JPH0196036A - Production of doped quartz glass - Google Patents

Production of doped quartz glass

Info

Publication number
JPH0196036A
JPH0196036A JP25301387A JP25301387A JPH0196036A JP H0196036 A JPH0196036 A JP H0196036A JP 25301387 A JP25301387 A JP 25301387A JP 25301387 A JP25301387 A JP 25301387A JP H0196036 A JPH0196036 A JP H0196036A
Authority
JP
Japan
Prior art keywords
gel
sol
glass body
glass
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25301387A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25301387A priority Critical patent/JPH0196036A/en
Publication of JPH0196036A publication Critical patent/JPH0196036A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To reduce the valency of an added metal when a glass body is synthesized by a sol-gel process by carrying out vitrification by heating in an atmosphere of a nonoxidizing gas under reduced pressure. CONSTITUTION:Sol prepd. with alkyl silicate, fine silica particles and a compd. contg. a metallic element as starting materials is converted into gel and this gel is dried. The resulting dry gel is heated at >=300 deg.C in an atmosphere of an inert gas such as He, Ar or N2, hydrogen or a reducing gas such as CO or H2S under reduced pressure. By the heating, the pores in the dry gel are sealed to obtain a glass body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は精鋭レーザーガラス、ガラスフィルター、蛍光
ガラス管、光学レンズ等への応用可能な均質で大型のド
ープト石英ガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing homogeneous and large-sized doped quartz glass that can be applied to elite laser glasses, glass filters, fluorescent glass tubes, optical lenses, and the like.

〔従来の技術〕[Conventional technology]

ドープト石英ガラスの製造方法としては、各種提案され
ているが、次の3つの方法に大別できる。
Although various methods have been proposed for producing doped silica glass, they can be roughly divided into the following three methods.

(i)火焔酸化分解溶融法 (ii)スート混入ガラス化法 (iii)ゾルゲル法 〔発明が解決しようとする問題点〕 ゾルゲル法は常温、液体状態でドーパントの均質な添加
が可能であり、論理的には最も優れたドープトガラスの
製造方法である。ドープト石英ガラスは、添加した金属
のイオン価が制御できて、初めて応用可能な機能を発揮
する。例えばTi”、Cr”、Ce”などはレーザー発
振するが、Tt4+、Cr”、Ce”は発振しない。
(i) Flame oxidative decomposition melting method (ii) Soot-mixed vitrification method (iii) Sol-gel method [Problems to be solved by the invention] The sol-gel method allows for the homogeneous addition of dopants in a liquid state at room temperature, and is logically This is the most excellent method for producing doped glass. Doped silica glass only exhibits applicable functions when the ionic valence of the added metal can be controlled. For example, Ti'', Cr'', Ce'' etc. oscillate as a laser, but Tt4+, Cr'', Ce'' do not oscillate.

従来のゾルゲル法は添加時の金属のイオン価が焼結した
ガラス体でも維持される蛍光にあるものの、一般に高い
イオン価へとシフトし、機能が十分に発揮できないとい
う問題点を有している。
In the conventional sol-gel method, the ionic valence of the metal at the time of addition is such that the fluorescence is maintained even in the sintered glass body, but it generally shifts to a higher ionic valence and has the problem of not being able to fully demonstrate its function. .

そこで本発明はかかる問題点を解決するもので、その目
的とするところは、添加金属のイオン価が低い価で制御
できる製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention aims to solve these problems, and its purpose is to provide a manufacturing method in which the ionic valence of the added metal can be controlled at a low valence.

[問題点を解決するための手段] 本発明のドープト石英ガラスの製造方法は、少なくとも
アルキルシリケート、シリカ微粒子、および金属元素を
含有する化合物が原料であるゾル溶液を、ゲル化させる
工程、乾燥させてドライゲルを作成する工程、前記ドラ
イゲルを加熱して閉孔化させガラス体とする工程からな
るゾルゲル法を用いたガラス体合成において、以下に示
すいずれかの条件下で加熱し、ガラス化させることを特
徴とする。
[Means for Solving the Problems] The method for producing doped quartz glass of the present invention includes a step of gelling a sol solution made of a compound containing at least an alkyl silicate, silica fine particles, and a metal element, and drying the sol solution. In glass body synthesis using the sol-gel method, which consists of a step of creating a dry gel by heating the dry gel to close the pores to form a glass body, heating and vitrifying the dry gel under any of the conditions shown below. It is characterized by

a)減圧状態 b)He、Ar、N2等の不活性ガス雰囲気C)水素雰
囲気 d)Co、H,S等の還元ガス雰囲気 〔作用] 閉孔化していない多孔質の状態だと、高温域で雰囲気を
酸化あるいは還元にすることにより、添加金属のイオン
価は可逆的に変化する。還元雰囲気で閉孔化、及びガラ
ス化を行なうと、添加金属は低いイオン価にシフトし安
定となる。真空または不活性雰囲気で閉孔化、及びガラ
ス化を行なうと、添加時の金属のイオン価が低い価であ
っても維持され、安定となる。
a) Depressurized state b) Inert gas atmosphere such as He, Ar, N2, etc. C) Hydrogen atmosphere d) Reducing gas atmosphere such as Co, H, S, etc. By making the atmosphere oxidizing or reducing, the ionic valence of the added metal changes reversibly. When pore closure and vitrification are performed in a reducing atmosphere, the added metal shifts to a lower ionic valence and becomes stable. When pore closing and vitrification are performed in a vacuum or an inert atmosphere, even if the ionic valence of the metal at the time of addition is low, it is maintained and stable.

〔実施例1〕 エチルシリケート280mfと0.02規定塩酸水溶液
190m1を激しく攪拌し、無色透明の均一溶液を得た
[Example 1] 280 mf of ethyl silicate and 190 ml of a 0.02 N hydrochloric acid aqueous solution were vigorously stirred to obtain a colorless and transparent homogeneous solution.

それとは別にエチルシリケー)420mj2.エタノー
ル840ml、3規定アンモニア水170m2を均一に
混合し、室温で3日間放置した。白濁したゾルに純水1
00mlを添加してから、ロータリーエバポレーターを
用いて240mlに濃縮した。更に2規定塩酸水溶液を
添加してpH4,0に調整した。前述の塩酸加水分解液
と混合し、充分に攪拌した。
Separately, ethyl silica) 420mj2. 840 ml of ethanol and 170 m2 of 3N aqueous ammonia were uniformly mixed and left at room temperature for 3 days. Pure water 1 in cloudy sol
00 ml was added and then concentrated to 240 ml using a rotary evaporator. Furthermore, a 2N aqueous hydrochloric acid solution was added to adjust the pH to 4.0. The mixture was mixed with the hydrochloric acid hydrolysis solution described above and thoroughly stirred.

次に1%塩化第一セリウム水溶液を7.1m1(Ce/
3102−0.01モル%)加え、攪拌しながら0.2
規定アンモニア水を滴下し、pH4,2に調整した。こ
のゾルをテフロン製容器(内径5 C1!l X長さ3
0cm)に注入して密栓をし、2日間静置した。
Next, add 7.1 ml of 1% cerous chloride aqueous solution (Ce/
3102-0.01 mol%) and 0.2% while stirring.
Normal ammonia water was added dropwise to adjust the pH to 4.2. Pour this sol into a Teflon container (inner diameter 5 C1!L x length 3
The solution was injected into a tube (0 cm), sealed tightly, and allowed to stand for 2 days.

収縮したゲルをポリプロピレン製容器(10CIIIX
 40CIIIX 15CIllH)に移し、開口率1
%のフタをした。60°Cで10日間乾燥させたところ
、ロンド形状のドライゲルが作製できた。
The shrunken gel was placed in a polypropylene container (10CIIIX
40CIIIX 15CIllH), and the aperture ratio was 1.
I put a lid on the percentage. After drying at 60°C for 10 days, a rondo-shaped dry gel was produced.

大気中、60°C/ h rの速度で昇温し、200°
C1300°C1500°Cの各温度で5時間ずつ保持
した。次の真空炉内に移し10−’To r r以下の
減圧度を保ちながら60°C/ h rの速度で100
0°Cまで昇温し、1時間保持した。更に1250°C
まで昇温し1時間保持した。ガラス化が終了しており、
大きさは外径2.5cm長さ15cmであった。
In the atmosphere, the temperature is increased at a rate of 60°C/hr to 200°
The temperature was maintained at 1300°C and 1500°C for 5 hours. Transfer to the next vacuum furnace and heat at a rate of 60°C/hr while maintaining the degree of vacuum below 10-'Torr.
The temperature was raised to 0°C and held for 1 hour. Further 1250°C
and held for 1 hour. Vitrification has been completed,
The size was 2.5 cm in outer diameter and 15 cm in length.

こうして得られたガラス体は無色透明で、脈理や結晶等
もみられず良好なものであった。化学分析からこのガラ
ス体には計算量と同量のセリウムが含をされていること
がわかった。また、分光分析からガラス中のセリウムイ
オンの存在比は、概算で(3価:4価)=(3:1)と
なっていることが確認された。
The glass body thus obtained was colorless and transparent, and was in good condition with no striae or crystals observed. Chemical analysis revealed that this glass body contained the same amount of cerium as calculated. Moreover, it was confirmed from spectroscopic analysis that the abundance ratio of cerium ions in the glass was approximately (trivalent:quadrivalent)=(3:1).

次に蛍光特性を調べたところ、325 nmの励起光に
より効果的に蛍光を発生し、その発光波長域は350 
nm〜550nmの広範囲に及ぶこと、蛍光寿命は約1
20ナノ秒であること等がわかった。更にレーザー発振
を試みたところ、安定的に発振を行なうことが確認され
た。また、繰り返し発振も十分可能であり、長時間の使
用にも劣化はみられなかった。
Next, we investigated its fluorescence characteristics and found that it effectively generates fluorescence with excitation light of 325 nm, and its emission wavelength range is 350 nm.
It covers a wide range from nm to 550 nm, and the fluorescence lifetime is about 1
It was found that it was 20 nanoseconds. Furthermore, when we tried laser oscillation, it was confirmed that it oscillated stably. Moreover, repeated oscillation was sufficiently possible, and no deterioration was observed even after long-term use.

〔実施例〕〔Example〕

エチルシリケートに重量比で1:1になるように0.0
2規定の塩酸を加え、氷冷しながら約2時間攪拌するこ
とにより加水分解溶液を調整した。
0.0 to ethyl silicate so that the weight ratio is 1:1.
A hydrolysis solution was prepared by adding 2N hydrochloric acid and stirring for about 2 hours while cooling with ice.

そこに超微粉末シリカ(Aerosil  0X−50
)を、エチルシリケートに対しモル比でl:lになるよ
うに徐々に添加し、充分に攪拌した。
There, ultrafine powdered silica (Aerosil 0X-50
) was gradually added to the ethyl silicate in a molar ratio of 1:1, and the mixture was thoroughly stirred.

このゾルを20°Cに保ちながら28KHzの超音波を
2時間照射し、更に1500Gの遠心力を10分間かけ
た後1μmのフィルターを通過させた。
This sol was irradiated with 28 KHz ultrasonic waves for 2 hours while being kept at 20°C, and then subjected to a centrifugal force of 1500 G for 10 minutes, and then passed through a 1 μm filter.

その後このゾル中にEu/S io、=0.1%となる
ように所定量のユウロピウムを硝酸ユウロピウムの形で
添加し、約1時間攪拌を続けた。このゾルのpH値を0
,4規定のアンモニア水を用いて4.5に調整し、約2
時間かけてゲル化させた。
Thereafter, a predetermined amount of europium in the form of europium nitrate was added to this sol so that Eu/S io =0.1%, and stirring was continued for about 1 hour. The pH value of this sol is set to 0.
, Adjust to 4.5 using 4-standard ammonia water, and make about 2
It took a while to gel.

開口率0.3%程度の乾燥容器に、このゲル体を移し入
れ、約60°Cに保たれた恒温乾燥機を用いて約2週間
で乾燥し、空気中に放置しても割れない多孔質なドライ
ゲルを得た。
This gel body is transferred to a drying container with an open area ratio of about 0.3%, and dried in a constant temperature dryer kept at about 60°C in about 2 weeks. A high quality dry gel was obtained.

この多孔質体を酸素/窒素混合雰囲気中で一旦1000
℃まで加熱し、縮合反応の促進、脱水、脱有機物等の各
種処理を行なった後、炉内をヘリウム雰囲気に変え、最
高1400°Cまで加熱してガラス化させた。
This porous body was heated for 1000 minutes in an oxygen/nitrogen mixed atmosphere.
After heating to a temperature of 1,400°C and performing various treatments such as promoting condensation reactions, dehydration, and removal of organic matter, the inside of the furnace was changed to a helium atmosphere, and the mixture was heated to a maximum of 1,400°C to vitrify it.

こうして得られたユウロピウム含有石英ガラスは、30
0〜400nmの波長域で選択的紫外線吸収特性を示し
、ガラス体各所における吸収特性の差異は認められなか
った。ガラス中のユウロピウムイオンの存在比は、概算
で(2価:3価)=(3:1)となっていた。ガラスフ
ィルターとして応用できる。
The europium-containing quartz glass thus obtained was 30
It exhibited selective ultraviolet absorption characteristics in the wavelength range of 0 to 400 nm, and no difference in absorption characteristics was observed between different parts of the glass body. The abundance ratio of europium ions in the glass was approximately (bivalent:trivalent)=(3:1). Can be used as a glass filter.

〔実施例3〕 実施例1と同様の方法により、所定ff1(Ti/5i
Oz=2%)のチタンをトリプロポキシチタンの形で添
加したゾル溶液を調整し、同様の手順によりゲル化、乾
燥、500°Cまでの加熱を行なった。炉内に水素混合
ガス(Hz/He=5%)を流入し、最高1300℃ま
で加熱してガラス化させた。
[Example 3] A predetermined ff1 (Ti/5i
A sol solution containing titanium (Oz = 2%) in the form of tripropoxytitanium was prepared and gelled, dried, and heated to 500°C using the same procedure. Hydrogen mixed gas (Hz/He=5%) was introduced into the furnace and heated to a maximum of 1300°C to vitrify it.

こうして得られたガラス中のチタンイオンは、はぼすべ
て3価の状態であることが分光分析よりわかった。また
1800°Cに加熱して10分間保持しても、イオン価
は3価のまま保持されることが確認された。
Spectroscopic analysis revealed that almost all of the titanium ions in the glass thus obtained were in a trivalent state. It was also confirmed that even when heated to 1800°C and held for 10 minutes, the ion valence remained trivalent.

蛍光特性を調べたところ、発光波長は600nm〜11
000nの広範囲にわたっていた。外径3cm、長さ2
0cmのガラス体を、アレキサンドライトレーザーの増
幅器として用いたところ、効果的な増幅が測定され、レ
ーザーのアンプ材としての応用が可能である。
When we investigated the fluorescence characteristics, the emission wavelength was 600 nm to 11
000n over a wide range. Outer diameter 3cm, length 2
When a 0 cm glass body was used as an alexandrite laser amplifier, effective amplification was measured, and the glass body can be used as a laser amplifier material.

〔実施例4〕 実施例2と同様の方法により、所定量(Cr/SiO□
=0.1%)のクロムを硝酸第ニクロムの形で添加した
ゾル溶液を調整し、同様の手順により、ゲル化、乾燥、
1000℃までの加熱を行なった。炉内を一酸化炭素雰
囲気に変え最高1400°Cまで加熱してガラス化させ
た。
[Example 4] A predetermined amount (Cr/SiO□
A sol solution containing chromium (=0.1%) in the form of dichromic nitrate was prepared, and gelation, drying, and
Heating was performed up to 1000°C. The inside of the furnace was changed to a carbon monoxide atmosphere and heated to a maximum of 1400°C to vitrify it.

こうして得られたクロム含有石英ガラスは、緑色を呈し
ているが透明度が高く、分光分析より、はぼすべて3価
の状態であることがわかった。外径6mm長さ75mm
のガラス体各所の両端面を高精度平行平面研磨し、レー
ザー発振を試みたところ、安定的に発振を行なうことが
確認された。発振波長は600〜850 nmの範囲で
可変であり、長時間の使用にも劣化はみられなかった。
The chromium-containing quartz glass thus obtained has a green color but is highly transparent, and spectroscopic analysis revealed that almost all of the chromium-containing quartz glass is in a trivalent state. Outer diameter 6mm length 75mm
When we attempted laser oscillation by high-precision parallel plane polishing of both end faces of various parts of the glass body, stable oscillation was confirmed. The oscillation wavelength was variable in the range of 600 to 850 nm, and no deterioration was observed even after long-term use.

30cmx30cmx 1cm程度の大型化は難カシく
ないため、スラブ型レーザーガラスへの応用も可能であ
る。
Since it is not difficult to increase the size to about 30 cm x 30 cm x 1 cm, application to slab type laser glass is also possible.

〔実施例5〕 実施例2と同じ方法でユウロピウムを添加し、1000
°Cまで加熱して多孔質体とした。炉内を硫化水素雰囲
気に変え1000°Cから1200°Cに昇温し、次に
0.ITorr以下の減圧度を保ちながら1400°C
まで昇温した。ガラス中のユウロピウムは、はぼすべて
2価の状態をとっていた。
[Example 5] Europium was added in the same manner as in Example 2, and 1000
It was heated to °C to form a porous body. The inside of the furnace was changed to a hydrogen sulfide atmosphere and the temperature was raised from 1000°C to 1200°C, then 0. 1400°C while maintaining the degree of decompression below ITorr
The temperature rose to . Almost all of the europium in the glass was in a divalent state.

1750°Cに加熱し、20分間保持しても、ユウロピ
ウムのイオン価は2価のままで保たれていた。300〜
400nmの波長域で選択的紫外線吸収特性を示すため
、ガラスフィルターとして利用できる。
Even when heated to 1750°C and held for 20 minutes, the ionic valence of europium remained divalent. 300~
Since it exhibits selective ultraviolet absorption characteristics in the 400 nm wavelength range, it can be used as a glass filter.

以上数種類の雰囲気ガスについて実施例を述べてきたが
、ガスの種類は何ら特定元素に限定されるとはない。
Although the embodiments have been described above regarding several types of atmospheric gases, the types of gases are not limited to any particular element.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、少なくともアルキル
シリケート、シリカ微粒子、および金属元素を含有する
化合物が原料であるゾル溶液を、ゲル化させる工程、乾
燥させてドライゲルを作成する工程、前記ドライゲルを
加熱して閉孔化させガラス体とする工程からなるゾルゲ
ル法を用いたガラス体合成において、以下に示すいずれ
かの条件下で加熱し、ガラス化させることにより、添加
金属のイオン価が低い価で制御できた。
As described above, according to the present invention, there is a step of gelling a sol solution made of a compound containing at least an alkyl silicate, silica fine particles, and a metal element, a step of drying to create a dry gel, and a step of drying the dry gel. In glass body synthesis using the sol-gel method, which consists of a step of heating to close the pores to form a glass body, by heating and vitrifying under any of the conditions shown below, the ionic valence of the added metal can be reduced to a low valence. I was able to control it.

a)減圧状態 b)He、Ar、N、等の不活性ガス雰囲気C)水素雰
囲気 d)CO,H2S等の還元ガス雰囲気 以上
a) Depressurized state b) Inert gas atmosphere such as He, Ar, N, etc. C) Hydrogen atmosphere d) Reducing gas atmosphere such as CO, H2S, etc.

Claims (1)

【特許請求の範囲】 1)少なくともアルキルシリケート、シリカ微粒子、お
よび金属元素を含有する化合物が原料であるゾル溶液を
、ゲル化させる工程、乾燥させてドライゲルを作成する
工程、前記ドライゲルを加熱して閉孔化させガラス体と
する工程からなるゾルゲル法を用いたガラス体合成にお
いて、以下に示すいずれかの条件下で加熱し、ガラス化
させることを特徴とするドープト石英ガラスの製造方法
。 a)減圧状態 b)He、Ar、N_2等の不活性ガス雰囲気 c)水素雰囲気 d)CO、H_2S等の還元ガス雰囲気 2)上記a)〜d)いずれかの条件下での加熱を300
℃以上の温度から行なうことを特徴とする特許請求の範
囲第1項記載のドープト石英ガラスの製造方法。
[Claims] 1) A step of gelling a sol solution made of a compound containing at least an alkyl silicate, fine silica particles, and a metal element, a step of drying to create a dry gel, and a step of heating the dry gel. A method for producing doped quartz glass, which comprises synthesizing a glass body using a sol-gel method, which comprises a step of closing the pores to form a glass body, and vitrifying the glass body by heating under any of the following conditions. a) Depressurized state b) Inert gas atmosphere such as He, Ar, N_2, etc. c) Hydrogen atmosphere d) Reducing gas atmosphere such as CO, H_2S 2) Heating under any of the conditions a) to d) above for 300
A method for manufacturing doped quartz glass according to claim 1, characterized in that the manufacturing method is carried out at a temperature of .degree. C. or higher.
JP25301387A 1987-10-07 1987-10-07 Production of doped quartz glass Pending JPH0196036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25301387A JPH0196036A (en) 1987-10-07 1987-10-07 Production of doped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25301387A JPH0196036A (en) 1987-10-07 1987-10-07 Production of doped quartz glass

Publications (1)

Publication Number Publication Date
JPH0196036A true JPH0196036A (en) 1989-04-14

Family

ID=17245271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25301387A Pending JPH0196036A (en) 1987-10-07 1987-10-07 Production of doped quartz glass

Country Status (1)

Country Link
JP (1) JPH0196036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517965A (en) * 2013-09-16 2016-04-20 赫罗伊斯石英玻璃股份有限两合公司 Method for producing iron-doped silica glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517965A (en) * 2013-09-16 2016-04-20 赫罗伊斯石英玻璃股份有限两合公司 Method for producing iron-doped silica glass

Similar Documents

Publication Publication Date Title
RU2278079C2 (en) Sol-gel method for preparation of large-size dry gels and modified glasses
JP3182434B2 (en) Cerium-mixed quartz glass object and method for producing the same
KR100789124B1 (en) A high-purity pyrogenically prepared silicon dioxide, a process for the preparation of the same, and a silica glass and articles obtained by using the same
JPH0196036A (en) Production of doped quartz glass
JP2524174B2 (en) Method for producing quartz glass having optical functionality
JPH07206451A (en) Production of synthetic quartz glass
JPS63236719A (en) Production of quartz laser glass containing cerium
Beier et al. Preparation of SiO2‐TiO2‐ZrO2 Glasses from Alkoxides
JPS62167233A (en) Production of quartz glass
JPS63295453A (en) Production of chromium-containing quartz laser glass
JP2981670B2 (en) Manufacturing method of glass-like monolith
JPH0244031A (en) Production of nonlinear optical glass
JPS63248726A (en) Production of cerium-containing quartz glass for laser
JPH01145346A (en) Production of optical fiber preform
JPH02296735A (en) Production of glass
JPH013024A (en) Method for manufacturing doped quartz glass
JPS63303829A (en) Cerium-containing quartz laser glass and its production
JP2004091310A (en) Lithium niobate precursor particle for making lithium niobate thin film, its manufacturing method, lithium niobate precursor solution for making lithium niobate thin film and method for making lithium niobate thin film
JPS599497B2 (en) Optical glass manufacturing method
JPH01160843A (en) Production of neodymium-containing quartz glass
JPH0455327A (en) Production of dopant-containing silica glass
JPH03193628A (en) Production of rare earth element-doped quartz glass by sol-gel method
JPS63151623A (en) Production of organic substance-containing silica bulk material
JP3582093B2 (en) Method for producing silica glass
JPS63256547A (en) Cerium-containing quartz glass for laser and production thereof