JPS60148003A - Ion conductive organic solid electrolyte - Google Patents

Ion conductive organic solid electrolyte

Info

Publication number
JPS60148003A
JPS60148003A JP59005074A JP507484A JPS60148003A JP S60148003 A JPS60148003 A JP S60148003A JP 59005074 A JP59005074 A JP 59005074A JP 507484 A JP507484 A JP 507484A JP S60148003 A JPS60148003 A JP S60148003A
Authority
JP
Japan
Prior art keywords
molecular weight
solid electrolyte
organic solid
conductive organic
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59005074A
Other languages
Japanese (ja)
Other versions
JPH0335761B2 (en
Inventor
周二 佐伯
末廣 雅利
茂男 森
武志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP59005074A priority Critical patent/JPS60148003A/en
Publication of JPS60148003A publication Critical patent/JPS60148003A/en
Publication of JPH0335761B2 publication Critical patent/JPH0335761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高いイオン電導性を有する有機固体電解質に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an organic solid electrolyte with high ionic conductivity.

従来、イオン電導性を有する固体電解質としては、Rb
Ag、I5又は安定化ジルコニア等の無機結晶やセラミ
ックスがよく知られている。一方、最近になって有機ポ
リマーを用いた固体電解質の研究が活発化している0例
えば、ポリプロピレンオキシド中にLiCl01NaS
CNもしくはKSCNを配合することによって−1= lO〜10 S・Cm のイオン電導性を示すことが報
告されている (渡辺、池田、篠原、Polymer 
Journal 、 15.85(11383)、渡辺
、長岡、神庭、篠原、Polymer Journal
 、 14.877(11182)。)、シかし1.ポ
リプロピレンオキシドを高分子として用いた電解質はポ
リプロピレンが水に対して難溶もしくは不溶であり、か
つ融点(軟化点)が常温以下であるため、固体のフィル
ムもしくはシート化には無理があり、上記文献中でも溶
液として使用している。また、フィルム等への形成能の
あるポリアクリロニトリル又はポリフッ化ビニリデンも
固体電解質として世いられるが、これらは水に不溶なた
めメタノール等の有機溶媒に溶解させる必要がある。従
って、電解質となる金属塩も有機溶媒に可溶であること
が条件となり、有機溶媒に不溶な金属塩は用いることが
できない。
Conventionally, as a solid electrolyte having ionic conductivity, Rb
Inorganic crystals and ceramics such as Ag, I5 or stabilized zirconia are well known. On the other hand, research on solid electrolytes using organic polymers has recently become active.For example, LiCl01NaS in polypropylene oxide
It has been reported that by blending CN or KSCN, it exhibits ionic conductivity of -1 = 10 to 10 S Cm (Watanabe, Ikeda, Shinohara, Polymer
Journal, 15.85 (11383), Watanabe, Nagaoka, Kanba, Shinohara, Polymer Journal
, 14.877 (11182). ), Shikashi 1. Since polypropylene is poorly soluble or insoluble in water and its melting point (softening point) is below room temperature, it is impossible to make an electrolyte using polypropylene oxide as a polymer into a solid film or sheet, and the above-mentioned literature Among them, it is used as a solution. Further, polyacrylonitrile or polyvinylidene fluoride, which can be formed into a film or the like, is also used as a solid electrolyte, but since these are insoluble in water, they need to be dissolved in an organic solvent such as methanol. Therefore, the metal salt serving as the electrolyte must also be soluble in the organic solvent, and metal salts that are insoluble in the organic solvent cannot be used.

一方、水に可溶なポリエチレンオキシドを用いた固体電
解質がP、V、Wrightによって報告されているが
(Br、 Polymer Journal、7.31
11(1975)。)、ポリエチレンオキシドはフィル
ム化もしくはシート化をする場合数百万の分子量が必要
であり、また成形後もフィルム表面のベトッキが残存す
る。P、V、Wrightは分子量400万のポリエチ
レンオキシドを用いてベレット化して電解質として使用
している。一方、一般に導電率は分子量の高いポリマー
を用いるほど小さくなるという報告があり(渡辺、池田
、篠原、Polymer Journal、15,17
5(1983)。)、従って更に低分子量でかつフィル
ム形成能に優れ、フィルム表面のベトッキのないポリエ
チレンオキシドが見い出せれば、上記欠点を改良するこ
とが可能となる。
On the other hand, a solid electrolyte using water-soluble polyethylene oxide has been reported by P. V. Wright (Br, Polymer Journal, 7.31).
11 (1975). ), polyethylene oxide needs to have a molecular weight of several million when it is made into a film or sheet, and sticky residue remains on the film surface even after forming. P, V, and Wright use polyethylene oxide with a molecular weight of 4 million to form a pellet and use it as an electrolyte. On the other hand, it has been reported that the electrical conductivity generally decreases as a polymer with a higher molecular weight is used (Watanabe, Ikeda, Shinohara, Polymer Journal, 15, 17
5 (1983). ), Therefore, if a polyethylene oxide having a lower molecular weight, excellent film-forming ability, and no stickiness on the film surface can be found, it will be possible to improve the above-mentioned drawbacks.

本発明者らは、かかる情況に鑑み鋭意研究を重ねた結果
、水溶性でかつ優れたフィルム形成能またはシート形成
能を有する高分子量化合物を得ることに成功し、高いイ
オン電導性の有機固体電解質を提供するに至ったもので
ある。
As a result of extensive research in view of the above circumstances, the present inventors succeeded in obtaining a high molecular weight compound that is water-soluble and has excellent film-forming ability or sheet-forming ability, and has developed an organic solid electrolyte with high ionic conductivity. This is what we have come to offer.

すなわち、平均分子量が5000以上で、かつエチレン
オキシド単位含有量が70%(重量%、以下同様)以上
のポリオキシアルキレングリコールと、多価カルボン酸
、その無水物またはその低級アルキルエステルとを反応
させて調製した平均分子量50000以上の高分子量化
合物にI族または/及び■族の金属塩の1種または2種
以上を組み合わせることを特徴とするイオン電導性の有
機固体電解質である。
That is, by reacting a polyoxyalkylene glycol with an average molecular weight of 5000 or more and an ethylene oxide unit content of 70% (wt%, the same applies hereinafter) or more with a polyhydric carboxylic acid, its anhydride, or its lower alkyl ester. This is an ionic conductive organic solid electrolyte characterized by combining the prepared high molecular weight compound having an average molecular weight of 50,000 or more with one or more metal salts of Group I and/or Group II.

このようにして製造された有機固体電解質は、フィルム
形成能、特に伸び及び引裂強度に優れ、フィルム表面の
ベトッキがなく、さらにフィルム形成能が優れているた
め、金属塩の配分量を多くすることが可能となる。
The organic solid electrolyte produced in this way has excellent film-forming ability, especially elongation and tear strength, and has no stickiness on the film surface.Since the organic solid electrolyte has excellent film-forming ability, it is possible to increase the amount of metal salt distributed. becomes possible.

本発明において、前記ポリオキシアルキレングリコール
(以下、POAGという)と多価カルボン酸、その無水
物またはその低級アルキルエステルとから平均分子量5
0000以上の高分子化合物が製造される。
In the present invention, the average molecular weight of
More than 0,000 polymer compounds are produced.

前記PO^Gは平均分子量が5000以上で、かつエチ
レンオキシド単位含有量が70%以上であることが好ま
しい。該分子量が5000未満になると、これを用いて
製造する高分子化合物の溶剤可溶性およびフィルム形成
能が不足する傾向にあり、したがって該高分子化合物を
用いて製造するイオン電導性の有機固体電解質のフィル
ム特性、とりわけ物理的強度も不足する傾向−ある。一
方、POAGのエチレンオキシド単位含有量が70%未
満になると、POAGと多価カルボン酸、その無水物ま
たはその低級アルキルエステルとを反応させて高分子量
化合物を製造する場合の縮合反応が遅くなり、反応時間
が長くなる傾向が生じるとともに、水に不溶性になった
り、融点が下がることにより常温で固化しにくくなった
りする。
It is preferable that the PO^G has an average molecular weight of 5000 or more and an ethylene oxide unit content of 70% or more. When the molecular weight is less than 5,000, the solvent solubility and film-forming ability of the polymer compound produced using it tend to be insufficient, and therefore the film of an ion-conductive organic solid electrolyte produced using the polymer compound tends to be insufficient. They also tend to lack properties, especially physical strength. On the other hand, when the ethylene oxide unit content of POAG is less than 70%, the condensation reaction when producing a high molecular weight compound by reacting POAG with a polyhydric carboxylic acid, its anhydride, or its lower alkyl ester becomes slow, and the reaction It tends to take longer, and it also becomes insoluble in water and has a lower melting point, making it difficult to solidify at room temperature.

前記POAGは活性水素を2個有する化合物にエチレン
オキシドを含有するアルキレンオキシドを付加重合させ
ることによりえられる。
The POAG can be obtained by addition polymerizing an alkylene oxide containing ethylene oxide to a compound having two active hydrogen atoms.

前記活性水素基としては、水やアルコールなどの水酸基
、アミノ基、フェノール性水酸基などがあげられる。該
活性水素基を2個有する化合物(以下、出発物質という
)の具体例としては、たとえば水、エチレンゲルコール
、プロピレングリコール、ジプロピレングリコール、1
.4−ブタンジオール、1.8−ヘキサンジオール、ネ
オペンチルグリコール、ビスフェノールA、ポリエチレ
ングリコール、ポリテトラメチレーングリコール、ポリ
プロピレングリコール、メチルアミン、エチルアミン、
プロピルアミン、アニリン、ブチルアミン、オクチルア
ミン、ラウリルアミン、シクロヘキシルアミンなどがあ
げられる。
Examples of the active hydrogen group include hydroxyl groups such as water and alcohol, amino groups, and phenolic hydroxyl groups. Specific examples of the compound having two active hydrogen groups (hereinafter referred to as starting material) include water, ethylene gelcol, propylene glycol, dipropylene glycol,
.. 4-butanediol, 1,8-hexanediol, neopentyl glycol, bisphenol A, polyethylene glycol, polytetramethylene glycol, polypropylene glycol, methylamine, ethylamine,
Examples include propylamine, aniline, butylamine, octylamine, laurylamine, and cyclohexylamine.

付加重合に使用するアルキレンオキシドとしては、エチ
レンオキシドが必須成分とじて約70%以上使用され、
そのほかプロピ″レンオキシド、ブチレンオキシド、ス
チレンオキシドなどが合計量で約30%以下使用されう
る。
As the alkylene oxide used for addition polymerization, ethylene oxide is used as an essential component in an amount of about 70% or more,
In addition, propylene oxide, butylene oxide, styrene oxide, etc. may be used in a total amount of about 30% or less.

前記アルキレンオキシドを共重合させるばあいには、そ
れぞれブロック共重合させてもよく、ランダム共重合さ
せてもよく、これらをあわせた形で共重合させてもよい
が、末端にエチレンオキシドが重合していることが好ま
しい。
When the alkylene oxides are copolymerized, block copolymerization, random copolymerization, or a combination of these may be copolymerized. Preferably.

かかる付加重合は通常の方法、たとえば水酸化ナトリウ
ム、水酸化カリウムなどの苛性アルカリを触媒とし、約
90〜200℃の温度で約2〜30時間行われる。
Such addition polymerization is carried out by a conventional method, for example, using a caustic alkali such as sodium hydroxide or potassium hydroxide as a catalyst at a temperature of about 90 to 200° C. for about 2 to 30 hours.

本発明において、前記POAGと反応させる多価カルボ
ン酸、その無水物またはその低級アルキルエステルとし
ては、たとえば、 (a)マロン酸、コハク酸、マレイン酸、フマル酸、ア
ジピン酸、セバシン酸、フタル酸、イソフタル酸、テレ
フタル酸、イタコン酸、トリメリド酸、ピロメリト酸も
しくはダイマー酸、 (b) (a)のモノメチルエステル、ジメチルエステ
ル、モノエチルエステル、ジエチルエステル、モノプロ
ピルエステル、ジプロピルエステル、モノブチルエステ
ル、もしくはジブチルエステルまたは、 (c)(a)に記載した酸の酸無水物 などがあげられる。
In the present invention, the polyhydric carboxylic acids, their anhydrides, or their lower alkyl esters to be reacted with the POAG include, for example, (a) malonic acid, succinic acid, maleic acid, fumaric acid, adipic acid, sebacic acid, phthalic acid; , isophthalic acid, terephthalic acid, itaconic acid, trimellidic acid, pyromellitic acid or dimer acid, (b) monomethyl ester, dimethyl ester, monoethyl ester, diethyl ester, monopropyl ester, dipropyl ester, monobutyl ester of (a) , dibutyl ester, or acid anhydrides of the acids listed in (c) and (a).

前記POAGと多価カルボン酸、その無水物またはその
低級アルキルエステルとの反応により、本発明に用いる
高分子量化合物かえられる。たとえば前記POAGと多
価カルボン酸、その無水物またはその低級アルキルエス
テルとをエステル化反応またはエステル交換反応する官
能基比として等量混合し、 120〜2504 ℃、lO〜10Torrのような条件で反応させること
により本発明に用いる高分子量化合物かえられる。
The high molecular weight compound used in the present invention can be changed by reacting the POAG with a polyhydric carboxylic acid, its anhydride, or its lower alkyl ester. For example, the POAG and a polyvalent carboxylic acid, its anhydride, or its lower alkyl ester are mixed in equal amounts in terms of the functional group ratio for esterification or transesterification, and the reaction is carried out under conditions such as 120 to 2504 °C and lO to 10 Torr. By doing so, the high molecular weight compound used in the present invention can be changed.

該高分子量化合物の平均分子量は50000以上である
ことが好ましい。該分子量が50000未満になると該
高分子量化合物を用いて製造した本発明のイオン電導性
の有機固体電解質は機械的強度が低く、脆い性質となる
。 ・次に本発明に用いる金属塩としては、1族または
Ij族の金属塩があげられ、中でも陽イオン半径の小さ
いLi、 Na及び・K金属塩が好ましい。これらの金
属塩は、陰イオンとしてハロゲンイオン、チオシアン酸
イオン、過塩素酸イオンを対に持つ化合物が好ましい。
The average molecular weight of the high molecular weight compound is preferably 50,000 or more. When the molecular weight is less than 50,000, the ionic conductive organic solid electrolyte of the present invention produced using the high molecular weight compound has low mechanical strength and becomes brittle. - Next, the metal salts used in the present invention include metal salts of Group 1 or Group Ij, and among them, Li, Na, and K metal salts, which have a small cation radius, are preferable. These metal salts are preferably compounds having a pair of halogen ion, thiocyanate ion, or perchlorate ion as anions.

陽イオンとしてイオン半径の小さいLi、 Na及びに
金属塩が好ましい理由は、ポリアルキレンオキシドの構
造によるところが大であって、エーテル酸素が取り囲む
ヘソックス構造中に陽イオンがトラップされる必要があ
るからである。
The reason why Li, Na, and metal salts with small ionic radii are preferable as cations is largely due to the structure of the polyalkylene oxide, and the cations need to be trapped in the hesox structure surrounded by ether oxygen. be.

使用する金属塩の上記高分子量化合物に占める割合は2
%以上、20%以下が好ましい。
The proportion of the metal salt used in the above high molecular weight compound is 2
% or more and 20% or less is preferable.

2%以下の場合にはイオン電導性が低くなり、また20
%以上ではフィルム形成性またはシート形成能が劣る傾
向にある。
If it is less than 2%, the ionic conductivity will be low;
% or more, film-forming properties or sheet-forming properties tend to be poor.

電解質の解離促進に効果のある高誘電率の化合物、例え
ば、ジメチルホルムアミド、炭酸エチレン、炭酸プロピ
レン、又はγ−ブチロラクトンを系に1種もしくは2種
以上加えることは、フィルム形成性を失わない限りイオ
ン電導性を高める点で有用である。
Adding one or more compounds with a high dielectric constant that are effective in promoting dissociation of the electrolyte, such as dimethylformamide, ethylene carbonate, propylene carbonate, or γ-butyrolactone, to the system is recommended as long as film-forming properties are not lost. It is useful in increasing electrical conductivity.

本発明のイオン電導性有機固体電解質は高いイオン電導
性を利用して、静電記録紙、ファクシミリ用紙等低抵抗
の要求される記録紙の帯電防止、自己放電の少ない固体
電池の −隔膜、透過イオン選択性を利用した各種セン
サー、又、大容量コンデンサー、電解応用素子、表示素
子等、多くの分ηにおいて有用性を持つことが考えられ
る。
The ion-conductive organic solid electrolyte of the present invention utilizes high ionic conductivity to prevent charging of recording paper that requires low resistance, such as electrostatic recording paper and facsimile paper, and as a diaphragm and permeable material for solid-state batteries with low self-discharge. It is thought that it will be useful in many areas such as various sensors that utilize ion selectivity, large-capacity capacitors, electrolytic application elements, display elements, etc.

つぎに本発明のイオン電導性有機固体電解質を実施例に
もとづいて説明する。
Next, the ionically conductive organic solid electrolyte of the present invention will be explained based on Examples.

製造例1 オートクレーブ中にジエチレングリコール108部およ
びフレーク苛性カリ20部を仕込み、 130℃の加熱
下に2kg/crrI′・G以下テエチレンオキシド 
12000部を徐々に加えながら反応させた。生成物(
中間体)の重量平均分子量をヒドロキシル価とアルカリ
価を測定してめたところ約 10000であった。
Production Example 1 108 parts of diethylene glycol and 20 parts of flaked caustic potassium were placed in an autoclave, and heated at 130°C to produce less than 2 kg/crrI'・G of teethylene oxide.
The reaction was carried out while gradually adding 12,000 parts. product (
The weight average molecular weight of the intermediate) was determined by measuring the hydroxyl value and alkali value and was found to be approximately 10,000.

えられた生成物100部にテレフタル酸ジメチル1.8
4部を加え、200℃に昇温させたのちI Torrの
減圧下でメタノールを除去しながら3時間反応させ、高
分子量化合物をえた。
1.8 parts of dimethyl terephthalate to 100 parts of the product obtained.
After adding 4 parts of the mixture and raising the temperature to 200°C, the mixture was reacted for 3 hours while removing methanol under a reduced pressure of I Torr to obtain a high molecular weight compound.

えられた高分子量化合物は、重量平均分子量(高速液体
クロマトグラフィーで測定)約200000であった。
The obtained high molecular weight compound had a weight average molecular weight (measured by high performance liquid chromatography) of about 200,000.

実施例1〜5 製造例1でえられた高分子量化合物18部を蒸留水62
部に溶解し、この水溶液をLiCl010重量%水溶液
20部に加えて常温下2時間撹拌し、高分子量化合物に
対するLiC10含量10.0重量%の水溶液を得た。
Examples 1 to 5 18 parts of the high molecular weight compound obtained in Production Example 1 was added to 62 parts of distilled water.
This aqueous solution was added to 20 parts of a 10% by weight aqueous solution of LiCl0 and stirred for 2 hours at room temperature to obtain an aqueous solution containing 10.0% by weight of LiCl0 relative to the high molecular weight compound.

これを外径1110m+iのテフロンシャーレ中に5g
キャストし、50℃で一昼夜放置後、同温度、真空下に
て一昼夜乾燥して固体電解質フィルムを作製した。
5g of this was placed in a Teflon petri dish with an outer diameter of 1110m+i.
It was cast, left at 50° C. for a day and night, and then dried at the same temperature under vacuum for a day and night to produce a solid electrolyte film.

このフィルムを25℃、30%RHの恒温恒湿室に4日
間放置後、導伝率を測定した。測定には、タングステン
電極、四端子法によるタイクン抵抗測定機を用いた。
After this film was left in a constant temperature and humidity chamber at 25° C. and 30% RH for 4 days, the conductivity was measured. For the measurement, a tungsten electrode and a four-terminal method Taikuun resistance measuring machine were used.

同様にして第1表に示すLiCl0濃度のフィルムを作
製し、測定した。これらの結果を第1表に示す。
Similarly, films having the LiCl0 concentrations shown in Table 1 were prepared and measured. These results are shown in Table 1.

製造例2〜5 製造例1と同様にして第2表に示す 高分子量化合物を
得た。
Production Examples 2 to 5 High molecular weight compounds shown in Table 2 were obtained in the same manner as in Production Example 1.

実施例6〜9 製造例2〜5で得られた高分子量化合物を用いて実施例
1と同様に行った。
Examples 6 to 9 The same procedure as in Example 1 was conducted using the high molecular weight compounds obtained in Production Examples 2 to 5.

結果を第3表に示す。The results are shown in Table 3.

実施例1O〜15 実施例のLiC10の代わりに各種金属塩を用い、その
他は実施例1と同様に行った。
Examples 1O to 15 The same procedure as in Example 1 was carried out except that various metal salts were used in place of LiC10 in the example.

結果を第4表に示す。The results are shown in Table 4.

第4表 特許出願人 第−工業製薬株式会社Table 4 patent applicant Dai-Kogyo Seiyaku Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 平均分子量が5000以上で、かつエチレンオキシド単
位含有量が70重量%以上のポリオキシアルキレングリ
コールと、多価カルボン酸、その無水物またはその低級
アルキルエステルとを反応させて調製した平均分子量5
0000以上の高分子量化合物にI族または/及びII
族の金属塩の1種または2種以上を組み合わせることを
特徴とするイオン電導性の有機固体電解質。
An average molecular weight 5 prepared by reacting a polyoxyalkylene glycol having an average molecular weight of 5,000 or more and an ethylene oxide unit content of 70% by weight or more with a polyhydric carboxylic acid, its anhydride, or its lower alkyl ester.
Group I or/and II for high molecular weight compounds of 0,000 or more
An ionic conductive organic solid electrolyte characterized by comprising one or a combination of two or more metal salts of the group A.
JP59005074A 1984-01-13 1984-01-13 Ion conductive organic solid electrolyte Granted JPS60148003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005074A JPS60148003A (en) 1984-01-13 1984-01-13 Ion conductive organic solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005074A JPS60148003A (en) 1984-01-13 1984-01-13 Ion conductive organic solid electrolyte

Publications (2)

Publication Number Publication Date
JPS60148003A true JPS60148003A (en) 1985-08-05
JPH0335761B2 JPH0335761B2 (en) 1991-05-29

Family

ID=11601234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005074A Granted JPS60148003A (en) 1984-01-13 1984-01-13 Ion conductive organic solid electrolyte

Country Status (1)

Country Link
JP (1) JPS60148003A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249361A (en) * 1986-04-21 1987-10-30 Yuasa Battery Co Ltd Organic solid electrolyte
JPH0195470A (en) * 1987-10-05 1989-04-13 Yuasa Battery Co Ltd Solid polyelectrolyte
JPH01158051A (en) * 1987-09-24 1989-06-21 Toa Nenryo Kogyo Kk Thin membrane electrolyte
JPH02291608A (en) * 1989-04-29 1990-12-03 Tonen Corp Porous ion conductive film
US5122303A (en) * 1988-12-06 1992-06-16 Ciba-Geigy Corporation Ion-conducting compositions and their use
CN100334770C (en) * 2000-05-24 2007-08-29 索尼株式会社 Solid or gel electrolyte and cells using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249361A (en) * 1986-04-21 1987-10-30 Yuasa Battery Co Ltd Organic solid electrolyte
JPH01158051A (en) * 1987-09-24 1989-06-21 Toa Nenryo Kogyo Kk Thin membrane electrolyte
JPH0195470A (en) * 1987-10-05 1989-04-13 Yuasa Battery Co Ltd Solid polyelectrolyte
US5122303A (en) * 1988-12-06 1992-06-16 Ciba-Geigy Corporation Ion-conducting compositions and their use
JPH02291608A (en) * 1989-04-29 1990-12-03 Tonen Corp Porous ion conductive film
CN100334770C (en) * 2000-05-24 2007-08-29 索尼株式会社 Solid or gel electrolyte and cells using same

Also Published As

Publication number Publication date
JPH0335761B2 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
EP0804497B1 (en) Soluble, electroconductive polypyrrole and method for preparing the same
KR101671556B1 (en) Method for producing 2-cyanoethyl group-containing organic compound
US4536262A (en) Preparation of poly(heteroaromatics), and films obtained by this method
US4681822A (en) Novel composites of an ionic conducting polymer and an electronic conducting polymer
US5641859A (en) Water-soluble self-acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
JPS60148003A (en) Ion conductive organic solid electrolyte
DE60019982T2 (en) Ion-conducting polymer, polymer electrolyte and electrical device
JPH0789496B2 (en) Ion conductive polymer substance
CA1335398C (en) Copolymers and electroactive polymers derived therefrom
KR101222093B1 (en) Ionic conducting material containing an oligoether sulphate
JPH06124708A (en) Conductive composition containing polyvinylidene fluoride and battery using the composition
JP2909544B2 (en) Method for producing solution of water-soluble conductive organic polymer composition
JP3384174B2 (en) Polymer solid electrolyte
US4556615A (en) Solid state electrochemical cell
US5821344A (en) Preparation of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous form, and polymer blends made therefrom
EP0350166B1 (en) Polymer compositions
JP3613908B2 (en) Polymer solid electrolyte and battery using the same
JPH06511285A (en) Copolymers of oxirane and dioxolane, methods for their production and ionically conductive materials containing them
JP2559822B2 (en) Polymer solid electrolyte
JP3058614B2 (en) Water-soluble conductive organic polymer composition solution and method for producing film using the same
KR100297923B1 (en) Polymeric Electrolyte of Polyacrylonitrile Ionomer And Process for Preparing the Same
JPH03190960A (en) Lithium low-conductive polyelectrolyte
JP2696415B2 (en) Film production method
DE102019110340A1 (en) Electrode material comprising a phenothiazine or phenoxazine functionalized polynorbornene
PL165942B1 (en) Method of obtaining thin-film polar solid copolymer electrolytes