JPH0194674A - Heterojunction field-effect transistor - Google Patents

Heterojunction field-effect transistor

Info

Publication number
JPH0194674A
JPH0194674A JP25215587A JP25215587A JPH0194674A JP H0194674 A JPH0194674 A JP H0194674A JP 25215587 A JP25215587 A JP 25215587A JP 25215587 A JP25215587 A JP 25215587A JP H0194674 A JPH0194674 A JP H0194674A
Authority
JP
Japan
Prior art keywords
layer
semi
semiconductor channel
insulating
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25215587A
Other languages
Japanese (ja)
Inventor
Kimihiko Nagami
永見 公彦
Fumio Matsumoto
松本 史夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25215587A priority Critical patent/JPH0194674A/en
Publication of JPH0194674A publication Critical patent/JPH0194674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors

Abstract

PURPOSE:To prevent Cr diffusions or crystalline defects from occurring by providing a buffer layer whose conductive type is different from a undoped semiconductor channel between the semi-insulating crystalline substrate and a nondoped semiconductor channel layer. CONSTITUTION:A heterojunction field-effect transistor comprises a semi- insulating crystalline layer 1; an undoped semiconductor channel layer 3 formed on such semi-insulating crystalline substrate 1; an electron supplying layer 5 formed on such undoped semiconductor channel layer 3; and a control electrode 7 formed on such electron supplying layer 5. Such heterojunction field-effect transistor further comprises a buffer layer 2 whose conductive type is different from the nondoped semiconductor channel layer 3 between the semiinsulating crystalline substrate 1 and the nondoped semiconductor channel layer 3. For example, a P-type GaAs layer 2, a undoped GaAs layer 3, an undoped AlxGal-xAs layer 4 are formed on a semi-insulating GaAs substrate 1. Further, after growing an Si-doped AlxGa1-xAs layer 5, a source electrode 6a, a drain electrode 6b, and a gate electrode 7 are formed.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明框ヘテロ接合界面の2次元電子ガスを利用したヘ
テロ接合電界効果トランジスタに関するり一」 従来の
技術 半導体結晶基板上に、基板結晶より禁止帯幅の大きい半
導体の結晶を積層したヘテロ接合電界効果トランジスタ
(以下;、ヘテロ接合FETという)框、ある条件下で
ヘテロ接合界面に2次元電子ガスを形成することが知ら
れている0超高速半導体装置として最近注目金集めてい
る高電子移動トランジスタ(HEMT )も前記へテロ
接合界面の2次元電子ガスを利用しt装置である(例え
ば、Journal of Crystal  Gro
wth 56(1982)455−463、North
 Ho1land Puolishing Compa
ny参照)0 第3図HAIGaAs−GaAs ヘテo接合を用い次
従来のHIITの模式的断面構造図であり、同図によρ
以下にその製造方法を説明する。
[Detailed description of the invention] (a) Field of industrial application The present invention relates to a heterojunction field effect transistor using two-dimensional electron gas at the interface of a frame-heterojunction. A heterojunction field effect transistor (hereinafter referred to as a heterojunction FET) frame in which semiconductor crystals with a large forbidden band width are stacked, is known to form a two-dimensional electron gas at the heterojunction interface under certain conditions. High electron mobility transistors (HEMTs), which have recently attracted attention as high-speed semiconductor devices, are also devices that utilize the two-dimensional electron gas at the heterojunction interface (for example, Journal of Crystal Gro
wth 56 (1982) 455-463, North
Ho1land Poolishing Compa
ny)0 Figure 3 is a schematic cross-sectional structural diagram of a conventional HIIT using a HAIGaAs-GaAs heterojunction, and the figure shows ρ
The manufacturing method will be explained below.

まず、半絶縁性GaAS基板(111上に分子線エピタ
キシ(M8fC)技術またに有機金属エピタキシ(QM
VP]li: )技術にzp、ノンドー7G a A 
S層σ21會1μmの厚さまで成長させ、さらに該ノン
ドー1GaAsJil(13上にノンドー7AlxGa
t−XASJiiσ31?60Aの厚さまで成長させ、
次に該ノンドープAlxGa1−xAs@σ3上にsi
ドー7”AlXGa1−XAS層(S i 4y ; 
I X1QCjm)σ41a−100OAの厚さまで成
長させるnccで、xHAl xGa 1−XAS中の
AlAsの組成全示す数値であり、略0.3である□そ
の後、このようにして形成されたヘテロエピタキシャル
基板上にAu−Ge−Ni等からなるオーミック金属k
m看し、リフトオフ@Kxvソース電極形成部お:びド
レインを極形成部に該金lrl残し、合金化を行ってオ
ーミック領域t−SエドーブAlxGa1−xAs層α
4、ノンドー1Al xGa 1−XAS層αe、およ
び/4 ノド−10乙As層α2内に貫通させてソース
電極(15a)、ドレイン電極(15b)を形成する□ 最後にsl t−−−srAIXGa+−xAs層(1
41にシ2ットヤバリア?形成する金属(Al)ま之に
金t(Ti−Pt−Au等)’に/−X電極(15a)
=ドレイ7を極(tso)との間にリフトオフ法に:り
選択的に被着させ、ゲート電極σe6形成する。
First, we applied molecular beam epitaxy (M8fC) or organometallic epitaxy (QM) on a semi-insulating GaAS substrate (111).
VP] li: ) Technology zp, Nondo 7G a A
The S layer σ21 was grown to a thickness of 1 μm, and then the non-doped 1GaAsJil (on top of the non-doped 7AlxGa
Grow to a thickness of t-XASJiiσ31-60A,
Next, on the non-doped AlxGa1-xAs@σ3
Do7” AlXGa1-XAS layer (S i 4y;
The total composition of AlAs in xHAl Ohmic metal consisting of Au-Ge-Ni etc.
After lifting off @Kxv, the source electrode forming part and the drain are left in the electrode forming part, and alloying is performed to form an ohmic region t-S edge AlxGa1-xAs layer α.
4. Form a source electrode (15a) and a drain electrode (15b) by penetrating the non-doped 1Al xAs layer (1
Shityabaria on 41? Along with the metal (Al) to be formed, gold (Ti-Pt-Au, etc.)'/-X electrode (15a)
= The gate electrode σe6 is formed by selectively depositing the drain 7 between the electrode (tso) by a lift-off method.

上述した如き製造方法にエリ作成されeHEMにおいて
に、ノンドー1AlxGat−xAs1σJとノンドー
プGaAs層α2とのへテロ接合界面の核層1121側
に2次元電子ガスチャネル(17)が形成される。$1
ドーyAlxGa 1−xAs層(t41がゲート電極
i16]のシコクトキパリアあるいは表面準位にエリ空
乏化し、正にイオン化した不純物にノンドー1AlxG
a t−xAs層a31トノンドー1GaAs層O2と
のへテロ接合界面に負電荷を持つ電子金銹起することに
エリ、該2次元電子ガスチャネル(171が形成される
0 第4図に従来のHEMTのゲート電極−81ドープAl
XGa +−XAS層−ノンドーブAlxGa1−xA
s層−ノンドープGaAs層に亘る伝導帯エネルギ図で
ある。図中A1領域にS1ドー7”Al xGa 1−
xAs層fi4)Ic4A2領域41/7 F−プAl
 xGa 1−XAS層σ3に、A3領域に2次元電子
ガスチャネル171に、A4領域はノンドー7G a 
A 5ljJr17Jに夫々対応しており、禁止帯[i
Alお工びA2領域が略1.80 e V、A 5お:
びA4領域が#1.43eVであるn17t、A2領域
とA5領域との界面丁なわちAl xGa t −x”
 S ml (131トG a A 、S !a (1
21ト<7) ヘテQ 接合界面+7)E導帯エネルギ
差は略0.32 e Vである□該へテロ接合界面でr
zAlxGa 1−xAs/IF(131とGaAsm
a’aとがいずれもノンドー1であり、しかもS1ドー
7Al xGa t −XAS層αΦのイオン化し九不
細物と分離されるtめ、イオン化不純物が極めて少ない
。従って、ソース電極(152L)とドレイン電極(1
51))との間に電圧全印加すると電子にイオンによる
散乱が少ないため高速で動作する□なお、誘起される2
次元電子ガス濃度rlsに約5X10Cm   である
In the eHEM fabricated by the above-described manufacturing method, a two-dimensional electron gas channel (17) is formed on the nucleus layer 1121 side of the heterojunction interface between the non-doped 1AlxGat-xAs1σJ and the non-doped GaAs layer α2. $1
The do-yAlxGa 1-xAs layer (t41 is the gate electrode i16) is depleted in the phosphor or surface level, and the non-do-1AlxG is added to the positively ionized impurity.
When electrons with negative charges occur at the heterojunction interface with the a t-xAs layer a31 and the GaAs layer O2, a two-dimensional electron gas channel (171) is formed. Figure 4 shows a conventional HEMT. Gate electrode-81 doped Al
XGa + -XAS layer - non-doped AlxGa1-xA
FIG. 2 is a conduction band energy diagram spanning an s layer and a non-doped GaAs layer. In the figure, in the A1 region, S1 do 7” Al x Ga 1-
xAs layer fi4) Ic4A2 region 41/7 F-p Al
xGa 1-XAS layer σ3, two-dimensional electron gas channel 171 in A3 region, non-doped 7G a in A4 region
A 5ljJr17J respectively, and the prohibited band [i
Al machining A2 area is approximately 1.80eV, A5o:
and n17t where the A4 region is #1.43eV, the interface between the A2 region and the A5 region, that is, Al xGa t -x”
S ml (131tG a A , S !a (1
21t<7) Het Q junction interface + 7) E conduction band energy difference is approximately 0.32 e V □ At the hetero junction interface r
zAlxGa 1-xAs/IF (131 and GaAsm
Both a'a and a'a are non-doped 1, and the ionized impurities are extremely small because they are separated from the ionized impurities of the S1 doped 7Al x Ga t -XAS layer αΦ. Therefore, the source electrode (152L) and the drain electrode (152L)
51)) When the full voltage is applied between
The dimension electron gas concentration rls is approximately 5×10 Cm.

ゲート電極[161の電界効果により2次元電子ガスチ
ャネル鶴全通過する電子全制御することにより、第2図
に示す装置はHEMTとしてトランジスタ動作を行なう
。つまり、ゲート電極σGにかけるゲート・ソース電極
間電圧VGsにLつ2次元電子ガスの濃度を制御できる
−12次元電子ガス濃度nSとゲート・ソース電極間電
圧VG8には以下の関係がある□ AVG3 n S ”” n 60  + □ 友だし、 nao:V’Ga−0のときの2次元を子ガ
スa度 CA   :Si  ド−7”AlXGa1−XAaN
の静電容量 q  :を子の電荷 に1  発明が解決し二つとする問題点上述しt如き従
来のHEMTにおいて、ノンドー7G a A S層a
2が薄イト、半絶縁性GaAS基板(LllからのCr
拡散、あるいは該基板(II+の結晶欠陥等により移動
度の低下をもtらす◎ 逆に、Crの拡散あるいは結晶の欠陥等の影響を避ける
。ために、ノンドープGaAS層a7JSで厚くすると
、中性領域(第4図の領域B)のキャリア云導に二す、
ペテロ接合電界効果トヲンジスタがピンチオフしなくな
ってしまうという間0があるへ 本発明に上述の問題点に鑑み為さn;yもので、中性領
域全生じさせることなく、Crの拡散あるいに結晶の欠
陥等の影響を避けることのできるヘテロ接合零電界効果
トランジスタを提供しょうとするものである。
By controlling all the electrons passing through the two-dimensional electron gas channel by the electric field effect of the gate electrode [161], the device shown in FIG. 2 performs a transistor operation as a HEMT. In other words, the concentration of L two-dimensional electron gas can be controlled by the gate-source electrode voltage VGs applied to the gate electrode σG. The -12-dimensional electron gas concentration nS and the gate-source electrode voltage VG8 have the following relationship □ AVG3 n S ”” n 60 + □ Friend, the two dimensions when nao: V'Ga-0 are child gas a degrees CA: Si do-7"AlXGa1-XAaN
The electrostatic capacitance q : is the charge of the child 1 Problems to be solved by the invention
2 is a thin, semi-insulating GaAS substrate (Cr from Lll)
◎ On the other hand, to avoid the influence of diffusion of Cr or crystal defects of the substrate (II+), it is necessary to thicken the non-doped GaAS layer a7JS. For career guidance in the sexual area (area B in Figure 4),
In view of the above-mentioned problems, the present invention has been designed to reduce the amount of Cr diffusion or crystallization without creating the entire neutral region. The purpose of the present invention is to provide a heterojunction zero field effect transistor that can avoid the effects of defects and the like.

に)間迎点全解決するための手段 本発明に半絶縁性結晶基板と、この半絶縁性結晶基板上
に設けられたノンドープ半導体チル層ル層と、このノン
ドープ半導体チャネル層上に設けられ九電子供給層と、
この電子供給層上に設けられた制@電極と、全備えて成
るヘテロ接合電界効果トランジスタにおいて、Ii記半
絶縁性結晶基板と前記ノンドープ半導体チル層ル層の間
に該ノ・ノド−1半導体チャネル層と導電型の異なる緩
衝層が設けられているこ、と全特徴とするヘテロ接合電
界効果トランジスタであるり (ホ)作 用 ノンドープ半導体チャネ/L’層と導T!L型の異なる
緩衝層が設けられるので、この緩衝層とノンドープ半導
体チル層ル層の間にP−N接合が形成されるとともに、
該緩衝層が半絶縁性結晶基板のCrの拡散あるいぼ結晶
欠陥の影響等を防ぐ。
(b) Means for solving all the problems in the world The present invention includes a semi-insulating crystal substrate, a non-doped semiconductor chill layer provided on the semi-insulating crystal substrate, and a non-doped semiconductor chill layer provided on the non-doped semiconductor channel layer. an electron supply layer;
In a heterojunction field effect transistor comprising a control @electrode provided on the electron supply layer, the node-1 semiconductor is provided between the semi-insulating crystal substrate II and the non-doped semiconductor chill layer. It is a heterojunction field effect transistor characterized by a buffer layer having a conductivity type different from that of the channel layer. Since different L-shaped buffer layers are provided, a PN junction is formed between this buffer layer and the non-doped semiconductor chill layer, and
The buffer layer prevents the diffusion of Cr in the semi-insulating crystal substrate and the effects of wart crystal defects.

(へ)実施例 第1図に本発明に係るヘテロ接合を用いたHEMTの模
式的断面構造図でめつ、同図に=9以下にその製造方法
を説明する。
(f) Example FIG. 1 is a schematic sectional view of a HEMT using a heterojunction according to the present invention, and the manufacturing method thereof will be explained below.

まず、半絶縁性GaAs基板(半絶縁性結晶基板用1+
上に分子線エピタキシ(MBF)技Wにより、P型Ga
As層(緩衛Nj ) 12+i 3 a mの厚さま
で成長させる□続いて、#P型GaAS層12ノ上にノ
ンビーフGaA3層(ノンドープ半導体チル層ル層) 
+31’k 1μmの厚さまで成長させ、さらに該ノン
ドー7G a A 8913+上にノンドープAlxG
a1−xAs届14+Q60Aの厚さまで成長させる◎
このノンドー1A1xGa1−XAS5141とノンド
ー7”G a A S 層I3Iとのへテロ接合界面の
該n13+側に2次元電子チャネル(8+が形成される
First, a semi-insulating GaAs substrate (1+ for semi-insulating crystal substrates)
Using molecular beam epitaxy (MBF) technique W, P-type Ga
As layer (loose Nj) is grown to a thickness of 12+i 3 am □Next, 3 non-beef GaA layers (non-doped semiconductor chill layer) are grown on #P type GaAS layer 12
+31'k was grown to a thickness of 1 μm, and non-doped AlxG was further grown on the non-doped 7G a A 8913+.
Grow to the thickness of a1-xAs notification 14+Q60A◎
A two-dimensional electron channel (8+) is formed on the n13+ side of the heterojunction interface between the non-doped 1A1xGa1-XAS5141 and the non-doped 7'' Ga AS layer I3I.

続いて、ノンドー7”AlXGa 1−XASW14J
上にMf3E技q4VcLr)、Si )’−プAlx
Ga 1− x A S m (′M、子供給層) 1
5+i 0.1 μm(7)厚すマで成長させるりここ
で、S1濃度に2 X 1018am−”r、sp、x
HA 1xGa 1−xAsjilの中のAlAsの組
成を示す数値であワ、略0.3でろる0 その後、この二つにして形成されたヘテロエピタキシャ
ル基板上にAu−Ge−Ni等からなるオーミック金属
を蒸着し、リフトオフ法にエクソース電極形成部お工び
ドレイン電極形成部に該金属全残し、合金化処理全行な
ってオーミウク領域’isi )”−jAIXGal 
−XAS層(51内に貫通させてソース電極(6a)、
ドレイン電極(6o)を形成するり 次KSi)’−7”AlXGa1−XAS層15+上に
シgットキバリアを形成する金属(A1)ま几は金[(
T 1−Pt−Au )等全ソース電極(6a)とソー
ス電極(6b)の間にリフトオフ法に=9選択的に被着
させ、ゲート電極(制御電極) 17+ f形成するり 斯土の装館でに、ノンドー7G a A S 暦131
トP型caAs層+21との間にp−N接合が形成され
、ノンビーフGaAs層13+に中性領域は生じない。
Next, Nondo 7” AlXGa 1-XASW14J
Mf3E technique q4VcLr), Si)'-pAlx
Ga 1- x A S m ('M, child-income group) 1
5+i 0.1 μm (7) When grown in a thick square, the S1 concentration is 2×1018am−”r,sp,x
HA 1xGa 1-x This is a numerical value indicating the composition of AlAs in Asjil, approximately 0.3. After that, an ohmic metal made of Au-Ge-Ni etc. is placed on the heteroepitaxial substrate formed by these two. The metal is deposited using the lift-off method, leaving all of the metal in the drain electrode forming area, and then performing the alloying process to form the ohmic area.
-XAS layer (source electrode (6a) penetrated into 51,
After forming the drain electrode (6o), the metal (A1) for forming the SiGtki barrier on the KSi'-7'' AlXGa1-XAS layer 15+ is gold [(
T1-Pt-Au) etc. are selectively deposited between all the source electrodes (6a) and the source electrodes (6b) by the lift-off method, and the gate electrode (control electrode) 17+f is formed. In the hall, Nondo 7G a A S Calendar 131
A p-N junction is formed between the non-beef GaAs layer 13+ and the P-type caAs layer +21, and no neutral region is generated in the non-beef GaAs layer 13+.

第2図に本発明に係るHEMTのゲート電極−AIXG
a  1−XAS@−ノ゛ ′/AG  a  A  
s  H−1)”i≠−4GaAs層に亘る伝導帯エネ
ルギ図である◎図中A1領域rC8iF’−1AlxG
a1−xAs層(51ニ、A2領域tl’X/7ドー7
Al xGat −xA1層14+に、A3領域に2次
元電子ガスチャネル(8)に、A4領域にノンドー7G
aAS層+3;に、As領域にP型GaAs層121に
夫々対応しており、禁止帯唱框A1お工びA2領域が略
1.80 e V%A3およびA4領域が略1.43 
e V テ;h ル、−1ま2、A2領域とA3領域の
界面、すなわちAlxGat−xAs層141とG a
 A s M+3+とのへテロ接合界面の伝導帯エネル
ギ差に略0.32′e¥である。この図からも中性領域
が生じていないことは明らかであるり而して、ヘテロ接
合界面に生じた2次元電子ガスのみが電流となり、ピン
チオフが可能となる。
Figure 2 shows the gate electrode of HEMT according to the present invention - AIXG.
a 1-XAS@-No゛'/AG a A
s H-1)"i≠-4 This is a conduction band energy diagram spanning the GaAs layer ◎A1 region rC8iF'-1AlxG in the figure
a1-xAs layer (51 d, A2 region tl'X/7 do 7
Al xGat -xA1 layer 14+, two-dimensional electron gas channel (8) in A3 region, non-doped 7G in A4 region
The aAS layer +3; corresponds to the As region and the P-type GaAs layer 121, respectively, and the prohibited belt singing frame A1 and A2 regions are approximately 1.80 e V% A3 and A4 regions are approximately 1.43.
eVte;h le, -1 to 2, the interface between the A2 region and the A3 region, that is, the AlxGat-xAs layer 141 and the Ga
The conduction band energy difference at the heterojunction interface with A s M+3+ is approximately 0.32'e\. It is clear from this figure that no neutral region is generated, and only the two-dimensional electron gas generated at the heterojunction interface becomes a current, making pinch-off possible.

It、半絶縁性GaA3基板+IIのCrの拡散あるい
に結晶欠陥等の影響もP型G a A s N1121
で防ぐことができる。
It, the influence of Cr diffusion of semi-insulating GaA3 substrate + II, crystal defects, etc. is also P-type Ga As N1121
It can be prevented by

上述の実施例でに各層の成長にはMBE法七用い友が、
急峻なヘテロ接合界面全形成できる方法、例えば有機金
属エピタキシ(QMVPE)技術等金剛いることができ
る。
In the above example, the MBE method was used to grow each layer.
There are many methods that can form a steep heterojunction interface, such as metal organic epitaxy (QMVPE) technology.

さらに、スペーサ層として介在させtノンドー7Alx
Ga +−xAs層+3+i省くコトもできる。
Furthermore, t non-do 7Alx is interposed as a spacer layer.
It is also possible to omit the Ga+-xAs layer+3+i.

まt、本発明rzInGaAs−In AI Asヘテ
ロ接合、InP−1nGaAs接合等に適用できること
に明らかであるし、2次元電子ガスのみならず2次元ホ
ールガス金用い友へテロ接合電界効果トランジスタに適
用できることも明らかである0 (トj 発明の効果 本発明に以上の説明から明らかな如く、半絶縁性結晶基
板とノンドープ半導体チル層ル層の間に該ノンドープ半
導体チル層ル層と導電型の異なる緩衝層が設けられてい
るので、ノンドープ半導体チル層ル層と緩衝層の間にP
−8接合が形成されや性領域が生じることにない□従っ
て、ヘテロ接合界面に生じ几2次元電子ガスのみが電流
となり、ピンチオフが可能となるn まt1半絶縁性結晶基板のCrの拡散あるいにδ晶欠陥
等の影響も緩衝層で防ぐことができ、移動度が低下する
ことにない。
Furthermore, it is obvious that the present invention can be applied to rzInGaAs-In AI As heterojunctions, InP-1nGaAs junctions, etc., and can be applied not only to two-dimensional electron gas but also to two-dimensional hole gas heterojunction field effect transistors using gold. Effects of the Invention As is clear from the above description, there is a buffer layer between the semi-insulating crystal substrate and the non-doped semiconductor chill layer, which has a different conductivity type from the non-doped semiconductor chill layer Since the layer is provided, there is no P between the non-doped semiconductor chill layer and the buffer layer.
-8 Junction is formed and no active region is generated. Therefore, only the two-dimensional electron gas generated at the heterojunction interface becomes a current, making pinch-off possible. In addition, the effects of δ crystal defects and the like can be prevented by the buffer layer, and mobility does not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明に係るヘテロ接合FETの模式的断面図
、第2図に本発明に係るヘテロ接合FETの伝導帯エネ
ルギ図、第3図に従来のへテロ接合FETの模式的断面
図、第4図に従来のへテロ接合FETの伝導帯エネルギ
図である。 山・・・半絶縁性GaA19基板(半絶縁性結晶基板)
 、 +21−・・P型GaAs層(緩衝層)、+31
−・・ノンドー7”GaAS層(ノンドープ半導体チル
層ル層)、(4)・・・ノンドー7”A l xGa 
1−x AsNJ、 +5l−8iドア1AlxGa 
t−xAs#(を子供給層ン、(6a)・・・ソース電
極、  (61))・・・ドレイン電極、(71・・・
ゲート電極、18+・・・2次元電子ガスチャネル。 出−願人三洋電機株式会社 代理人 弁理士西野卓嗣 〔外1名〕 第1図 第2図 2敵 第3図 第4図 Δフ g巨泗叡
FIG. 1 is a schematic cross-sectional view of a heterojunction FET according to the present invention, FIG. 2 is a conduction band energy diagram of a heterojunction FET according to the present invention, and FIG. 3 is a schematic cross-sectional view of a conventional heterojunction FET. FIG. 4 is a conduction band energy diagram of a conventional heterojunction FET. Mountain: Semi-insulating GaA19 substrate (semi-insulating crystal substrate)
, +21-...P-type GaAs layer (buffer layer), +31
-...Non-doped 7" GaAS layer (non-doped semiconductor chill layer), (4)...Non-doped 7" Al xGa
1-x AsNJ, +5l-8i door 1AlxGa
t-xAs# (child supply layer, (6a)...source electrode, (61))...drain electrode, (71...
Gate electrode, 18+...2-dimensional electron gas channel. Applicant Sanyo Electric Co., Ltd. Agent Patent attorney Takuji Nishino [1 other person] Figure 1 Figure 2 2 Enemy Figure 3 Figure 4 Δfug

Claims (1)

【特許請求の範囲】 1、半絶縁性結晶基板と、この半絶縁性結晶基板上に設
けられたノンドープ半導体チャネル層と、このノンドー
プ半導体チャネル層上に設けられた電子供給層と、この
電子供給層上に設けられた制御電極と、を備えて成るヘ
テロ接合電界効果トランジスタにおいて、 前記半絶縁性結晶基板と前記ノンドープ半導体チャネル
層の間に該ノンドープ半導体チャネル層と導電型の異な
る緩衝層が設けられていることを特徴とするヘテロ接合
電界効果トランジスタ。
[Claims] 1. A semi-insulating crystal substrate, a non-doped semiconductor channel layer provided on this semi-insulating crystal substrate, an electron supply layer provided on this non-doped semiconductor channel layer, and this electron supply a control electrode provided on a layer, a buffer layer having a conductivity type different from that of the non-doped semiconductor channel layer is provided between the semi-insulating crystal substrate and the non-doped semiconductor channel layer. A heterojunction field effect transistor characterized by:
JP25215587A 1987-10-06 1987-10-06 Heterojunction field-effect transistor Pending JPH0194674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25215587A JPH0194674A (en) 1987-10-06 1987-10-06 Heterojunction field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25215587A JPH0194674A (en) 1987-10-06 1987-10-06 Heterojunction field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0194674A true JPH0194674A (en) 1989-04-13

Family

ID=17233248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25215587A Pending JPH0194674A (en) 1987-10-06 1987-10-06 Heterojunction field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0194674A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028968A (en) * 1990-01-02 1991-07-02 The Aerospace Corporation Radiation hard GaAs high electron mobility transistor
US5140386A (en) * 1991-05-09 1992-08-18 Raytheon Company High electron mobility transistor
US6505010B1 (en) * 1991-08-26 2003-01-07 Canon Kabushiki Kaisha Image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028968A (en) * 1990-01-02 1991-07-02 The Aerospace Corporation Radiation hard GaAs high electron mobility transistor
US5140386A (en) * 1991-05-09 1992-08-18 Raytheon Company High electron mobility transistor
US6505010B1 (en) * 1991-08-26 2003-01-07 Canon Kabushiki Kaisha Image forming apparatus

Similar Documents

Publication Publication Date Title
JPS63252478A (en) Insulated-gate semiconductor device
EP0165798B1 (en) Semiconductor device comprising n-channel and p-channel transistors and production method
US4559547A (en) Semiconductor device
JPH0194674A (en) Heterojunction field-effect transistor
JPS60134481A (en) Semiconductor device
JPS6356710B2 (en)
JPS61147577A (en) Complementary semiconductor device
JPS63170A (en) Semiconductor device
JP2994863B2 (en) Heterojunction semiconductor device
JPS63161677A (en) Field effect transistor
JP2655594B2 (en) Integrated semiconductor device
JPS60134479A (en) Semiconductor device
JPS6012773A (en) Manufacture of semiconductor element
JPH01120871A (en) Semiconductor device
JP2614490B2 (en) Heterojunction field effect transistor
JPS60201664A (en) Schottky junction type field-effect transistor and manufacture thereof
JPH0194675A (en) Heterojunction field-effect transistor
JPS6254967A (en) Field effect transistor
JPS6390865A (en) Manufacture of field-effect transistor
JPH0748476B2 (en) Structure of semiconductor crystal
JPS63219176A (en) Manufacture of field-effect transistor
JPS62133768A (en) Semiconductor device
JPS6112081A (en) Semiconductor device
JPH0439775B2 (en)
JPH01199475A (en) Heterojunction field-effect transistor