002]

【従来の技術】従来より、火炎から放射される赤外線を
検知する炎検知方法は実用化されている。また、これら
の炎検知方法では、炎から放射される特有のスペクトル
線(4.4μm帯;CO2の共鳴放射帯)を検出するものが主
流であるが、炎以外の赤外線源による誤動作を減らすい
くつかの試みが提案されている。例えば、特開昭50−
2497号は、4.3μmとその前後の2波長における
放射線量を検出し、4.3μmと他の2波長における放
射線量が一定値以上になった場合に炎として判断してい
る。特開昭57−96492号は、2つの凸部間に谷間
が存在するか否かを判別して炎の発生を感知することを
提唱している。
2. Description of the Related Art Conventionally, a flame detection method for detecting infrared rays emitted from a flame has been put into practical use. Also, in these flame detection methods, the method that mainly detects the characteristic spectral line (4.4 μm band; CO 2 resonance radiation band) emitted from the flame is the mainstream, but there are several methods that reduce malfunctions due to infrared sources other than flames. Some attempts have been proposed. For example, Japanese Patent Laid-Open No. 50-
No. 2497 detects the radiation dose at 4.3 μm and two wavelengths before and after it, and judges it as a flame when the radiation dose at 4.3 μm and other two wavelengths exceeds a certain value. Japanese Patent Laid-Open No. 57-96492 proposes to detect the occurrence of a flame by determining whether or not a valley exists between two convex portions.

【0003】その他、特開昭61−32195号は、近
赤外線域の波長の放射線を検出する第1の放射線検出手
段と、写真赤外領域の波長の放射線を検出する第2の放
射線検出手段と、前記第1および第2放射線検出手段か
らの出力信号を受信し、これらの出力信号のレベル差と
同期性とにより出力信号の論理的組み合せを演算する演
算手段と、演算手段からの組み合わせ出力信号により火
災信号とノイズ信号とを判別する検出手段を具備する火
災感知装置を開示する。これは、発炎火災と可視光ノイ
ズが2.3μmと0.9μmの赤外線の相関関係に同期
性を有し、燻焼火災は同期性を示さず、又発炎火災と燻
焼火災は近赤外線強度が写真赤外線強度より大きく、可
視光ノイズは近赤外線強度が写真赤外線強度より小さい
ことを利用し、上記2種の放射線を比較して火災と可視
光ノイズの区別、および発炎火災と燻焼火災を区別する
ものである。
In addition, JP-A-61-32195 discloses a first radiation detecting means for detecting radiation having a wavelength in the near infrared region and a second radiation detecting means for detecting radiation having a wavelength in the photographic infrared region. Calculating means for receiving output signals from the first and second radiation detecting means and calculating a logical combination of the output signals based on a level difference and synchronism of these output signals, and a combined output signal from the calculating means Discloses a fire detection device including a detection means for discriminating between a fire signal and a noise signal. This is because the flaming fire and the visible light noise have synchronism in the correlation of infrared rays of 2.3 μm and 0.9 μm, the smoky fire does not show the synchrony, and the flaming fire and the smoky fire are close to each other. Taking advantage of the fact that the infrared intensity is higher than the photographic infrared intensity and the visible light noise is the near-infrared intensity is lower than the photographic infrared intensity, the two types of radiation are compared to distinguish between fire and visible light noise, and flaming fire and smoke. It distinguishes between fires.

【0004】しかしながら、電灯等赤外域の輻射強度に
比較して可視又は近赤外域の輻射強度が大きい場合は非
火災と判断する方式では、通常的な電灯による誤報を少
なくはしたが、火災以外の発熱体であっても可視又は近
赤外線を放射しないものあるいはそれが弱いものであれ
ば火災と判断し、誤報を発する。すなわち、電熱器等で
は誤報を発し、その適用に制約が大きい。また、4.3
μmとその前後の2波長における放射線量を検出し、
4.3μmと他の2波長における放射線量が一定値以上
になった場合に炎として判断する方法では、炎を検知す
ることはできてもその炎が火災に由来するものかあるい
は有益な熱源に由来するものかは検知できない。すなわ
ち、ガスレンジ、ガスストーブ等の炎で誤報を発する欠
点がある。さらに、2.3μmと0.9μmの2種の放
射線のレベル差と同期性とを比較して火災と可視光ノイ
ズの区別、および発炎火災と燻焼火災を区別するもので
は、火災の種類、燃え方によっては必ずしもここでいう
同期性がみられるとの補償はなく、信頼性を欠く。
However, in the method of judging non-fire when the radiant intensity of visible light or near-infrared region is large compared to the radiant intensity of infrared region such as electric light, false alarms due to ordinary electric lights are reduced, but other than fire. If it is a heating element that does not emit visible or near-infrared rays or is weak, it is determined to be a fire and a false alarm is issued. That is, an electric heater or the like gives a false alarm and its application is largely restricted. Also, 4.3
Detects the radiation dose at μm and two wavelengths around it,
In the method of judging as a flame when the radiation dose at 4.3 μm and other two wavelengths exceeds a certain value, it is possible to detect the flame, but the flame originates from a fire or becomes a useful heat source. It cannot be detected whether it comes from. That is, there is a drawback that an erroneous report is generated by a flame of a gas range, a gas stove, or the like. Furthermore, by comparing the level difference and synchronism of the two types of radiation of 2.3 μm and 0.9 μm, it is possible to distinguish between fire and visible light noise, and to distinguish between flaming fire and smoldering fire. However, there is no compensation that the synchronism mentioned here is always seen depending on the burning method, and reliability is lacking.

【0005】本発明者らはこのような状況に対して、赤
外線源から放射される赤外線を複数の波長帯で検知し、
赤外線検出器の検知出力および該検知出力の比の時間的
変化に基づいて火災か否かを判断する信号処理回路を具
備することによって信頼性の高い火災検知方法を確立し
ている。
The present inventors have responded to such a situation by detecting infrared rays emitted from an infrared source in a plurality of wavelength bands,
A highly reliable fire detection method is established by including a signal processing circuit that determines whether or not there is a fire based on the detection output of the infrared detector and the temporal change in the ratio of the detection output.

【0006】たとえば本発明者らは特願平03−345
47で、比較的高温の発熱を主に検出する短波長の赤外
波長帯と比較的低温の発熱を主に検出する長波長の赤外
波長帯、さらに炎の有無を検出するCO2の共鳴放射帯を
各々検出する手法をとり、これらの波長帯は、燻焼状態
における可燃物の放射スペクトル、赤外線が大気中を伝
播するうえにおいての各種の損失、火災検知器の構成す
るうえで必要な筐体における損失等を考慮したうえで、
2.8μm〜3.2μm,4.2μm〜4.6μm,4.6μm〜5.5
μm,8.0μm〜10.0μmの4波長帯を特定し、各々検出
する火災検知方法を提供した。これらの波長帯は、まず
高温の発熱を検出するための波長対として,の2波
長帯、低温の発熱を検出するための波長対として,
の2波長帯、さらに炎の有無を検出するの波長帯であ
る。
For example, the present inventors have filed Japanese Patent Application No. 03-345.
47, a short-wavelength infrared wavelength band that mainly detects relatively high-temperature heat generation, a long-wavelength infrared wavelength band that mainly detects relatively low-temperature heat generation, and CO2 resonance radiation that detects the presence or absence of a flame. Each wavelength band is detected, and these wavelength bands are used to determine the radiation spectrum of combustible substances in the smoldered state, various types of loss when infrared rays propagate in the atmosphere, and the housing required for configuring a fire detector. After considering the loss etc. in the body,
2.8 μm to 3.2 μm, 4.2 μm to 4.6 μm, 4.6 μm to 5.5
We provided a fire detection method that identifies four wavelength bands of μm and 8.0 μm to 10.0 μm and detects them. These wavelength bands are, first, as a wavelength pair for detecting high temperature heat generation, and as a wavelength pair for detecting low temperature heat generation.
2 wavelength bands, and a wavelength band for detecting the presence or absence of flame.

【0007】特願平03−34547では、上記それぞ
れの波長帯の赤外線強度の比に基づいて赤外線源の温度
を算出し、この温度から上記いずれかの波長帯の赤外線
強度を求めこの赤外線放射強度およびその波長帯を検出
する赤外線検知器の出力とに基づいて発熱面積を以下の
ようにして算出することにより火災の状況判定を行な
う。
In Japanese Patent Application No. 03-34547, the temperature of the infrared source is calculated based on the ratio of the infrared intensities in the above wavelength bands, and the infrared intensity in any of the above wavelength bands is obtained from this temperature to obtain the infrared radiation intensity. And the fire situation is determined by calculating the heat generation area as follows based on the output of the infrared detector that detects the wavelength band.

【0008】検知波長帯をλ1,λ2,…λn(n=2以上
の整数)とし、赤外線検知部Dにおいて検出されたそれ
ぞれの波長帯の検出出力をV1,V2,…Vnとする。そ
してこれらの検出出力は赤外線検知部Dに入射した各波
長帯の赤外線強度を正確に反映しているものとする。と
ころで、プランクの放射則により、ある温度Tの物体が
波長λで半空間内に放射する赤外線の単位面積当たりの
放射強度は次式で表される。
Let .lambda.1, .lambda.2, ... .lambda.n (n = integer of 2 or more) be the detection wavelength bands, and V1, V2, ... Vn are the detection outputs of the respective wavelength bands detected by the infrared detector D. It is assumed that these detection outputs accurately reflect the infrared intensity of each wavelength band incident on the infrared detector D. By the way, according to Planck's radiation law, the radiant intensity per unit area of infrared rays radiated by a body at a certain temperature T into a half space at a wavelength λ is expressed by the following equation.

【0009】[0009]

【数1】 [Equation 1]

【0010】なお、ここでC1,C2は、C1=2πhc2,
C2=hc/kで決まる定数である。ただし、hはプランク
定数、cは光速度、kはボルツマン定数である。
Here, C1 and C2 are C1 = 2πhc2,
It is a constant determined by C2 = hc / k. However, h is Planck's constant, c is light velocity, and k is Boltzmann's constant.

【0011】上記の(1)式に2つの検出波長帯λ1,λ2
とその波長帯での放射赤外線強度P1,P2を代入し、温
度Tを求める近似式を導くと、
In the above equation (1), two detection wavelength bands λ1 and λ2
Substituting the radiant infrared intensities P1 and P2 in that wavelength band and deriving an approximate expression for obtaining the temperature T,

【数2】 ここで、赤外線源Sから赤外線検知部Dまでの間の吸収
がλ1,λ2ともに無いとすれば上記(2)式のP1,P2は
V1,V2に置き換えることができる。すなわち、
[Equation 2] Here, if there is no absorption between the infrared source S and the infrared detector D for both λ1 and λ2, P1 and P2 in the above equation (2) can be replaced with V1 and V2. That is,

【数3】 となる。(3)式より、異なった2波長の赤外線を各々検
出することによって赤外線源の温度が求められる。
[Equation 3] Becomes From the equation (3), the temperature of the infrared source can be obtained by detecting infrared rays of two different wavelengths.

【0012】次に、上式(3)によって求めた温度Tから
λ1或はλ2における単位面積当たりの黒体輻射強度(こ
れをP1’或はP2’とする)がプランクの輻射則すなわ
ち(1)式より求まる。一方、赤外線検知部Dに入射する
赤外線の強度は赤外線源Sとの距離Lによって、1/2π
L2になる。したがって、上記求めた温度Tのある面積
を持った(単位面積のs倍)赤外線源から赤外線検知部
Dに入射すべき赤外線強度P1”或はP2”は、P1’或
はP2’に2πL2とsを乗じた値となる。即ち、 P1”=P1’×2πL2×S (4) P2”=P2’×2πL2×S (5) となる。ここで赤外線検知部の出力が入射赤外線強度を
正確に反映していると仮定しているので、V1或はV2か
ら上記式(3)、(2)を用いてP1或はP2がわかる。従っ
て、距離Lを既知とすれば実際に検出された入射赤外線
強度P1或はP2と計算によって求めた入射赤外線強度P
1”或はP2”との比は式(4)、(5)から判るように赤外線
源Sの面積sを表していることになる。
Next, the blackbody radiation intensity per unit area at λ1 or λ2 from the temperature T obtained by the above equation (3) (this is designated as P1 'or P2') is Planck's radiation law, that is, (1 ) Equation. On the other hand, the intensity of infrared rays incident on the infrared detector D depends on the distance L from the infrared source S to 1 / 2π.
It becomes L2. Therefore, the infrared ray intensity P1 ″ or P2 ″ to be incident on the infrared ray detecting section D from the infrared ray source having an area having the obtained temperature T (s times the unit area) is 2πL2 in P1 ′ or P2 ′. It is a value obtained by multiplying s. That is, P1 ″ = P1 ′ × 2πL2 × S (4) P2 ″ = P2 ′ × 2πL2 × S (5) Since it is assumed that the output of the infrared detector accurately reflects the intensity of the incident infrared rays, P1 or P2 can be found from V1 or V2 by using the above equations (3) and (2). Therefore, if the distance L is known, the actually detected incident infrared ray intensity P1 or P2 and the calculated incident infrared ray intensity P
The ratio with 1 "or P2" represents the area s of the infrared source S as can be seen from the equations (4) and (5).

【0013】さらに、CO2の共鳴放射帯域を検出する波
長帯を用いて、上記手段で求めた赤外線源の温度および
発熱面積から式(1)によってCO2の共鳴放射帯域における
黒体放射の赤外線強度Pco2’を算出し、上記P1などと
同様に赤外線検知部に入射すべき赤外線強度Pco2”を
求め、これと実際に観測されたPco2との比を算出す
る。ここで、Pco2”》Pco2であれば赤外線源は炎を伴
うものである。このようにして火災の状況を把握し、火
災の警報を発する。
Further, by using the wavelength band for detecting the CO 2 resonance radiation band, the infrared of the black body radiation in the CO 2 resonance radiation band is calculated by the formula (1) from the temperature and heat generation area of the infrared source obtained by the above means. calculating the intensity Pco 2 ', determined infrared intensity Pco 2 "to be incident on the infrared detection portion in the same manner as such the P1, calculates a ratio of the actual and observed Pco 2 thereto. here, Pco 2 If ">> Pco 2 , the infrared source is accompanied by a flame. In this way, the fire situation is grasped and the fire alarm is issued.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上記の火
災検知方法では、炎を伴わない発熱体と炎を伴う発熱体
とでは検知結果に若干の差異があった。すなわち、炎を
伴う発熱体では炎に特有な放射といわれるCO2の共鳴放
射(4.4μm帯)が非常に強くでるが、その他にもH2Oの
放射などによって5μm付近にもさまざまな放射が現れる
ことが判明してきた。その結果、炎を伴う発熱体の場合
には発熱体の規模を正確に判断できなくなるといった問
題点が生じていた。
However, in the above-mentioned fire detection method, there is a slight difference in the detection result between the heating element without flame and the heating element with flame. That is, in a heating element accompanied by a flame, the resonance radiation of CO 2 (4.4 μm band), which is said to be peculiar to the flame, is extremely strong, but in addition, various radiation around 5 μm due to H 2 O radiation etc. It turned out to appear. As a result, in the case of a heating element accompanied by a flame, there is a problem that the scale of the heating element cannot be accurately determined.

【0015】[0015]

【問題点を解決するための手段】上記目的を達成するた
めに本発明では、(1)CO2の共鳴放射対を含む複数の
赤外線放射帯における赤外線強度を検出して、その検出
値の相対比及び絶対値及びそれらの時間的変化から火災
か否かを判定する火災検知器において、被検知体の温度
を少なくともCO2の共鳴放射域にある赤外線の強度を含
む複数の赤外線放射帯の強度の相対比によって算出する
ことを特徴とした火災検知方法。 (2)被検知体が炎を発する場合に、検出した赤外線の
強度から炎の特徴的な放射成分を差し引いた値の相対値
及び絶対値並びにそれらの時間的変化から被検知体の温
度、面積を算出することを特徴とする火災検知方法。 (3)上記(1)において、検出する赤外線放射帯が
2.8μm〜3.2μm,4.2μm〜4.6μm,4.6μm〜5.5μ
m,8.0μm〜10.0μmであることを特徴とする火災検知
方法。を発明した。
In order to achieve the above object, the present invention (1) detects infrared intensities in a plurality of infrared radiation bands including a resonance radiation pair of CO 2 and compares the detected values with each other. In a fire detector that determines whether or not there is a fire based on the ratio and absolute value and their temporal changes, the intensities of multiple infrared radiation bands, including the temperature of the object to be detected, including the intensity of infrared rays at least in the CO 2 resonance radiation region. Fire detection method, which is calculated by the relative ratio of. (2) When the detected object emits a flame, the relative value and absolute value of the value obtained by subtracting the characteristic radiation component of the flame from the intensity of the detected infrared rays, and the temperature and area of the detected object from their temporal changes. A fire detection method characterized by calculating. (3) In (1) above, the infrared radiation band to be detected is
2.8 μm to 3.2 μm, 4.2 μm to 4.6 μm, 4.6 μm to 5.5 μ
Fire detection method characterized by m, 8.0 μm to 10.0 μm. Invented

【0016】[0016]

【本発明の具体的説明】以下、本発明を具体的に説明す
る。図1は本発明が適用される火災検知器の一つの構成
例である。この例では、火源または類似の発熱源から放
射された赤外線をチョッパーによって周期的に分断し、
4個の焦電型赤外線センサーで各々異なった4波長帯を
検出する。これらのセンサーには、あらかじめ定まった
波長帯を透過するバンドパスフィルターが内蔵されてい
る。ただし、4個以下の焦電型赤外線センサーであって
も、切替手段を用いて4つに分割した波長を検知する方
式としてもよい。また、ただ4個以下の焦電型赤外線セ
ンサーであっても、切替手段を用いて4種の波長帯を検
知する方式としてもよい。各々のセンサーで検出した信
号は、増幅回路で増幅した後にA/D変換器によってデ
ジタル信号に変換される。マイクロプロセッサはこのデ
ジタル信号に対してチョッパーの分断周期による同期検
波およびろ波を行ない、チョッパーによって分断されて
いた信号を連続的な信号系列に戻している。さらに、こ
こで得られた信号系列を通信用の信号系列に変換し、ホ
ストコンピュータにデジタル伝送を行なっている。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. FIG. 1 shows an example of the configuration of a fire detector to which the present invention is applied. In this example, a chopper periodically divides infrared rays emitted from a fire source or a similar heat source,
Four pyroelectric infrared sensors detect four different wavelength bands. These sensors have a built-in bandpass filter that transmits a predetermined wavelength band. However, even with four or less pyroelectric infrared sensors, a method of detecting the wavelength divided into four using the switching means may be used. Further, even with only four or less pyroelectric infrared sensors, a method of detecting four kinds of wavelength bands by using the switching means may be adopted. The signal detected by each sensor is amplified by an amplifier circuit and then converted into a digital signal by an A / D converter. The microprocessor performs synchronous detection and filtering on the digital signal according to the division cycle of the chopper, and returns the signal divided by the chopper to a continuous signal sequence. Furthermore, the signal sequence obtained here is converted into a signal sequence for communication and digitally transmitted to the host computer.

【0017】図1の例で検出している赤外線の波長帯
は、図2に示すごとく低温域から高温域までの発熱体の
放射を効率良く検出する波長帯とする。すなわち、中
心波長3μm半値幅0.4μm,中心波長4.4μm半値幅0.4
μm,中心波長5.5μm半値幅0.8μm,中心波長8.5μ
m半値幅1.0μmである。上記波長帯については、主に
高温域の発熱体の放射を検出し、波長帯で検出した赤
外線強度と組み合せて400℃以上の高温域の発熱体を監
視する。波長帯については炎の有無を監視する。波長
帯は低温域から高温に到るまで効率良く検出する波長
帯で、波長帯と組み合せて高温域の発熱体の監視と、
波長帯と組み合せて低温域の発熱体の監視を行なう。
波長帯は、400℃以下の低温の発熱体の放射を効率良
く検出し、波長帯と組み合せて400℃以下の低温域の
発熱体の監視を行なう。燻焼状態から火災に到る過程で
は、低温の発熱体が次第に高温になりながら拡大してい
く。従って、低温から高温までの幅広い温度範囲で発熱
源の温度を監視できることが必要となる。
The infrared wavelength band detected in the example of FIG. 1 is a wavelength band for efficiently detecting the radiation of the heating element from a low temperature region to a high temperature region as shown in FIG. That is, the center wavelength is 3 μm, the half width is 0.4 μm, the center wavelength is 4.4 μm, the half width is 0.4
μm, center wavelength 5.5 μm half width 0.8 μm, center wavelength 8.5 μm
The half-width of m is 1.0 μm. Regarding the above wavelength band, the radiation of the heating element in the high temperature region is mainly detected, and the heating element in the high temperature region of 400 ° C. or higher is monitored in combination with the infrared intensity detected in the wavelength band. The presence or absence of flame is monitored for the wavelength band. The wavelength band is a wavelength band that efficiently detects from low temperature to high temperature, and in combination with the wavelength band, it monitors the heating element in the high temperature range.
The heating element in the low temperature range is monitored in combination with the wavelength band.
As for the wavelength band, the radiation of the low-temperature heating element below 400 ° C is efficiently detected, and the heating element in the low-temperature region below 400 ° C is monitored in combination with the wavelength band. In the process from a smoldering state to a fire, a low temperature heating element gradually increases in temperature and expands. Therefore, it is necessary to monitor the temperature of the heat source in a wide temperature range from low temperature to high temperature.

【0018】炎特有の放射成分は、その波長帯の成分が
炎の大きさ、質によらずほぼ一定のものであるが、放射
全体に含まれる量は炎の大きさ、質などによって異な
る。炎の放射は、炎の中の黒体の放射部分と炎特有の放
射の部分とに分けられ、黒体の部分の放射と炎特有の部
分との放射の和になっている。さらに炎特有の放射成分
は炎の大きさによってその量が変化する。ここで、炎特
有の放射が現れる波長帯は主にCO2の共鳴放射体である
波長帯であるが、波長帯にも炎特有の放射が現れ
る。波長帯に現れる放射は燃焼にともなって発生した
水分と考えられる。
The radiation component peculiar to the flame is such that the component in the wavelength band is substantially constant regardless of the size and quality of the flame, but the amount contained in the total radiation varies depending on the size and quality of the flame. The radiation of a flame is divided into a radiation part of a black body and a radiation part peculiar to the flame in the flame, and is the sum of the radiation of the black body part and the radiation peculiar to the flame. Further, the amount of the radiation component peculiar to the flame changes depending on the size of the flame. Here, the wavelength band in which the radiation peculiar to the flame appears is the wavelength band that is a resonant radiator of CO 2 mainly, but the radiation peculiar to the flame also appears in the wavelength band. Radiation appearing in the wavelength band is considered to be water generated by combustion.

【0019】図3は、被検知体の温度を少なくともCO2
の共鳴放射域にある赤外線の強度を含む複数の赤外線放
射帯の強度の相対比を示す一例であり、図1に示す構成
の火災検知器においてさまざまな発熱体を検出する実験
を行ったときの各波長帯のセンサー出力の相対比を示し
たものである。炎特有の放射成分は波長帯と波長帯
において図3のFR点の成分比を持っている。この点を中
心としてそれぞれ異なった可燃物の燃焼によるセンサー
出力の比が直線上に乗る。すなわちあらゆる種類の炎
の、波長帯と波長帯における炎特有の放射成分はFR
点で表される成分比となっている。その炎が持っている
分だけ差し引くと、炎の大きさに関係なく黒体放射のラ
イン上のある一点に集まる。
FIG. 3 shows that the temperature of the object to be detected is at least CO 2
2 is an example showing the relative ratios of the intensities of a plurality of infrared radiation bands including the intensity of infrared rays in the resonance radiation region of, and when performing an experiment to detect various heating elements in the fire detector having the configuration shown in FIG. The relative ratio of the sensor output in each wavelength band is shown. The radiation component peculiar to a flame has a component ratio at the FR point in Fig. 3 in the wavelength band and the wavelength band. Centering on this point, the ratio of the sensor output due to the combustion of different combustibles is on a straight line. In other words, the wavelength band and the radiation component peculiar to the flame in all kinds of flames are FR
The component ratio is represented by dots. If you subtract the amount that the flame has, it will gather at a certain point on the line of blackbody radiation regardless of the size of the flame.

【0020】炎の放射とは、燃焼によって発生したC
O2、H2O等の分子振動による共鳴放射と、燃焼によって
発生した黒鉛等の固体粒子による熱放射が重畳したもの
である。固体粒子の放射はおおむね炎全体に分布し、気
体中に分散されている粒子による放射であるので半透明
体の放射である。そしてこの部分が半透明体としても、
炎がある程度大きいならば放射率はほぼ1と考えること
ができる。また、CO2、H2O等による炎特有の放射は放射
効率が非常に高く、炎の表面からの放射となる。従っ
て、例えばノルマルヘプタンの燃焼に伴う放射は、燃焼
によって発生した黒鉛等の固体粒子による熱放射である
a点とCO2、H2O等による炎特有の放射であるFR点との間
に引いた直線上の放射成分を持つ。同様にメタノールの
燃焼に伴う放射はb点とFR点間の直線上の放射成分とな
る。
Radiation of flame means C generated by combustion.
It is a superposition of resonance radiation due to molecular vibrations of O 2 , H 2 O, etc. and thermal radiation due to solid particles such as graphite generated by combustion. The radiation of solid particles is mostly distributed over the flame and is the radiation of particles that are dispersed in a gas, and is therefore translucent. And even if this part is a translucent body,
If the flame is large enough, the emissivity can be considered to be almost 1. Also, the radiation peculiar to the flame due to CO 2 , H 2 O, etc. has a very high radiation efficiency, and is emitted from the surface of the flame. Therefore, for example, the radiation accompanying the combustion of normal heptane is drawn between the point a, which is the thermal radiation due to solid particles such as graphite generated by the combustion, and the FR point, which is the radiation peculiar to the flame due to CO 2 , H 2 O, etc. It has a radiation component on a straight line. Similarly, the radiation accompanying the combustion of methanol becomes the radiation component on the straight line between the point b and the FR point.

【0021】炎の温度は炎の外層のガス体が最も高くな
る。従って熱放射をおこす温度は炎の最高温度ではない
場合が多いが、炎全体を包括して規模を考える場合に
は、上記の考えに従って炎全体の放射、すなわち燃焼に
よって発生した黒鉛等の固体粒子による熱放射を考えた
方がよい。
The flame temperature is highest in the gas body in the outer layer of the flame. Therefore, the temperature that causes thermal radiation is often not the maximum temperature of the flame, but when considering the scale of the flame as a whole, the radiation of the flame as a whole, that is, solid particles such as graphite generated by combustion, should be followed according to the above idea. It is better to consider the heat radiation by.

【0022】以下でこの温度を求める計算方法を検討す
る。図3の例では、ノルマルヘプタンとメタノールのそ
れぞれの炎の特徴を示す直線の原点であるFR点は、波長
帯:波長帯=74:26の成分比を持つ。従ってこの点を
頂点とした形の相図を考えれば良い。
The calculation method for obtaining this temperature will be examined below. In the example of FIG. 3, the FR point, which is the origin of the straight line showing the characteristic of each flame of normal heptane and methanol, has a component ratio of wavelength band: wavelength band = 74: 26. Therefore, a phase diagram with this point as the apex may be considered.

【0023】このように考えると、実際に検出された炎
の放射成分からFR点で表される炎特有の放射を差し引け
ば炎中の熱放射の成分を分離することができ、これは図
中の黒体放射の曲線上に乗ることになる。このような処
理を行えば通常の黒体放射の温度計算と同様に波長帯
と波長帯の比率から式(3)の計算によって温度を求め
られる。従って波長帯から炎の放射成分を差し引けば
良い。
Considering in this way, the component of thermal radiation in the flame can be separated by subtracting the radiation peculiar to the flame represented by the FR point from the actually detected radiation component of the flame. You will ride on the curve of the black body radiation inside. If such a process is performed, the temperature can be obtained by the calculation of the equation (3) from the ratio of the wavelength band and the wavelength band as in the case of the temperature calculation of the usual black body radiation. Therefore, the radiation component of the flame may be subtracted from the wavelength band.

【0024】以下、具体的な計算例を示す。この計算例
では、計算の簡略化をはかるために、近似計算を行って
いる。これは、図3等を検討すると、黒体放射の曲線の
特徴として、波長帯の割合が温度に対して変化が少な
く3波長合計の2割程度であることがわかる。従って波長
帯の割合が、波長帯−波長帯−波長帯の3波長
合計の約20%となるように炎特有の成分を差し引くこと
で、ほぼ黒体の放射成分を残すことができる。ここで、
差し引いた後の波長帯の割合の基準を700℃〜1000℃
の黒体放射に合わせておくことで誤差を少なくできる。
この場合に温度の計算結果に与える誤差は大きくても20
℃程度である。これを500℃以下の黒体放射に合わせた
場合は高温での誤差が大きくなる。
A specific calculation example will be shown below. In this calculation example, an approximate calculation is performed in order to simplify the calculation. It can be seen from the examination of FIG. 3 etc. that the characteristic of the curve of the black body radiation is that the ratio of the wavelength band is small with respect to temperature and is about 20% of the total of the three wavelengths. Therefore, by subtracting the flame-specific component so that the ratio of the wavelength band is about 20% of the total of the three wavelengths of wavelength band-wavelength band-wavelength band, it is possible to leave almost a blackbody radiation component. here,
The standard of the ratio of the wavelength band after subtraction is 700 ℃ ~ 1000 ℃
The error can be reduced by adjusting to the blackbody radiation of.
In this case, the error given to the temperature calculation result is at most 20.
It is about ℃. If this is adjusted to blackbody radiation below 500 ° C, the error at high temperature becomes large.

【0025】以下にその計算手順を述べる。まず被検知
体の温度を少なくともCO2の共鳴放射域にある赤外線の
強度を含む複数の赤外線放射帯の強度の相対比を求める
前に、炎特有の放射成分を差し引く例えば、3つの波長
帯の各成分〜のセンサーの出力値をそれぞれV1,V2,
V3とし、炎特有の成分として差し引く値をVxとする。Vx
は波長帯及び波長帯の炎特有の成分の合計であり、
それぞれの割合をVf2,Vf3とする。図4のc点において
は、VxはFR点からc点への直線の延長上のc点から黒体
放射の曲線までの距離であり、そのうちの波長帯の成
分がVf2,波長帯の成分がVf3である。また、基準とな
る黒体放射での波長帯の割合をR2とすれば、 従って、 となる。ここで求めたVxを用いて波長帯と波長帯か
ら炎の放射成分を差し引けば良い。波長帯の値とここ
で補正された波長帯の値を(3)式に当てはめることに
よって炎の温度が求まる。そして面積、CO2比の計算は
ここで求めた温度から、面積は波長帯に対して、CO2
比は波長帯に対して式(4)、(5)を適用して求める。
The calculation procedure will be described below. First, subtract the radiation component peculiar to the flame before determining the relative ratio of the intensities of the infrared radiation bands including the infrared radiation intensity at least in the resonance radiation region of CO 2 to the temperature of the object to be detected. The output value of the sensor for each component is V1, V2,
Let V3, and let Vx be the value subtracted as a component peculiar to the flame. Vx
Is the sum of the wavelength band and the flame-specific components of the wavelength band,
The respective ratios are Vf2 and Vf3. At point c in Fig. 4, Vx is the distance from point c on the extension of the straight line from FR point to point c to the curve of black body radiation, of which the component of the wavelength band is Vf2 and the component of the wavelength band is It is Vf3. Also, if the ratio of the wavelength band in the reference blackbody radiation is R2, Therefore, Becomes It is sufficient to subtract the radiation component of the flame from the wavelength band and the wavelength band using Vx obtained here. The flame temperature can be obtained by applying the value of the wavelength band and the value of the wavelength band corrected here to the equation (3). The area, the CO 2 ratio is calculated temperature obtained here, the area for the wavelength band, CO 2
The ratio is obtained by applying equations (4) and (5) to the wavelength band.

【0026】前記した手段によって赤外線源の温度およ
び面積が求められる。ところで、赤外線源の温度が高い
場合でもその大きさ、すなわち面積が小さければ火災で
はなく、また逆に温度が低くとも面積の大きい場合は火
災の可能性が高い。このようにあらゆる状態の熱源を考
える上で重要となるのは、その熱源が周囲に与える熱量
である。すなわち、周囲に与える熱量が大きければ延焼
の危険性が増大し、拡大速度も大きくなる。火源が周囲
に与える熱量はすなわち火源の放射エネルギー量によっ
て定まる。従って、放射エネルギー量を火源の規模と考
えることができる。ある温度T、面積sの熱源の放射エ
ネルギーWはステファン-ボルツマンの法則から、 W=T4σ・s (W) (8) と表される。ここでσはステファン-ボルツマンの定数
で、σ=5.673×10-12(W/cm2・deg4)である。従っ
て、赤外線源の温度、面積から火源の規模が求まる。
The temperature and area of the infrared source are obtained by the means described above. By the way, even if the temperature of the infrared source is high, if the size, that is, the area is small, it is not a fire, and conversely, if the temperature is low and the area is large, there is a high possibility of fire. What is important in considering a heat source in all states is the amount of heat that the heat source gives to the surroundings. That is, if the amount of heat given to the surroundings is large, the risk of fire spread increases and the expansion speed also increases. The amount of heat that the fire source gives to the surroundings is determined by the amount of radiant energy from the fire source. Therefore, the amount of radiant energy can be considered as the scale of the fire source. The radiant energy W of the heat source at a certain temperature T and area s is expressed as W = T4σ · s (W) (8) from the Stefan-Boltzmann law. Here, σ is the Stefan-Boltzmann constant, and σ = 5.673 × 10 −12 (W / cm 2 · deg 4 ). Therefore, the scale of the fire source can be determined from the temperature and area of the infrared source.

【0027】本実施例では上記手段によって求めた放射
エネルギー量がその対象とする空間における危険状態の
発熱量を越えた場合に警報を発する。一般的な火災につ
いては、火源の発熱量が5kW〜20kWで危険な状態、すな
わちその空間に居合せた人間が危険と感じる状態になる
とされている。もちろんこの値は、対象とする空間の大
きさ、用途などによって変えられる性格のものである。
また、前記危険状態の発熱量より小さい値に1つ以上
の小区分を設け、放射エネルギー量がそれぞれの区分を
越える毎に危険性を段階的に区分して警報を発すること
で、火災の初期状態から、警戒の警報を発報することが
でき、より確度の高い火災の検知が可能となるのみなら
ず初期対応が容易となる。
In this embodiment, an alarm is issued when the amount of radiant energy obtained by the above means exceeds the amount of heat generated in a dangerous space in the target space. Regarding a general fire, it is said that the calorific value of the fire source is 5 kW to 20 kW, which is dangerous, that is, a person in the space feels dangerous. Of course, this value has a character that can be changed depending on the size of the target space, the use, and the like.
In addition, by providing one or more subdivisions for the value smaller than the heat generation amount in the dangerous state, and categorizing the danger stepwise and issuing an alarm each time the radiant energy amount exceeds each division, an early warning From the state, it is possible to issue a warning of caution, which makes it possible not only to detect a fire with higher accuracy but also to facilitate the initial response.

【0028】さらに、放射エネルギー量の増加に着目す
ることで火災の状態変化をより正確に把握することがで
きる。すなわち、放射エネルギー量が大きくかつ放射エ
ネルギー量が増加傾向にある場合には火災の可能性が非
常に高い。また、放射エネルギー量が大きくともその時
間的な変化がない場合には火災ではなく、暖房などの有
用炎である場合が多い。従って、放射エネルギー量の増
加率によって警報の発令を行なうことでさらに早い段階
から確実な火災の検知が可能になる。
Further, by paying attention to the increase in the amount of radiant energy, it is possible to grasp the change in the state of the fire more accurately. That is, when the amount of radiant energy is large and the amount of radiant energy tends to increase, the possibility of fire is extremely high. In addition, even if the amount of radiant energy is large, if it does not change with time, it is often a useful flame such as heating, not a fire. Therefore, by issuing an alarm based on the rate of increase in the amount of radiant energy, it is possible to detect a fire reliably from an earlier stage.

【0029】放射エネルギーの増加率は、算出した放射
エネルギー量の一定時間の変化率から求める。この方法
として、放射エネルギーの算出値を時系列的に一定時間
記憶し、その時系列値に移動平均などの高域遮断フィル
タ処理を施した後に一定時間はなれた2つの放射エネル
ギー値を比較する方法や、一定時間記憶された時系列値
をもとに、これらの値から最小2乗法によって変化の傾
向を求める方法などを用いる。増加率を算出する際の記
憶時間は、10秒以上であることが望ましいが、警報の遅
れを避けるために3分以下であることが望ましい。
The rate of increase in radiant energy is obtained from the rate of change in the calculated amount of radiant energy over a certain period of time. As this method, the calculated value of the radiant energy is stored in a time series for a certain period of time, and the time series value is subjected to high-frequency cutoff filtering such as moving average, and then the two radiant energy values separated by a certain period of time are compared. Based on the time-series values stored for a certain period of time, a method of obtaining the tendency of change from these values by the least square method is used. The storage time for calculating the rate of increase is preferably 10 seconds or more, but is preferably 3 minutes or less to avoid a delay in the alarm.

【0030】火災判断の基準は、放射エネルギー量の増
加率があらかじめ決められた一定値を越えた場合、あら
かじめ決めた1つ以上の段階的区分に分ける場合、放射
エネルギーの増加率がその発熱源の放射エネルギー量の
一定割合以上の増加を示す場合、そしてその増加率がそ
の発熱源の放射エネルギーのあらかじめ決めた1つ以上
の段階的区分の割合に分ける場合などがある。これら
は、その空間などによって決まる要求に応じて適宜選択
される。通常、この区分は1〜5程度が適当である。警
報は放射エネルギー量の増化率が上記基準を越えた場合
または上記区分の中に該当する場合に発熱源を火災と判
定する場合と、増加率の各段階に応じて例えば放射エネ
ルギー量で決まる6段階の区分の警報を上位の警報に移
行させる場合があり、これも対象とする空間の仕様によ
って適宜選択される。
The criterion for fire judgment is that if the rate of increase in the amount of radiant energy exceeds a predetermined constant value, or if the rate of increase in radiant energy is divided into one or more predetermined stages, the rate of increase in radiant energy is the heat source. There is a case where the amount of radiant energy of the heat source shows an increase of a certain rate or more, and the rate of increase is divided into one or more predetermined stepwise division ratios of the radiant energy of the heat source. These are appropriately selected according to the requirements determined by the space and the like. Usually, about 1 to 5 is suitable for this division. The alarm is determined when the heat source is judged to be a fire when the rate of increase in the amount of radiant energy exceeds the above criteria or when it falls within the above categories, and is determined by, for example, the amount of radiant energy according to each step of the rate of increase. There are cases in which a six-level alarm is transferred to a higher alarm, which is also appropriately selected according to the specifications of the target space.

【0031】[0031]

【実施例】実施例として、図1に示す構成の火災検知器
において本発明による火災検知方法を適応した例を示
す。本実施例では図1に示す検知部の各センサ−の検知
波長帯は、3.0±0.2μm,4.4±0.2μm,5.0±0.4μ
m,8.5±0.5μmとなっている。ホストコンピュ−タに
は計算式(1)〜(8)が記憶され、発熱体の温度、面積、炎
の有無ならびに放射熱量が算出される。また、ホストコ
ンピュ−タではセンサ−の出力がノイズレベルの100倍
以下の場合には雑音低減化のろ波処理を行う。ろ波処理
の時定数は差センサ−の出力がノイズレベルの100倍以
下の場合に8秒であり、センサ−の出力が小さい場合に
は時定数を大きくし、10倍以下の場合に64秒としてい
る。火災の判定は放射熱量から6段階の区分でなされ
る。さらに放射熱量の増加率を最小自乗法によって求
め、これが1W/sec以上の場合には発熱体が拡大中とし、
10W/sec以上の場合には急激に拡大中としている。拡大
中の場合には上記火災判定の区分を1段階危険側に進
め、急激に拡大中の場合には2段階危険側に進めてい
る。最小自乗法を行う際の記憶時間は、センサ−の出力
値がノイズレベルの100倍以上の場合には20秒であるが
センサ−の出力が小さい場合には記憶時間を長くし、セ
ンサ−の出力がノイズレベルの10倍以下である場合には
3分間としている。本実施例では図3のFR点を、波長
帯:波長帯:=74:26と設定している。また、(6)式のR
2を700℃の黒体放射を基準に設定している。
EXAMPLE As an example, an example in which the fire detection method according to the present invention is applied to the fire detector having the configuration shown in FIG. In this embodiment, the detection wavelength band of each sensor of the detection unit shown in FIG. 1 is 3.0 ± 0.2 μm, 4.4 ± 0.2 μm, 5.0 ± 0.4 μm.
m, 8.5 ± 0.5 μm. Calculation formulas (1) to (8) are stored in the host computer, and the temperature, the area of the heating element, the presence or absence of a flame, and the radiant heat amount are calculated. Further, in the host computer, when the output of the sensor is 100 times or less of the noise level, filtering processing for noise reduction is performed. The time constant of the filtering process is 8 seconds when the output of the difference sensor is 100 times or less of the noise level, and the time constant is increased when the output of the sensor is small and 64 seconds when the output of the sensor is 10 times or less. I am trying. Fires are judged in 6 stages based on the amount of radiant heat. Furthermore, the increase rate of radiant heat is obtained by the method of least squares, and if this is 1 W / sec or more, it is assumed that the heating element is expanding,
If it is 10 W / sec or more, it is said to be expanding rapidly. If the fire is being expanded, the classification of fire determination is advanced to the one-stage risk side, and if it is being expanded rapidly, it is advanced to the two-stage risk side. The storage time when performing the least squares method is 20 seconds when the output value of the sensor is 100 times the noise level or more, but when the output of the sensor is small, the storage time is lengthened and the sensor If the output is less than 10 times the noise level, it is set to 3 minutes. In this embodiment, the FR point in FIG. 3 is set as wavelength band: wavelength band: = 74: 26. Also, R in equation (6)
2 is set based on 700 ° C blackbody radiation.

【0032】図5は、従来の火災検知方法と本発明の火
災検知方法とで発熱体の規模をどのように判断するかを
実験によって比較したものである。この実験にはノルマ
ルヘプタンの燃焼を利用している。様々な大きさの正方
形の皿に入れたノルマルヘプタンを燃焼させて、10m
の距離から検知した場合である。従来の火災検知方法で
は、発熱体の規模が小さいときに大きな誤差が生じてい
るが、本実施例では誤差が小さくなっていることがわか
る。このような誤差が生じると火災の初期過程での燃焼
規模が把握できず、初期対応の遅れる原因となる。これ
に対して本発明の火災検知方法によれば発熱体の規模が
小さい場合でも誤差が少ないことがわかる。
FIG. 5 is an experimental comparison of how the conventional fire detection method and the fire detection method of the present invention determine the scale of the heating element. This experiment uses normal heptane combustion. Burn normal heptane in square plates of various sizes and burn 10 m
This is the case when it is detected from the distance. In the conventional fire detection method, a large error occurs when the scale of the heating element is small, but it can be seen that the error is small in the present embodiment. When such an error occurs, the scale of combustion in the initial stage of the fire cannot be grasped, which causes a delay in the initial response. On the other hand, according to the fire detection method of the present invention, it is understood that the error is small even when the scale of the heating element is small.

【0033】[0033]

【発明の効果】本発明による火災検知方法によって炎を
伴う発熱体の規模を正確に判断できるようになった。図
5は、従来の火災検知方法と本発明の火災検知方法とで
発熱体の規模をどのように判断するかを実験によって比
較したものである。この実験にはノルマルヘプタンの燃
焼を利用している。様々な大きさの正方形の皿に入れた
ノルマルヘプタンを燃焼させて、10mの距離から検知し
た場合である。従来の火災検知方法では、発熱体の規模
が小さいときに大きな誤差が生じていることがわかる。
このような誤差が生じると火災の初期過程での燃焼規模
が把握できず、初期対応の遅れる原因となる。これに対
して本発明の火災検知方法によれば発熱体の規模が小さ
い場合でも誤差が少ないことがわかる。従って火災の初
期過程において適切な対応を取ることができるようにな
った。
According to the fire detection method of the present invention, it is possible to accurately determine the scale of a heating element accompanied by a flame. FIG. 5 is an experimental comparison of how the conventional fire detection method and the fire detection method of the present invention determine the scale of the heating element. This experiment uses normal heptane combustion. This is the case when normal heptane placed in square plates of various sizes is burned and detected from a distance of 10 m. It can be seen that the conventional fire detection method causes a large error when the scale of the heating element is small.
When such an error occurs, the scale of combustion in the initial stage of the fire cannot be grasped, which causes a delay in the initial response. On the other hand, according to the fire detection method of the present invention, it is understood that the error is small even when the scale of the heating element is small. Therefore, appropriate measures can be taken in the early stages of the fire.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明による検知器の一例を示す。1 shows an example of a detector according to the invention.

【図2】は、本発明における検出波長帯域を示す。FIG. 2 shows a detection wavelength band in the present invention.

【図3】は、図1に示す構成の火災検知器においてさま
ざまな発熱体を検出する実験を行ったときの各波長帯の
センサー出力の相対比を示す。
FIG. 3 shows relative ratios of sensor outputs in respective wavelength bands when an experiment for detecting various heating elements was performed in the fire detector having the configuration shown in FIG.

【図4】は、本発明における処理手続き数式の参考図。FIG. 4 is a reference diagram of a processing procedure formula in the present invention.

【図5】は、ノルマルヘプタンの燃焼規模の判断を、従
来の火災検知方法と本発明による火災検知方法との比
較。
FIG. 5 is a comparison of the normal heptane combustion scale determination between the conventional fire detection method and the fire detection method according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CO2の共鳴放射帯を含む複数の赤外線放
射帯における赤外線強度を検出して、その検出値の相対
比及び絶対値及びそれらの時間的変化から火災か否かを
判定する火災検知器において、被検知体の温度を少なく
ともCO2の共鳴放射域にある赤外線の強度を含む複数の
赤外線放射帯の強度の相対比によって算出することを特
徴とした火災検知方法。
1. A fire which detects infrared intensities in a plurality of infrared radiation bands including a resonance radiation band of CO 2 and determines whether or not a fire is detected based on a relative ratio and absolute value of the detected values and their temporal changes. A fire detection method, wherein a detector calculates the temperature of an object to be detected by a relative ratio of the intensities of a plurality of infrared radiation bands including the intensity of infrared rays in at least the resonance radiation region of CO 2 .
【請求項2】 被検知体が炎を発する場合に、検出した
赤外線の強度から炎の特徴的な放射成分を差し引いた値
の相対値及び絶対値並びにそれらの時間的変化から被検
知体の温度、面積を算出することを特徴とする火災検知
方法。
2. When the object to be detected emits a flame, the relative value and absolute value of a value obtained by subtracting the characteristic radiation component of the flame from the intensity of the detected infrared ray and the temperature of the object to be detected from their temporal changes. A fire detection method characterized by calculating an area.
【請求項3】 請求項1において、検出する赤外線放射
帯が2.8μm〜3.2μm,4.2μm〜4.6μm,4.6μm〜
5.5μm,8.0μm〜10.0μmであることを特徴とする火
災検知方法。
3. The infrared radiation band to be detected according to claim 1, which is 2.8 μm to 3.2 μm, 4.2 μm to 4.6 μm, 4.6 μm
Fire detection method characterized by 5.5 μm, 8.0 μm to 10.0 μm.
JP4260548A 1992-09-04 1992-09-04 Fire detection method Expired - Fee Related JP2608512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4260548A JP2608512B2 (en) 1992-09-04 1992-09-04 Fire detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4260548A JP2608512B2 (en) 1992-09-04 1992-09-04 Fire detection method

Publications (2)

Publication Number Publication Date
JPH0684077A true JPH0684077A (en) 1994-03-25
JP2608512B2 JP2608512B2 (en) 1997-05-07

Family

ID=17349491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4260548A Expired - Fee Related JP2608512B2 (en) 1992-09-04 1992-09-04 Fire detection method

Country Status (1)

Country Link
JP (1) JP2608512B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035930A1 (en) * 1995-05-08 1996-11-14 Japan Energy Corporation Environment monitor apparatus
JP2001175963A (en) * 1999-11-19 2001-06-29 Siemens Building Technol Ag Fire alarm system
JP2020160021A (en) * 2019-03-28 2020-10-01 能美防災株式会社 Flame detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378899A (en) * 1989-08-23 1991-04-04 Nippon Mining Co Ltd Fire detector
JPH03263197A (en) * 1990-03-13 1991-11-22 Nikko Kyodo Co Ltd Fire detection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378899A (en) * 1989-08-23 1991-04-04 Nippon Mining Co Ltd Fire detector
JPH03263197A (en) * 1990-03-13 1991-11-22 Nikko Kyodo Co Ltd Fire detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035930A1 (en) * 1995-05-08 1996-11-14 Japan Energy Corporation Environment monitor apparatus
JP2001175963A (en) * 1999-11-19 2001-06-29 Siemens Building Technol Ag Fire alarm system
JP2020160021A (en) * 2019-03-28 2020-10-01 能美防災株式会社 Flame detector

Also Published As

Publication number Publication date
JP2608512B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
KR900008273B1 (en) Dual spectrum frequency responding fire sensor
EP0078442B1 (en) Fire detection system with ir and uv ratio detector
US4463260A (en) Flame detector
JP7211622B2 (en) Intelligent spark detection device and method using infrared thermal image
JPS586995B2 (en) Flame detection method
KR20130143545A (en) Optically redundant fire detector for false alarm rejection
US5594421A (en) Method and detector for detecting a flame
JP3938276B2 (en) Flame detector and flame detection method
JPH0684077A (en) Fire detection method
JP2606749B2 (en) Fire detection method
CA1211183A (en) Fire and explosion detection and suppression
JP2552149B2 (en) Fire alarm method and device
JPH0378899A (en) Fire detector
Sivathanu et al. Fire detection using time series analysis of source temperatures
JP3781247B2 (en) Flame detector
JPH05159174A (en) Fire sensing method
JP2673135B2 (en) Fire detection method and fire detector
JP4014188B2 (en) Flame detection apparatus and flame detection method
JP2670959B2 (en) Flame measurement method
JP3119926B2 (en) Fire detector
JP2552148B2 (en) Fire detection method and device
JP2593383B2 (en) Fire detector
WO2003034011A2 (en) Fire hazard prevention system
JPS6132195A (en) Fire sensor
JP5848082B2 (en) Flame detector and flame judgment method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees