JPH0195470A - Solid polyelectrolyte - Google Patents

Solid polyelectrolyte

Info

Publication number
JPH0195470A
JPH0195470A JP62251141A JP25114187A JPH0195470A JP H0195470 A JPH0195470 A JP H0195470A JP 62251141 A JP62251141 A JP 62251141A JP 25114187 A JP25114187 A JP 25114187A JP H0195470 A JPH0195470 A JP H0195470A
Authority
JP
Japan
Prior art keywords
salt
polymer
dielectric constant
high dielectric
constant solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62251141A
Other languages
Japanese (ja)
Other versions
JPH0834770B2 (en
Inventor
Tomohiko Noda
智彦 野田
Hiroyoshi Yoshihisa
吉久 洋悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP62251141A priority Critical patent/JPH0834770B2/en
Publication of JPH0195470A publication Critical patent/JPH0195470A/en
Publication of JPH0834770B2 publication Critical patent/JPH0834770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain solid polyelectrolyte high in ion conductivity by holding high dielectric constant solvent, with phase-to-phase shifting agent as a medium, between polymer mesh. CONSTITUTION:In solid electrolyte which dissolved metal salt in high polymer that bridged amorphous polymer, high dielectric constant solvent, in particular 1.3-dimethylimidazoricinone is made to coexist, in bridge construction and quaternary ammonium salt is added to solid polyelectrolyte. A substance which uses high dielectric constant medium gives extremely high ion conductivity, but polyethylene oxide bridging substance which hold high dielectric constant solvent is not so large in dissolubility of salt and apt to cause crystallization. For this reason, by adding fourth-class ammonium salt as phase-to-phase shifting agent, the dissolubility of the salt can be elevated. Hereby, crystallization of the salt can be prevented and ion conductivity near room temperature can be elevated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、全面体形二次電池の電解質に関するもので、
特に高分子固体電解質の改良に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an electrolyte for a full-body secondary battery.
In particular, it relates to improvements in solid polymer electrolytes.

従来技術とその問題点 リチウムのイオン導電性固体電解質として−LiOI0
4等のL1堆を溶解させたポリエチレンオキシド(PE
O)に代表される高分子固体電解質がある。このものは
薄膜への加工が容易である二と、強度が大でしかも柔軟
性があること等の長所を有する。
Prior art and its problems As an ion conductive solid electrolyte for lithium - LiOI0
Polyethylene oxide (PE
There are polymer solid electrolytes represented by O). This material has the advantages of being easy to process into a thin film, and having high strength and flexibility.

しかしながら、従来のPEOにおいては、直鎖形(二官
能)を用いてL1塩を溶解させる段階でPEOの結晶化
が起こり、イオンの移動度が低下する。このために、高
い導電率が得られないという欠点があった。
However, in conventional PEO, crystallization of PEO occurs at the stage of dissolving the L1 salt using a linear form (bifunctional), resulting in a decrease in ion mobility. For this reason, there was a drawback that high conductivity could not be obtained.

この改良として、三官能性ボリエーテpをインシアナー
ト化合物等で架橋した三次元架橋体が提案されている。
As an improvement on this, a three-dimensionally crosslinked product in which trifunctional polyate p is crosslinked with an incyanate compound or the like has been proposed.

これは、ポリマーの結晶化が抑制されているために、従
来より高いイオン導電性が得られた。しかしながら、こ
れらのイオン導電性は室温で10 8m  であり、電
池が一般に使用される室温において、充分な性能が発揮
できないという欠点があった。
This is because the crystallization of the polymer is suppressed, resulting in higher ionic conductivity than before. However, their ionic conductivity was 10 8 m at room temperature, and they had the drawback that they could not exhibit sufficient performance at room temperature, where batteries are generally used.

又、ポリ弗化ビニリデンやエポキシといつた高分子を支
持体とし、樵を溶解しているプロピレンカーボネートや
ポリエチレングリス−μといった高誘電率溶媒を支持体
中に物理的にとり込ませることにより、固体状態であり
ながら高いイオン伝導性を得ようとする相互侵入型高分
子網目が知られているが、これでも充分な性能が発揮で
きない程度のイオン伝導性であった。
In addition, by using a polymer such as polyvinylidene fluoride or epoxy as a support and physically incorporating a high dielectric constant solvent such as propylene carbonate or polyethylene grease-μ in which wood is dissolved into the support, solid Although an interpenetrating polymer network is known that attempts to obtain high ion conductivity while remaining in the state, the ion conductivity was still at a level where sufficient performance could not be achieved.

発明の目的 本発明は上記従来の欠点に鑑みなされたものであり、イ
オン導電性の高い1高分子固体電解質を提供することを
目的とする。
OBJECTS OF THE INVENTION The present invention was made in view of the above-mentioned conventional drawbacks, and an object of the present invention is to provide a monopolymer solid electrolyte with high ionic conductivity.

発明の構成 本発明は上記目的を達成するべく、無定形ポリマーを架
橋した高分子化合物に金jI塩を溶解した固体電解質に
おいて、架橋構造中に高誘電率溶媒とりわけ1.3−ジ
メチルイミダゾリジノンを共存していることを特徴とす
る高分子固体電解質である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a solid electrolyte in which a gold jI salt is dissolved in a polymer compound crosslinked with an amorphous polymer, in which a high dielectric constant solvent, particularly 1,3-dimethylimidazolidinone, is added to the crosslinked structure. It is a polymer solid electrolyte characterized by the coexistence of

又、上記固体電解質中に四級アンモニウム塩を添加した
高分子固体電解質である・ 又、上記四級アンモニウム塩がt−ブチルアン砥ニウム
塩である高分子固体電解質である・即ち、支持体自体が
高いイオン伝導性をもつ、ポリエチレンオキシド架橋体
−塊鎖体を用い、ジメチルイミダゾリジノンに代表され
る高誘電率溶媒を用いたものが極めて高いイオン伝導性
を与えることを見い出した。
Also, it is a polymer solid electrolyte in which a quaternary ammonium salt is added to the solid electrolyte. Also, it is a polymer solid electrolyte in which the quaternary ammonium salt is t-butylammonium salt. In other words, the support itself is We have found that extremely high ionic conductivity can be achieved by using a polyethylene oxide cross-linked mass chain, which has high ionic conductivity, and a high dielectric constant solvent such as dimethylimidazolidinone.

しかし、これら高誘電率溶媒が保持されたポリエチレン
オキシド架橋体は、塩の溶解度が大かくなく、結晶化を
起こしやすい。このために、室°温付近においては、充
分なイオン伝導性が発揮されないばかりか、逆にイオン
伝導性を低下させるという問題があった。
However, these crosslinked polyethylene oxides in which a high dielectric constant solvent is retained do not have a high solubility of salt, and are likely to crystallize. For this reason, there is a problem that not only sufficient ionic conductivity is not exhibited at around room temperature, but also the ionic conductivity is decreased.

この問題を解決する手段として、相間移動剤として四級
アンモニウム塩な添加することにより、塩の溶解度を上
げることができる。これにより塩の結晶化を防ぎ、室温
付近のイオン伝導度を上昇させることができることが判
った。
As a means to solve this problem, the solubility of the salt can be increased by adding a quaternary ammonium salt as a phase transfer agent. It was found that this could prevent salt crystallization and increase ionic conductivity near room temperature.

四級アンモニウム塩の種類として、t−ブチルアンモニ
ウム塩、セチ〃トリメチ〃アン壁ニウム塩等を挙げるこ
とが出来るが、これに限定されるものではない。
Types of quaternary ammonium salts include t-butylammonium salts, cetitrimethyammonium salts, and the like, but are not limited thereto.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例1 9wt%の過塩素酸リチウム及び1wt%の1−ブチル
アン屹ニウムクロリドを溶解させたトリ#−*型E官a
性ボy x −T IV (分子ff13.ooo)5
部を準備し、次に予め7vt%の過塩素酸リチウム及び
0.5vt%のt−グチルアンモニウムクロリドを溶解
させた1、3−ジメチルイミダゾリジノン1部を調製し
、加える。
Example 1 Tri#-*Type E-type a in which 9wt% lithium perchlorate and 1wt% 1-butylampanium chloride were dissolved
sex boy x -T IV (molecule ff13.ooo)5
Next, prepare and add 1 part of 1,3-dimethylimidazolidinone in which 7 vt% lithium perchlorate and 0.5 vt% t-glylammonium chloride are dissolved in advance.

当tのへキサメチレンジイソシアナート及び微量のDi
−n−ブチ/I/銅がアセテートを加え、充分混合した
後ガラスシャーレ上に流延し、80℃の不活性ガス雰囲
気で放置し、反応させて架橋体フィルムを得る。
Hexamethylene diisocyanate and a trace amount of Di
-N-buty/I/copper is added with acetate, thoroughly mixed, and then cast onto a glass petri dish, left to stand in an inert gas atmosphere at 80°C, and reacted to obtain a crosslinked film.

このフィルムを真空乾燥した後、ペレット状に打抜き白
金板ではさみ、交流インピーダンス法によりイオン伝導
度を測定した0その結果を第1図の本発明1として示し
た。
After drying this film in vacuum, it was sandwiched between punched platinum plates in the form of pellets, and the ionic conductivity was measured by an alternating current impedance method.The results are shown as Invention 1 in FIG.

1.3−ジメチルイミダゾリジノン及びt−ブチルアン
叱ニウムクロリドを添加しない系を従来品とした。
A conventional product was a system in which 1.3-dimethylimidazolidinone and t-butylaminium chloride were not added.

実施例2 予め7vt%の過塩素酸リチウム及びo、svt%のt
−ブチルアン叱ニウムクロリドを溶解させた1、3−ジ
メチルイミダゾリジノン1部にエポキシとしてビスフェ
ノ−〃ムーデロビレンオキシド211104r付加体の
ジグリシジ〃エーテ/I15部、当量のプロピレンオキ
シドトリアミンを加え、充分混合する。その後、ガラス
シャーレ上に流延し80℃の不活性ガス雰囲気で放置し
、反応させて架橋体フィルムを得た。このフィルムを真
空乾燥した後、実施例1と同様にイオン伝導度を測定し
た。その結果を第1図の本発明2として示した。
Example 2 Preliminary 7vt% lithium perchlorate and o, svt% t
-To 1 part of 1,3-dimethylimidazolidinone in which butylaminium chloride has been dissolved, add 15 parts of diglycidyl ether/I of bispheno-mudelobylene oxide 211104r adduct as epoxy and an equivalent amount of propylene oxide triamine, and mix thoroughly. do. Thereafter, it was cast onto a glass Petri dish and left in an inert gas atmosphere at 80°C to react, thereby obtaining a crosslinked film. After vacuum drying this film, the ionic conductivity was measured in the same manner as in Example 1. The results are shown as invention 2 in FIG.

第1図に示した如く、本発明は全温度領域において従来
品より優れたイオン導電性である。
As shown in FIG. 1, the present invention has superior ionic conductivity over the conventional product over the entire temperature range.

発明の効果 上述した如く、本発明はイオン導電性の高い高分子固体
電解質を提供することが出来るので、その工業的価値は
極めて大である。
Effects of the Invention As described above, the present invention can provide a solid polymer electrolyte with high ionic conductivity, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高分子固体電解質と従来品とのイオン
導電率を比較した図である。
FIG. 1 is a diagram comparing the ionic conductivity of the polymer solid electrolyte of the present invention and a conventional product.

Claims (4)

【特許請求の範囲】[Claims] (1)無定形ポリマーを架橋した高分子化合物に金属塩
を溶解した固体電解質において、該高分子網目中に相間
移動剤を媒体として高誘電率溶媒を保持することを特徴
とする高分子固体電解質。
(1) A solid electrolyte in which a metal salt is dissolved in a polymer compound crosslinked with an amorphous polymer, characterized in that a high dielectric constant solvent is retained in the polymer network using a phase transfer agent as a medium. .
(2)高誘電率溶媒が、1、3−ジメチルイミダゾリジ
ノンである特許請求の範囲第1項記載の高分子固体電解
質。
(2) The solid polymer electrolyte according to claim 1, wherein the high dielectric constant solvent is 1,3-dimethylimidazolidinone.
(3)相間移動剤が四級アンモニウム塩である特許請求
の範囲第1〜2項記載の高分子固体電解質。
(3) The polymer solid electrolyte according to claims 1 to 2, wherein the phase transfer agent is a quaternary ammonium salt.
(4)相間移動剤がt−ブチルアンモニウム塩である特
許請求の範囲第1〜2項記載の高分子固体電解質。
(4) The solid polymer electrolyte according to any one of claims 1 to 2, wherein the phase transfer agent is a t-butylammonium salt.
JP62251141A 1987-10-05 1987-10-05 Polymer solid electrolyte Expired - Lifetime JPH0834770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251141A JPH0834770B2 (en) 1987-10-05 1987-10-05 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251141A JPH0834770B2 (en) 1987-10-05 1987-10-05 Polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JPH0195470A true JPH0195470A (en) 1989-04-13
JPH0834770B2 JPH0834770B2 (en) 1996-03-29

Family

ID=17218283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251141A Expired - Lifetime JPH0834770B2 (en) 1987-10-05 1987-10-05 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0834770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025370A (en) * 1987-12-01 1990-01-10 Ricoh Co Ltd Polymer solid electrolyte
JP2005174798A (en) * 2003-12-12 2005-06-30 Sony Corp Electrolyte and battery using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148003A (en) * 1984-01-13 1985-08-05 第一工業製薬株式会社 Ion conductive organic solid electrolyte
JPS60163373A (en) * 1984-02-02 1985-08-26 Mitsubishi Petrochem Co Ltd Semisolid organic electrolyte
JPS60262852A (en) * 1984-05-29 1985-12-26 ソシエテ・ナシオナル・エルフ・アキテーヌ Ion conductive high molecular material for manufacturing electrolyte or electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148003A (en) * 1984-01-13 1985-08-05 第一工業製薬株式会社 Ion conductive organic solid electrolyte
JPS60163373A (en) * 1984-02-02 1985-08-26 Mitsubishi Petrochem Co Ltd Semisolid organic electrolyte
JPS60262852A (en) * 1984-05-29 1985-12-26 ソシエテ・ナシオナル・エルフ・アキテーヌ Ion conductive high molecular material for manufacturing electrolyte or electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025370A (en) * 1987-12-01 1990-01-10 Ricoh Co Ltd Polymer solid electrolyte
JP2005174798A (en) * 2003-12-12 2005-06-30 Sony Corp Electrolyte and battery using the same

Also Published As

Publication number Publication date
JPH0834770B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4465745A (en) Crystalline solid lithium cation conductive electrolyte
JPH03296556A (en) Solid polyelectrolyte
JPH0654687B2 (en) Glassy oxidation-phosphorus sulfide solid lithium electrolyte
ES8502457A1 (en) Process for preparing polyanilines and their applications to electrochemical generators.
JPS628467A (en) Quaternary vitric solid lithium cation conducting electrolyte
US5141827A (en) Ion conductor or electrolyte for a galvanic element
JPS58189967A (en) Lithium battery with solid electrolyte made of conductive glass composition
JPS62249361A (en) Organic solid electrolyte
US4238552A (en) Electrolyte salt for non-aqueous electrochemical cells
JPH0195470A (en) Solid polyelectrolyte
US4419423A (en) Nonaqueous cells employing heat-treated MnO2 cathodes and a PC-DME-LiCF3 SO3 electrolyte
JPH0361286B2 (en)
JPH10321232A (en) Electrode composition
CA1305754C (en) Solid state batteries
JPS6355811A (en) Solid electrolyte composition
JPS60160570A (en) Solid electrolyte battery
JPH0794014A (en) Lithium ion conductive solid electrolyte
JPH0470746B2 (en)
Prasad et al. Ambient temperature solid polymer electrolyte devices
JP2739359B2 (en) Manganese dry cell
JPS628449A (en) Solid battery using positive pole of mno2,sb2s3 or mos3
Linford et al. Copper ion conducting electrolytes
JPS5942407B2 (en) Copper ion conductive solid electrolyte
JPS6041775A (en) Nonaqueous electrolyte battery
JPS60193272A (en) Nonaqueous electrolyte battery