JPH01160843A - Production of neodymium-containing quartz glass - Google Patents

Production of neodymium-containing quartz glass

Info

Publication number
JPH01160843A
JPH01160843A JP62319238A JP31923887A JPH01160843A JP H01160843 A JPH01160843 A JP H01160843A JP 62319238 A JP62319238 A JP 62319238A JP 31923887 A JP31923887 A JP 31923887A JP H01160843 A JPH01160843 A JP H01160843A
Authority
JP
Japan
Prior art keywords
neodymium
glass
quartz glass
added
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62319238A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62319238A priority Critical patent/JPH01160843A/en
Publication of JPH01160843A publication Critical patent/JPH01160843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily obtain a large-sized homogeneous neodymium-containing quartz glass containing neodymium in a high concentration, by partially hydrolyzing an alkyl silicate with an acidic catalyst and adding a neodymium compound in producing the neodymium-containing quartz glass by a sol-gel method. CONSTITUTION:An acidic catalyst (e.g., hydrochloric acid) is added to partially hydrolyze a solution of an alkyl silicate (e.g., ethyl silicate) and a neodymium compound (e.g., triethoxyneodymium) is then added. Hydrochloric acid is subsequently added to hydrolyze the silicate and silica fine particles are added and dispersed to adjust the pH within the range of 3-6 and gelatinize the obtained sol solution. The resultant gel is then dried to afford a dry gel, which is subsequently heat-treated to provide a glass body. Thereby the aimed neodymium- containing quartz glass is obtained and preferably used as quartz laser glass, optical glass, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はネオジムを含有した石英ガラスの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass containing neodymium.

〔従来の技術〕[Conventional technology]

ネオジム含有石英ガラスの製造方法としては、各種の製
法が提案されているが、主に次の3種に大別される。
Various manufacturing methods have been proposed as methods for manufacturing neodymium-containing quartz glass, but they are mainly classified into the following three types.

(a)  火焔酸化分解溶融法 (b)  スート混入ガラス化法 ′ (c)  ゾルゲル法 〔発明が解決しようとする問題点〕 しかし、従来の製法では均質で大型のネオジム含有石英
ガラスは得られていない。
(a) Flame oxidative decomposition melting method (b) Soot-mixed vitrification method ′ (c) Sol-gel method [Problems to be solved by the invention] However, homogeneous and large neodymium-containing quartz glass cannot be obtained using conventional manufacturing methods. do not have.

火焔酸化分解溶融法及びスート混入ガラス化法では、石
英ガラス中に多量のネオジムを導入することは雑しく、
仮にそれが達成されたとしても脈理の発生は免れない、
また、従来のゾルゲル法は室温程度の液相状態からガラ
スを合成するため、 □ドーパントをガラス中に均一に
導入できるという特長がある反面、大型のガラス体が得
られないという大きな欠点を有していた。したがって、
従来の製造方法では大型で均質性の高いネオジム含有石
英ガラスは非常に得に<<、特にネオジムの含有濃度を
増加させようとした場合−層票著となり、実用に供せら
れる材料はほとんど得られないという問題点を有する。
In the flame oxidation decomposition melting method and the soot-containing vitrification method, it is cumbersome to introduce a large amount of neodymium into the quartz glass.
Even if this were achieved, the occurrence of striae would not be avoided.
In addition, the conventional sol-gel method synthesizes glass from a liquid phase state at about room temperature, so while it has the advantage of being able to uniformly introduce dopants into the glass, it has the major drawback of not being able to obtain large glass bodies. was. therefore,
With conventional manufacturing methods, large-sized and highly homogeneous neodymium-containing silica glass is extremely difficult to produce.Especially when trying to increase the neodymium concentration, stratification occurs, and very few materials can be used for practical purposes. The problem is that it cannot be used.

そこで本発明の目的とするところは石英レーザーガラス
、光学レンズなどの各種光学部品への応用が可能な十分
高濃度のネオジムを含有しつつ、なおかつ大型で均質な
ネオジム含有石英ガラスの製造方法を提供することにあ
る。
Therefore, the purpose of the present invention is to provide a method for manufacturing neodymium-containing quartz glass that is large and homogeneous while containing sufficiently high concentration of neodymium to be applicable to various optical parts such as quartz laser glass and optical lenses. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明のネオジム含有石
英ガラスの製造方法は、少なくとも以下に示す工程を一
つ以上含むゾルゲル法を用いたガラスの合成において、
アルキルシリケートを酸性触媒により部分加水分解した
後に、ネオジム化合物を少なくとも一種類以上添加する
ことを特徴とする。
In order to solve the above problems, the method for producing neodymium-containing quartz glass of the present invention includes at least one or more of the following steps in glass synthesis using a sol-gel method.
The method is characterized in that at least one neodymium compound is added after the alkyl silicate is partially hydrolyzed using an acidic catalyst.

a) ネオジム含有加水分解液にシリカ微粒子を分散さ
せる工程。
a) A step of dispersing silica fine particles in a neodymium-containing hydrolyzate.

b) シリカ分散液をpH3〜6の範囲に調整する工程
b) A step of adjusting the pH of the silica dispersion to a range of 3 to 6.

C) 該ゾル溶液をゲル化、乾燥させドライゲルとする
工程。
C) A step of gelling and drying the sol solution to form a dry gel.

d) ドライゲルを熱処理し、ガラス体とする工程。d) A step of heat treating the dry gel to form a glass body.

用いるネオジム化合物としてはアルキルシリケートの部
分加水分解後のゾル溶液に溶解するものであればいずれ
のものでも使用可能である。しかし、アルコキシ化合物
であれば、アルキルシリケートと構造及び反応性が類似
しているため、ネオジム源として理想的である。
Any neodymium compound can be used as long as it dissolves in the sol solution after partial hydrolysis of the alkyl silicate. However, alkoxy compounds are ideal as neodymium sources because they are similar in structure and reactivity to alkyl silicates.

前述したように従来のゾルゲル法では、均質性が論じら
れる大きさの塊状ガラス体は得られていない、しかし、
アルキルシリケートの酸性加水分解溶液にシリカ微粒子
を分散させるという製法をとることにより、十分に大き
な塊状のガラス体を容易に得ることが可能である。また
、ゲル化時のpH値を3〜6の範囲に調整することも、
塊状ガラス体を得るうえで極めて大きな効果がある。
As mentioned above, in the conventional sol-gel method, it is not possible to obtain a bulk glass body of a size that warrants homogeneity.
By employing a manufacturing method in which fine silica particles are dispersed in an acidic hydrolyzed solution of alkyl silicate, it is possible to easily obtain a sufficiently large glass body in the form of a block. In addition, adjusting the pH value during gelation to a range of 3 to 6 is also possible.
This is extremely effective in obtaining a lumpy glass body.

また、アルキルシリケートを4担部分加水分解した時点
で、ネオジム化合物を添加することにより、ネオジムイ
オンをより効果的にガラスの網目構造中に導入すること
が可能となり、結果として高濃度ドーピングが達成され
やすくなる。この場合のアルキルシリケートの部分加水
分解の程度は、ドーパントの種類、反応性などにより決
定されるが、概ね全加水分解に対し176〜5/6の範
囲になる場合が多い。
In addition, by adding a neodymium compound when the alkyl silicate is partially hydrolyzed, it becomes possible to more effectively introduce neodymium ions into the network structure of the glass, resulting in high concentration doping. It becomes easier. The degree of partial hydrolysis of the alkyl silicate in this case is determined by the type of dopant, reactivity, etc., but is often in the range of approximately 176 to 5/6 of the total hydrolysis.

〔実 施 例〕〔Example〕

以下に本発明の実施例を詳しく述べるが、本発明は以下
の実施例に限定されるものではない。
Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples.

〔実施例1〕 エチルシリケート、無水エタノール、水、アンモニア水
(29%)をモル比で1=7.6:4二〇。08の割合
になるように混合し約5時間撹拌した後、室温で数日間
熟成し、減圧濃縮することにより分散性の良いシリカ微
粒子溶液を調製した。
[Example 1] Ethyl silicate, absolute ethanol, water, and aqueous ammonia (29%) in a molar ratio of 1=7.6:420. After stirring for about 5 hours, the mixture was aged at room temperature for several days and concentrated under reduced pressure to prepare a silica fine particle solution with good dispersibility.

次にエチルシリケートに同体積量のエタノールとモル比
で1.5倍量の0.2規定塩酸溶液を加え約2時間撹拌
した。その後、ガラス化時にNd/SiOt=3wt%
となるように所定量のネオジムをトリエトキシネオジム
なるアルコキシ化合物の形で添加し約1時間撹拌を続け
た。さらに、この溶液にエチルシリケートに対しモル比
で2.5倍量のO,O’2規定の塩酸を加え約1時間撹
拌を行って加水分解溶液を調製した。
Next, a 0.2N hydrochloric acid solution of 1.5 times the molar volume as the same volume of ethanol was added to the ethyl silicate and stirred for about 2 hours. After that, during vitrification, Nd/SiOt=3wt%
A predetermined amount of neodymium was added in the form of an alkoxy compound called triethoxyneodymium, and stirring was continued for about 1 hour. Further, to this solution was added O,O'2 normal hydrochloric acid in a molar amount of 2.5 times that of ethyl silicate, and the mixture was stirred for about 1 hour to prepare a hydrolyzed solution.

先に調製したシリカ微粒子溶液のPH値を2規定の塩酸
を用いて4,5に調整した後、ここに加水分解溶液を混
合し、均質な溶液となるまで十分撹拌した。最後にこの
溶液のp Hを4.8に調整し、室温においてゲル化さ
せた。
After adjusting the pH value of the silica fine particle solution prepared previously to 4.5 using 2N hydrochloric acid, the hydrolyzed solution was mixed therein and sufficiently stirred until a homogeneous solution was obtained. Finally, the pH of this solution was adjusted to 4.8 and gelation was performed at room temperature.

このゲル体をポリプロピレン製の乾燥容器(開口率0.
3%程度)に移し入れ、約60℃に保なれた恒温乾燥機
を用いて約2週間で乾燥し、空気中に放置しても割れな
い多孔質ゲル体を得た。
This gel body is dried in a polypropylene drying container (with an opening ratio of 0.
3%) and dried in a constant temperature dryer kept at about 60° C. for about 2 weeks to obtain a porous gel body that does not crack even when left in the air.

このゲル体を酸素/窒素雰囲気中で一旦100℃まで加
熱し、縮合反応の促進、脱水、親有機物等の各種処理を
行った後、炉内をヘリウム雰囲気に変え、最高1340
℃まで加熱してガラス化した。
This gel body is heated to 100°C in an oxygen/nitrogen atmosphere and subjected to various treatments such as promotion of condensation reaction, dehydration, and removal of organophilic substances, and then the inside of the furnace is changed to a helium atmosphere.
It was vitrified by heating to ℃.

こうして得られたガラス体は透明性の高い無色のガラス
体で、脈理や結晶化等もみられず良好なもので、その大
きさは150+wφX50m+tであり、光学材と用い
るには十分な大きさのものであると言える。もちろん、
この大きさが製造可能なガラス体の上限ではなく、さら
に大きなガラス体も十分製造可能である。また、化学分
析の結果から含有されているネオジム濃度は、N d 
/ S i O、=4.3wt%であり、仕込み組成と
ほぼ一致していた。
The glass body obtained in this way is a colorless glass body with high transparency, and is in good condition with no striae or crystallization.The size of the glass body is 150 + wφ x 50 m + t, which is large enough to be used as an optical material. It can be said that it is a thing. of course,
This size is not the upper limit of the glass body that can be manufactured, and even larger glass bodies can be manufactured. Also, from the results of chemical analysis, the concentration of neodymium contained is N d
/S i O = 4.3 wt%, which was almost the same as the charging composition.

得られたガラス体を130IIIIφX40omtの大
きさに加工し、合わせてその両面を平行平面研磨を行っ
た。ガラス体の各部分での屈折率を詳しく測定し、その
変動幅よりガラス体の均質性を求めたところ、6X10
−’以下であった。このガラスは350.580.74
0.800nmなどの特定の波長域で選択的に光吸収を
示すことから、光学フィルターや短波長帯用光学レンズ
として使用できるだけでなく、上記の光吸収帯で光によ
る強励起を行えば、レーザー発振が可能である。実際、
上記ガラス体より6fiφX75wJのロッド状ガラス
体を切り出し、その両端面を高精度平行平面研磨し、レ
ーザー発振を試みたところ、波長1゜08μmのレーザ
ー発振を行うことが確認された。
The obtained glass body was processed into a size of 130IIIφ×40omt, and both surfaces thereof were polished in parallel planes. The refractive index of each part of the glass body was measured in detail, and the homogeneity of the glass body was determined from the range of variation.
−' or less. This glass is 350.580.74
Since it selectively absorbs light in a specific wavelength range such as 0.800 nm, it can not only be used as an optical filter or an optical lens for short wavelength bands, but also can be used as a laser if intense excitation is performed in the above light absorption band. Oscillation is possible. actual,
A rod-shaped glass body of 6 fi φ x 75 wJ was cut out from the above glass body, both end faces of which were polished into parallel planes with high precision, and when laser oscillation was attempted, it was confirmed that laser oscillation with a wavelength of 1°08 μm was performed.

熱破壊強度の大きい石英をベースにし、そこに発光物質
となるネオジム元素を均一にドーピングしているため、
従来のケイ酸塩系ガラスを用いたレーザーに対して、高
効率、高繰り返し発振が可能であった。
It is based on quartz, which has high thermal breakdown strength, and is uniformly doped with neodymium, which becomes a luminescent material.
Compared to conventional lasers using silicate glass, it was possible to oscillate with high efficiency and high repetition rate.

〔比 較 例〕[Comparison example]

実施例1と同様の方法(本発明の方法;アルキルシリゲ
ートの部分加水分解を行いネオジムのドーピングを行う
方法)と従来の方法(アルキルシリケートの全加水分解
を行った時点でネオジムのドーピングを行う方法)の2
つの製造方法により、ネオジム含有石英ガラスを作製し
、製造方法と得られるガラス体の品質を比較した。尚、
その際、ネオジム濃度(Nd/5iO2)を1wt%、
6wt%の2種とした。結果を簡略化して第1表に示す
A method similar to Example 1 (method of the present invention; a method of partially hydrolyzing an alkyl silicate and doping with neodymium) and a conventional method (doping with neodymium after complete hydrolysis of the alkyl silicate) Method) 2
Neodymium-containing quartz glass was manufactured using two manufacturing methods, and the manufacturing methods and quality of the resulting glass bodies were compared. still,
At that time, the neodymium concentration (Nd/5iO2) was 1wt%,
There were two types of 6 wt%. The results are summarized and shown in Table 1.

第1表から、ネオジム濃度が1wt%の場合には製造方
法と得られるガラス体の品質の間には特に差異は見られ
ないが、ネオジム濃度が6wt%に増加すると明らかな
差が見られた。つまり、従来法でネオジム濃度が6wt
%のガラス体を作製した場合、ネオジムイオンが均一に
ガラス網目構造中に導入されず、一部が会合状態をとり
、結果として部分結晶化を生じているものと考えられる
。酸化ネオジムの結晶化については電子顕微鏡及びE 
PMAにより容易に確認が可能であった。対して、本発
明の方法ではアルキルシリケートの部分加水分解時にネ
オジムのドーピングを行うため、ドーパントが網目構造
中に入りやすく、結果として均一なドーピングが達成さ
れたものと考えられる。たとえ結晶化の程度が極わずか
であったとしても、光透過性を著しく損なうこととなり
、光学材料として使用するには適当でないと言える4本
比較例から、本発明の製造方法が高濃度のネオジムを含
有する石英ガラスの製法として優れていることがわかる
。尚、本比較例においてはネオジムの含有量として6w
t%という数値を採用したが、これは本発明の製法によ
り導入可能なネオジムの最高量を示すものではない、実
際的には20数%程度までは導入可能であり、それ以上
の値においても、焼結パラメータの最適化を行うことに
より十分可能であった。
Table 1 shows that when the neodymium concentration is 1 wt%, there is no particular difference between the manufacturing method and the quality of the glass body obtained, but when the neodymium concentration increases to 6 wt%, a clear difference is seen. . In other words, with the conventional method, the neodymium concentration was 6wt.
% glass body, neodymium ions are not uniformly introduced into the glass network structure, and some of them assume an associated state, resulting in partial crystallization. For crystallization of neodymium oxide, electron microscopy and E
This could be easily confirmed using PMA. On the other hand, in the method of the present invention, doping with neodymium is performed during partial hydrolysis of the alkyl silicate, so it is thought that the dopant easily enters the network structure, resulting in uniform doping. Even if the degree of crystallization is extremely small, the light transmittance will be significantly impaired and it can be said that it is not suitable for use as an optical material.From the four comparative examples, it is clear that the production method of the present invention is suitable for producing high-concentration neodymium. It can be seen that this is an excellent method for producing quartz glass containing . In addition, in this comparative example, the neodymium content was 6w.
Although the numerical value t% was adopted, this does not indicate the maximum amount of neodymium that can be introduced by the manufacturing method of the present invention; in reality, it is possible to introduce up to about 20%, and even at higher values. This was possible by optimizing the sintering parameters.

第  1  表 〔発明の効果〕 以上述べたように本発明によれば、少なくとも以下に示
す工程を一つ以上含むゾルゲル法を用いたネオジム含有
石英ガラスの製造方法において、アルキルシリケートを
酸性触媒により部分加水分解した後に、ネオジム化合物
を少なくとも一種類以上添加することにより、多量のネ
オジムをガラス中に均一に導入することが可能となった
Table 1 [Effects of the Invention] As described above, according to the present invention, in a method for producing neodymium-containing quartz glass using a sol-gel method that includes at least one or more of the following steps, alkyl silicate is partially treated with an acidic catalyst. By adding at least one type of neodymium compound after hydrolysis, it has become possible to uniformly introduce a large amount of neodymium into the glass.

a) ネオジム含有加水分解液にシリカ微粒子を分散さ
せる工程。
a) A step of dispersing silica fine particles in a neodymium-containing hydrolyzate.

b) シリカ分散液をpH3〜6の範囲に調整する工程
b) A step of adjusting the pH of the silica dispersion to a range of 3 to 6.

C) 該ゾル溶液をゲル化、乾燥させドライゲルとする
工程。
C) A step of gelling and drying the sol solution to form a dry gel.

d) ドライゲルを熱処理し、ガラス体とする工程。d) A step of heat treating the dry gel to form a glass body.

ネオジム含有石英ガラスは石英ガラスの低膨脹性、高耐
熱性と透れた光透過性に、ネオジムによる選択的光吸収
性と発光性を付加したもので、光学フィルター、光学ガ
ラス、発光ガラス及びレーザーガラス等への広範な応用
が可能なガラスである。この種のガラスを広範な分野で
利用しようとする場合には、ネオジムの含有量を広い範
囲にわたって変化させられることが重要である。しかし
従来の製法ではネオジムの含有量を増大しようとすると
、酸化ネオジムの結晶を生じ透明ガラス体とならないと
いう問題点があったが、本発明の製法を用いることによ
り実用上十分と言える量のネオジムを石英ガラス中に均
一に導入することが可能となり、優れた光学ガラス材と
して広範な応用が可能となったと言える。
Neodymium-containing quartz glass combines the low expansion, high heat resistance, and clear light transmission properties of silica glass with the selective light absorption and luminescence properties of neodymium, and is used in optical filters, optical glasses, light-emitting glasses, and lasers. It is a glass that can be used in a wide range of applications such as glass. If this type of glass is to be used in a wide range of fields, it is important to be able to vary the neodymium content over a wide range. However, when trying to increase the neodymium content in the conventional manufacturing method, there was a problem in that neodymium oxide crystals formed and a transparent glass body could not be obtained.However, by using the manufacturing method of the present invention, a practically sufficient amount of neodymium can be uniformly introduced into quartz glass, making it possible to use it in a wide range of applications as an excellent optical glass material.

以上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも以下に示す工程を一つ以上含むゾルゲ
ル法を用いたネオジム含有石英ガラスの製造方法におい
て、アルキルシリケートを酸性触媒により部分加水分解
した後に、ネオジム化合物を少なくとも一種類以上添加
することを特徴とするネオジム含有石英ガラスの製造方
法。 a)ネオジム含有加水分解液にシリカ微粒子を分散させ
る工程。 b)シリカ分散液をpH3〜6の範囲に調整する工程。 c)該ゾル溶液をゲル化、乾燥させドライゲルとする工
程。 d)ドライゲルを熱処理し、ガラス体とする工程。
(1) In a method for producing neodymium-containing quartz glass using a sol-gel method that includes at least one or more of the following steps, at least one neodymium compound may be added after partial hydrolysis of alkyl silicate using an acidic catalyst. A method for producing quartz glass containing neodymium. a) A step of dispersing silica fine particles in a neodymium-containing hydrolyzate. b) A step of adjusting the pH of the silica dispersion to a range of 3 to 6. c) A step of gelling and drying the sol solution to form a dry gel. d) A step of heat treating the dry gel to form a glass body.
(2)ネオジム化合物はアルコキシ化合物であることを
特徴とする特許請求の範囲第1項記載のネオジム含有石
英ガラスの製造方法。
(2) The method for producing neodymium-containing quartz glass according to claim 1, wherein the neodymium compound is an alkoxy compound.
JP62319238A 1987-12-17 1987-12-17 Production of neodymium-containing quartz glass Pending JPH01160843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319238A JPH01160843A (en) 1987-12-17 1987-12-17 Production of neodymium-containing quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319238A JPH01160843A (en) 1987-12-17 1987-12-17 Production of neodymium-containing quartz glass

Publications (1)

Publication Number Publication Date
JPH01160843A true JPH01160843A (en) 1989-06-23

Family

ID=18107953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319238A Pending JPH01160843A (en) 1987-12-17 1987-12-17 Production of neodymium-containing quartz glass

Country Status (1)

Country Link
JP (1) JPH01160843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188722A1 (en) * 2000-08-23 2002-03-20 Heraeus Quarzglas GmbH & Co. KG Article comprising a body made of quartz glass having improved resistance against plasma corrosion, and method for production thereof
SG90270A1 (en) * 2000-12-22 2002-07-23 Shinetsu Quartz Prod Quartz glass and quartz glass jig having excellent resistance against plasma corrosion, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188722A1 (en) * 2000-08-23 2002-03-20 Heraeus Quarzglas GmbH & Co. KG Article comprising a body made of quartz glass having improved resistance against plasma corrosion, and method for production thereof
SG90270A1 (en) * 2000-12-22 2002-07-23 Shinetsu Quartz Prod Quartz glass and quartz glass jig having excellent resistance against plasma corrosion, and method for producing the same

Similar Documents

Publication Publication Date Title
US4840653A (en) Fabrication of high-silica glass article
EP0310486B1 (en) A method for the preparation of silica glass
JP3182434B2 (en) Cerium-mixed quartz glass object and method for producing the same
CN106517764B (en) A kind of synthetic method of rear-earth-doped raw material of quartz glass powder
RU2141928C1 (en) Method of preparing monolithic quartz glass using sol-gel process
JP2524174B2 (en) Method for producing quartz glass having optical functionality
JPH01160843A (en) Production of neodymium-containing quartz glass
KR950008579B1 (en) Fabrication of high-silica glass article
WO2001068544A1 (en) Erbium-doped multicomponent glasses manufactured by the sol-gel method
JPS63176315A (en) Production of quartz glass containing rare earth element
JPS63319229A (en) Quartz laser glass and its production
JPS60108325A (en) Production of glass
JPH01115846A (en) Doped quartz glass and production thereof
JPH02145442A (en) Production of glass
JPH013024A (en) Method for manufacturing doped quartz glass
JPH01141832A (en) Production of borosilicate glass
JPS63303829A (en) Cerium-containing quartz laser glass and its production
JPS63256547A (en) Cerium-containing quartz glass for laser and production thereof
JPS63236719A (en) Production of quartz laser glass containing cerium
JPS63277535A (en) Laser glass of terbium-containing quartz type and production thereof
JP3928741B2 (en) Method for producing silica glass for laser
JPS6054929A (en) Production of quartz glass
JPH03193628A (en) Production of rare earth element-doped quartz glass by sol-gel method
JPS62100424A (en) Production of glass
JPH04182319A (en) Production of doped glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Effective date: 20050629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051109