JPH0196088A - Method for controlling diameter of single crystal - Google Patents

Method for controlling diameter of single crystal

Info

Publication number
JPH0196088A
JPH0196088A JP25326087A JP25326087A JPH0196088A JP H0196088 A JPH0196088 A JP H0196088A JP 25326087 A JP25326087 A JP 25326087A JP 25326087 A JP25326087 A JP 25326087A JP H0196088 A JPH0196088 A JP H0196088A
Authority
JP
Japan
Prior art keywords
diameter
single crystal
deformation rate
raw material
pulling speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25326087A
Other languages
Japanese (ja)
Inventor
Hideo Makino
秀男 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP25326087A priority Critical patent/JPH0196088A/en
Publication of JPH0196088A publication Critical patent/JPH0196088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the deformation rate of single crystal by measuring the diameter of single crystal plural times and controlling the pulling velocity of single crystal and/or the temp. of melting liquid of raw material so that the ratio of difference between the max. and the min. dimensional values of diameter to the min. dimensional value approaches to zero. CONSTITUTION:The output signal of CCD camera 6 is inputted to a diameter calculating unit 8 through a processing unit 7 and the brightness distribution is binarized by the threshold value in the calculating unit 8. The measurement of the diameter is carried out plural times during one revolution of single crystal, and the max. and the min. dimensional values are taken out from the measured values to obtain the deformation rate. Namely, the measured values of diameter are arranged from smaller one to larger one in order and the deformation rate is calculated. Thus, the pulling velocity and/or the temp. of melting raw material are/is controlled so that the deformation rate approaches to zero, and these controls are carried out all over the full length of single crystal. Thus the deviation from the target value of diameter is controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はCZ法(チックラルスキー法)による単結晶
の製造において、単結晶の直径を精度よく制御する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for accurately controlling the diameter of a single crystal in the production of a single crystal by the CZ method (Chickralski method).

〔従来の技術〕[Conventional technology]

IC5LSI等の製造に使用されるシリコン等の単結晶
の製造方法として、C2法がよく知られている。この方
法は、第2図の模式図に示すように、回転するるつぼ1
に容れたシリコン等の原料融液2を、ワイヤ3によりる
つぼ1に対して回転させながら引き上げ凝固させて、柱
状の単結晶4を製造するものである。製造された単結晶
は、円柱状のインゴットに仕上げられるが、その際の歩
留りを上げるため、単結晶4は各部分で同じ直径に制御
することが要求される。
The C2 method is well known as a method for manufacturing single crystals such as silicon used for manufacturing IC5LSIs and the like. In this method, as shown in the schematic diagram of Fig. 2, a rotating crucible 1
A raw material melt 2 of silicon or the like contained in a crucible is pulled up and solidified while being rotated with respect to a crucible 1 by a wire 3, thereby producing a columnar single crystal 4. The produced single crystal is finished into a cylindrical ingot, and in order to increase the yield at that time, it is required that each part of the single crystal 4 be controlled to have the same diameter.

従来から、特開昭48−50983、特開昭48−53
973等に提案されている様に、この直径を制御する方
法として、単結晶成長部5のフユージッンリング11を
光学的手段6で測光し、その値から単結晶4の直径を推
定し、推定された直径が目標値に一致するよう、単結晶
4の引き上げ速度を調整することが行われている。
Previously, JP-A-48-50983, JP-A-48-53
As proposed in 973, etc., as a method of controlling this diameter, the diameter of the single crystal 4 is estimated from the photometry of the fusine ring 11 of the single crystal growth part 5 by optical means 6. The pulling speed of the single crystal 4 is adjusted so that the estimated diameter matches the target value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

−mに単結晶を引上げる場合、引上速度が速い程、生産
量が増大する。しかし、引上速度を上げると単結晶の断
面が真円から外れて結晶格子に固有の不規則な外形を持
つ傾向が強くなる。第5図はこの傾向を示したもので、
結晶ミラー指数く100〉では四角形(同図(イ))、
く111〉では六角形(同図(ロ))、<511>では
五角形(同図(ハ))になる傾向が強い。そして、この
ような傾向が強まると、第4図に示すように単結晶外形
12のただし、φmax:最大直径 φmin:最小直径 が増大し、製品となるべき内接円13の部分に比し表面
の凸凹による切削代14が増え、歩留りを低下させる。
When pulling a single crystal to −m, the faster the pulling speed, the higher the production amount. However, as the pulling speed increases, the cross section of the single crystal tends to deviate from a perfect circle and has an irregular outer shape inherent to the crystal lattice. Figure 5 shows this tendency.
For crystal Miller index 100〉, it is a quadrilateral ((a) in the same figure),
<111> has a strong tendency to be hexagonal (see figure (b)), and <511> has a strong tendency to be pentagonal (see figure (c)). When this tendency becomes stronger, as shown in FIG. 4, the single crystal outer shape 12, where φmax: maximum diameter φmin: minimum diameter, increases, and the surface becomes smaller than the part of the inscribed circle 13 that is to become a product. The cutting allowance 14 due to the unevenness increases, reducing the yield.

本発明は、この問題点を解決して歩留りを良好ならしめ
る単結晶の直径制御法を提供するものである。
The present invention provides a single crystal diameter control method that solves this problem and improves the yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の直径制御方法は、第1図に示すように単結晶4
が1回転する間に複数回単結晶4の直径を測定し、その
最大寸法と最小寸法との差の最小寸法に対する比、すな
わち変形率を0に近づけるよう、好ましくはO〜0.0
2の間の任意の値で制御するよう単結晶4の引上速度お
よび/または原料融液2の温度を制御し、これを単結晶
4の全長にわたって続けるものである。
As shown in FIG.
The diameter of the single crystal 4 is measured multiple times during one rotation of the single crystal 4, and the ratio of the difference between the maximum dimension and the minimum dimension to the minimum dimension, that is, the deformation rate, is preferably O~0.0 so as to approach 0.
The pulling speed of the single crystal 4 and/or the temperature of the raw material melt 2 are controlled to an arbitrary value between 2 and 2, and this is continued over the entire length of the single crystal 4.

本発明の方法において、単結晶1回転当りの直径測定回
数は、多いほど精度が向上し好ましいが、特に1回転当
り10回以上が好ましい、その理由は次のとおりである
In the method of the present invention, it is preferable to measure the diameter more often per rotation of the single crystal because the precision improves, but it is particularly preferable to measure the diameter more than 10 times per rotation for the following reasons.

例えばミラー指数HOO)の方位で単結晶を引上げた場
合、最も細い部分は晶癖線の両側10度付近に出現する
。すなわち最大でも20度毎に測定する必要がある。従
って測定誤差を0.1mm以下にするには円周を最低2
0分割することが必要であり、これは1回転当りの直径
測定回数を工0回にすることで実現できる。
For example, when a single crystal is pulled in the direction of the Miller index HOO), the thinnest portions appear around 10 degrees on both sides of the habit line. That is, it is necessary to measure every 20 degrees at most. Therefore, to reduce the measurement error to 0.1 mm or less, the circumference should be at least 2
It is necessary to perform 0 divisions, and this can be achieved by reducing the number of diameter measurements per revolution to 0.

〔作 用〕[For production]

単結晶の引き上げに際して、変形率を0に近づけるよう
に制?コするので、変形率を最適に保つことができる。
Is it possible to control the deformation rate to be close to 0 when pulling a single crystal? Therefore, the deformation rate can be maintained at an optimum level.

したがって生産能率は高く、歩留りも良くすることがで
きる。
Therefore, production efficiency is high and yield can be improved.

〔実施例〕〔Example〕

以下、本発明の方法を実施例をまじえ具体的に説明する
Hereinafter, the method of the present invention will be specifically explained with reference to Examples.

直径測定の行い方は、従来の方法がそのまま適用できる
。第2図および第3図面の簡単な説明すると、CCDカ
メラ6がるつぼ1の斜め上方から原料融液2と単結晶4
との境界面中央に向けて水平方向の輝度分布を測定する
ように設置しである。CCDカメラ6の出力信号は処理
装置7を経て直径計算装置8に入力される。処理装置8
では、第3図(イ)(ロ)に示すように、上記輝度分布
をしきい値9により二硫化する。そして同図(ハ)に示
すように、フュージョンリングの測光方向両端に対応す
る2つの1信号の両端の画素子番号をNA 、NAとす
れば単結晶の直径φ(鶴)は φ−8×(NA−NI)〔1〕A) ただし、S:画素子の幅(n) として計算装置日により測定される。
The conventional method can be applied as is to the diameter measurement method. To briefly explain FIG. 2 and FIG.
It was installed so that the horizontal brightness distribution was measured toward the center of the interface between the two. The output signal of the CCD camera 6 is input to a diameter calculation device 8 via a processing device 7. Processing device 8
Now, as shown in FIGS. 3(a) and 3(b), the above luminance distribution is disulfidized using a threshold value 9. As shown in the same figure (c), if the pixel numbers at both ends of the two 1 signals corresponding to both ends of the fusion ring in the photometric direction are NA and NA, the diameter φ (crane) of the single crystal is φ-8× (NA-NI) [1] A) where S: Width of pixel element (n) Measured by computing device date.

本発明の直径制御方法においては、このような直径測定
を単結晶が1回転する間に複数回、好ましくは10回以
上行う。そして、その中から最小寸法と最大寸法をとり
出し、変形率を求める。
In the diameter control method of the present invention, such diameter measurement is performed multiple times, preferably 10 times or more, during one rotation of the single crystal. Then, the minimum dimension and maximum dimension are taken out from among them, and the deformation rate is determined.

例えば、直径測定を単結晶1回転当り13回行うとして
、第1図に1.2.−・−、13で示した部分の直径φ
1.φ2.・−−一−−−・・、φ1.がφ+=129
  n φ、−128,4tm φ3=129.1曹婁 φ、=131.On φS−129,5曹曹 φへ=128.5−1 φ、、−129.On であったとすれば、これらのφ、〜φ1.を小さな順に
並び換え、最大値φma x(この場合φ4−131.
0龍)と、最小値φm1n(この場合φ2=128.4
■會)から mm i n を計算するのである。
For example, assuming that the diameter is measured 13 times per revolution of a single crystal, 1.2. −・−, diameter φ of the part indicated by 13
1. φ2.・−−1−−−・・φ1. is φ+=129
n φ, -128,4tm φ3=129.1 Cao φ,=131. On φS-129, 5 Soso φ = 128.5-1 φ,, -129. On, these φ, ~φ1. are sorted in descending order, and the maximum value φmax (in this case φ4-131.
0ryu) and the minimum value φm1n (in this case φ2=128.4
■Meeting) to calculate mm i n .

そして変形率が求まると、この変形率を0に近づけるよ
う引上速度および/または原料融液温度を制御し、この
制御を単結晶の全長にわたって実施する。この場合、目
標直径を確保するための一般的な直径制御を合せて実施
していることは言うまでもない。
Once the deformation rate is determined, the pulling speed and/or raw material melt temperature is controlled so that the deformation rate approaches 0, and this control is performed over the entire length of the single crystal. In this case, it goes without saying that general diameter control is also carried out to ensure the target diameter.

このような直径制御を更に実際的に説明すると、引上ら
れた単結晶の平均直径φ(1)を目標直径φ。にするた
めの引上速度vPと、測定直径φ(1)との関係は一般
的に次式のごとき直径制御関数により示され得る。
To explain such diameter control more practically, the average diameter φ(1) of the pulled single crystal is set as the target diameter φ. The relationship between the pulling speed vP and the measured diameter φ(1) can generally be expressed by a diameter control function as shown in the following equation.

VP  =V  (jり  十P ・(φ(t)   
+110  )t ただし、vp:引上速度(mm/mi n)v<it’
>:平均引上速度で引上長さ!(直径φ によって定ま
る)の関数(mm/m1n) φ(t):測定直径で時間t(min)の関数(mm) φ。:目標直径(mm) P :係数(1/m1n) ! =積分時間(17min富) D :微分係数 すなわち、+11式で示されるように、引上速度Vpは
、平均引上速度v (gと、常時連続的に測定される測
定直径φ(1)と目標直径φ。との差について比例係数
Pをもつ比例値と、τ時間経過中の積分値に比例した積
分係数!をもつ積分比例値と、微分値についての微分係
数りをもつ微分比例値との合計にて表わされるのである
VP = V (jri 1P ・(φ(t)
+110)t However, vp: Pulling speed (mm/min) v<it'
>: Pulling length at average pulling speed! (determined by diameter φ) (mm/m1n) φ(t): Measured diameter and function of time t (min) (mm) φ. : Target diameter (mm) P : Coefficient (1/m1n)! = Integration time (17min) D: Differential coefficient, as shown in +11 formula, the pulling speed Vp is calculated by the average pulling speed v (g, the measured diameter φ (1) which is always continuously measured) A proportional value with a proportional coefficient P for the difference from the target diameter φ, an integral proportional value with an integral coefficient ! proportional to the integral value during the elapse of τ time, and a differential proportional value with a differential coefficient ! about the differential value. It is expressed as the sum of .

ところが、このような+11式による直径制御では、結
晶方向によって生じる多角形化等の外乱に対して対処で
きない、そこで、本発明の直径制御方法では、このよう
な外乱変形等に対処すべく前記〔1〕式に変形率σの関
数である補正関数F(σ)を付加して改良した下記の如
き直径制御関数式を用いるのである。
However, diameter control using the +11 formula cannot cope with disturbances such as polygonization caused by crystal orientation.Therefore, in the diameter control method of the present invention, in order to cope with such disturbance deformation, the above-mentioned [ The following diameter control function formula is used, which is improved by adding a correction function F(σ) which is a function of the deformation rate σ to the formula 1].

v、=v <t> +p・ (φ(1)−φ。)t +F(σ)       −・−・・−・−・・ (2
)(2)式は単結晶が一定の平均直径になるような直径
φ(【)の変化と引上速度の制御下にあって、単結晶外
形12の変形率を小さく制御することを意味し、その結
果は単結晶が一定の平均直径であってもその周方向の外
形変動が少なく、歩留りを向上させ得ることになる。
v,=v <t> +p・(φ(1)−φ.)t +F(σ) −・−・・−・−・・ (2
) (2) means that the deformation rate of the single crystal outer shape 12 is controlled to be small by controlling the change in diameter φ ([) and the pulling speed so that the single crystal has a constant average diameter. As a result, even if the single crystal has a constant average diameter, there is little variation in the outer shape in the circumferential direction, and the yield can be improved.

以上の方法で実際に単結晶シリコンの直径制御を行った
結果を従来法の場合と比較して次に説明する。
The results of actually controlling the diameter of single-crystal silicon using the above method will be explained below in comparison with the conventional method.

本発明法では単結晶が1回転する毎に13回の直径測定
を行い、その中から最小寸法と最大寸法をとり出して、
変形率を求め、変形率が0.005土o、oosに収ま
るように引上速度を調整しながら単結晶直径を目標直径
に管理した。すなわち、変形率が0.005以上の場合
には引上速度を小さ(し、変形率がo、 o o sよ
り小さい場合には引上速度を大きくした。一方、従来法
ではこのような変形率による補正は行わず、最小直径を
目標直径にすべく制御しながら引上を行った。また、従
来法としては、平均引上速度を本発明法と同一の1゜I
n/分としたもの、これより小さい1. Owm /分
としたものの二種類を実施した0条件を整理して第1表
に示す。
In the method of the present invention, the diameter is measured 13 times each time the single crystal rotates, and the minimum and maximum dimensions are taken out of them.
The deformation rate was determined, and the single crystal diameter was controlled to the target diameter while adjusting the pulling speed so that the deformation rate was within 0.005 o, oos. In other words, when the deformation rate was 0.005 or more, the pulling speed was reduced (and when the deformation rate was smaller than o, o o s, the pulling speed was increased.On the other hand, in the conventional method, such deformation The pulling was performed while controlling the minimum diameter to the target diameter without making any corrections based on the rate.In addition, in the conventional method, the average pulling speed was set at 1°I, which is the same as in the method of the present invention.
n/min, smaller than 1. Table 1 summarizes the zero conditions under which two types of tests were carried out, with Owm/min.

第  1  表 第6図は、得られた単結晶の最大直径と最小直径を単結
晶長手方向の7箇所(有効部トップから0.100.2
00〜600の位置)で測定した結果を示したものであ
る。
Table 1 and Figure 6 show the maximum and minimum diameters of the obtained single crystal at seven points in the longitudinal direction of the single crystal (0.100.2 from the top of the effective part).
00 to 600).

第6図から明らかなように、本発明法では単結晶の全長
にわたって変形率が0.005±o、oos以下に制御
され、目標直径に対するズレが小さく、製品直径との間
に十分な余裕がある。これに対し、本発明法と同一の平
均引上速度を与えた従来法Iで゛は、変形率が長手方向
平均で0.02に増大しており、製品化に当っての切削
加工では、切削量が本発明法の場合に比べて約1.5%
増大した。また、この従来法Iでは特に問題となってい
ないが、変形率が大きい場合は局部的に製品直径を下回
る箇所が生じ、単結晶全体が欠陥品になる危険性も増す
、また、従来法■では変形率は0.07に収まっており
、切削量も本発明法の場合と大差はないが、引上速度は
本発明法に比べて、9%低下させており、製造能率とい
う点では著しく劣る。
As is clear from Fig. 6, in the method of the present invention, the deformation rate is controlled to less than 0.005±o,oos over the entire length of the single crystal, the deviation from the target diameter is small, and there is sufficient margin between the diameter and the product diameter. be. On the other hand, in conventional method I which gave the same average pulling speed as the method of the present invention, the deformation rate increased to 0.02 on average in the longitudinal direction. The cutting amount is approximately 1.5% compared to the method of the present invention.
It increased. In addition, although there is no particular problem with this conventional method I, if the deformation rate is large, there will be parts that are smaller than the product diameter locally, increasing the risk that the entire single crystal will become a defective product. In this case, the deformation rate was within 0.07, and the amount of cutting was not much different from that of the method of the present invention, but the pulling speed was reduced by 9% compared to the method of the present invention, which was significantly improved in terms of manufacturing efficiency. Inferior.

第7図は第1表の条件(本発明法)において、直径の測
定回数を変化させた場合の、測定回数と変形率(長手方
向平均値)との関係を示したものである。
FIG. 7 shows the relationship between the number of measurements and the deformation rate (average value in the longitudinal direction) when the number of diameter measurements was varied under the conditions shown in Table 1 (method of the present invention).

同図から、測定回数を増すことにより変形率が小さくな
り、特に10回以上で大巾な効果の得られていることわ
かる。
From the same figure, it can be seen that the deformation rate decreases as the number of measurements increases, and a significant effect is obtained especially when the number of measurements is 10 or more.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の方法によれば
単結晶の変形率が低下され、目標直径に対するズレが抑
制される。その結果、切削加工における切削量が低減す
るとともに、製品直径を局部的に下回る危険性が減少し
、目標直径を製品直径に近づけることができるようにな
るので、この面からも歩留りの向上を測ることができ、
更に、引上速度も増大させることができるので、単結晶
乃至製品ウェハの製造コスト引下げに大きな効果が発揮
される。
As is clear from the above description, according to the method of the present invention, the deformation rate of the single crystal is reduced and deviation from the target diameter is suppressed. As a result, the amount of cutting during cutting is reduced, the risk of locally falling short of the product diameter is reduced, and the target diameter can be brought closer to the product diameter, so yield improvement can be measured from this perspective as well. It is possible,
Furthermore, since the pulling speed can be increased, a great effect is exhibited in reducing the manufacturing cost of single crystals or product wafers.

【図面の簡単な説明】 第1図は本発明法に係る直径測定位置を示す模式図、第
2図は一般的な単結晶引上げと単結晶の直径測定を示す
模式図、第3図は単結晶の直径測定における信号処理手
順を示す線図、第4図は単結晶外形断面の形状を示す模
式図、第5図は単結晶の結晶ミラー指数による断面変形
を示す模式図1、  第6図および第7図は本発明の効
果を示すグラフである。 l:るつぼ、2:原料融液、3:ワイヤ、4:単結晶、
5:単結晶成長部、6:光学的手段(CODカメラ)、
7:出力信号の処理装置、8:直径針n装置、9:しき
い値、11:フュージョンリング。 出 願 人 大阪チタニウム製造株式会社第 1 日 第 5 口 〔1〕1> 第6図 変形率 結晶長[mm1 ff、7図
[Brief explanation of the drawings] Fig. 1 is a schematic diagram showing the diameter measurement position according to the method of the present invention, Fig. 2 is a schematic diagram showing general single crystal pulling and single crystal diameter measurement, and Fig. 3 is a schematic diagram showing the diameter measurement position of a single crystal according to the method of the present invention. A diagram showing the signal processing procedure in measuring the diameter of a crystal, Fig. 4 is a schematic diagram showing the cross-sectional shape of a single crystal, Fig. 5 is a schematic diagram showing cross-sectional deformation due to the crystal Miller index of a single crystal, Fig. 6 and FIG. 7 are graphs showing the effects of the present invention. l: crucible, 2: raw material melt, 3: wire, 4: single crystal,
5: Single crystal growth part, 6: Optical means (COD camera),
7: output signal processing device, 8: diameter needle n device, 9: threshold value, 11: fusion ring. Applicant Osaka Titanium Manufacturing Co., Ltd. 1st day 5th entry [1] 1> Fig. 6 Deformation rate crystal length [mm1 ff, Fig. 7

Claims (1)

【特許請求の範囲】 〔1〕るつぼ(1)中の原料融液(2)をるつぼ(1)
に対して回転させながら柱状に引き上げて凝固させる単
結晶(4)の製造において、単結晶(4)が1回転する
間に複数回単結晶(4)の直径を測定し、その最大寸法
と最小寸法との差の最小寸法に対する比を0に近づける
よう単結晶(4)の引上速度および/または原料融液(
2)の温度を制御することを特徴とする単結晶の直径制
御方法。 〔2〕最大寸法と最小寸法との差の最小寸法に対する比
を0〜0.02の間の任意の値になるように単結晶(4
)の引上速度および/または原料融液(2)の温度を制
御することを特徴とする特許請求の範囲第1項記載の単
結晶の直径制御方法。
[Scope of Claims] [1] The raw material melt (2) in the crucible (1) is transferred to the crucible (1).
In manufacturing the single crystal (4), which is pulled into a columnar shape and solidified while rotating, the diameter of the single crystal (4) is measured multiple times during one rotation of the single crystal (4), and its maximum and minimum dimensions are The pulling speed of the single crystal (4) and/or the raw material melt (
2) A method for controlling the diameter of a single crystal, comprising controlling the temperature. [2] Single crystal (4
2. The method for controlling the diameter of a single crystal according to claim 1, characterized in that the pulling speed of the raw material melt (2) and/or the temperature of the raw material melt (2) are controlled.
JP25326087A 1987-10-07 1987-10-07 Method for controlling diameter of single crystal Pending JPH0196088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25326087A JPH0196088A (en) 1987-10-07 1987-10-07 Method for controlling diameter of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25326087A JPH0196088A (en) 1987-10-07 1987-10-07 Method for controlling diameter of single crystal

Publications (1)

Publication Number Publication Date
JPH0196088A true JPH0196088A (en) 1989-04-14

Family

ID=17248801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25326087A Pending JPH0196088A (en) 1987-10-07 1987-10-07 Method for controlling diameter of single crystal

Country Status (1)

Country Link
JP (1) JPH0196088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275586A (en) * 1990-03-26 1991-12-06 Mitsubishi Materials Corp Production of silicon single crystal wafer
CN110512279A (en) * 2019-10-15 2019-11-29 宁夏银和新能源科技有限公司 It can be improved the single crystal growing furnace ending method of ending success rate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156397A (en) * 1981-03-23 1982-09-27 Toshiba Corp Device for pulling up crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156397A (en) * 1981-03-23 1982-09-27 Toshiba Corp Device for pulling up crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275586A (en) * 1990-03-26 1991-12-06 Mitsubishi Materials Corp Production of silicon single crystal wafer
CN110512279A (en) * 2019-10-15 2019-11-29 宁夏银和新能源科技有限公司 It can be improved the single crystal growing furnace ending method of ending success rate

Similar Documents

Publication Publication Date Title
CN1202290C (en) Method and system for controlling growth of a silicon crystal
US20100024718A1 (en) Procedure for in-situ determination of thermal gradients at the crystal growth front
JPH0416437B2 (en)
JPH0438719B2 (en)
JPH0196088A (en) Method for controlling diameter of single crystal
US5176787A (en) Method and apparatus for measuring the diameter of a silicon single crystal
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
JP2979462B2 (en) Single crystal pulling method
EP0456370A2 (en) Method and apparatus for controlling the diameter of a silicon single crystal
JPS6033291A (en) Preparation of single crystal silicon
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
EP0319858B1 (en) Method of controlling floating zone
JPH0196089A (en) Method for controlling diameter of single crystal
JP2876050B2 (en) Crystal diameter measurement method
JPS63256594A (en) Method for measuring diameter of crystal in cz furnace
US6111262A (en) Method for measuring a diameter of a crystal
JPS6027686A (en) Apparatus for manufacturing single crystal
JPS63100097A (en) Method for measuring diameter of single crystal
JPH0565478B1 (en)
JPH06172081A (en) Method for controlling oxygen concentration of semiconductor single crystal
JPS6321280A (en) Method for controlling diameter of single crystal
JP3473313B2 (en) Crystal diameter measurement method
RU2184803C2 (en) Technique controlling process of growth of monocrystals from melt and device for its realization
JPH11189489A (en) Growth of single crystal, single crystal thus grown, and single crystal wafer
JP3348458B2 (en) Single crystal pulling method