JPH0194253A - Gas-in-oil sensor - Google Patents

Gas-in-oil sensor

Info

Publication number
JPH0194253A
JPH0194253A JP25130987A JP25130987A JPH0194253A JP H0194253 A JPH0194253 A JP H0194253A JP 25130987 A JP25130987 A JP 25130987A JP 25130987 A JP25130987 A JP 25130987A JP H0194253 A JPH0194253 A JP H0194253A
Authority
JP
Japan
Prior art keywords
membrane
hydrogen gas
metal oxide
oil
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25130987A
Other languages
Japanese (ja)
Other versions
JPH0781972B2 (en
Inventor
Sadayoshi Mukai
向井 貞喜
Masaru Kanba
勝 神庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP25130987A priority Critical patent/JPH0781972B2/en
Publication of JPH0194253A publication Critical patent/JPH0194253A/en
Publication of JPH0781972B2 publication Critical patent/JPH0781972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To measure the hydrogen gas dissolved in insulting oil by simple work such that a sensor is immersed in the insulating oil, by providing a metal oxide membrane to the surface of an insulating substrate and forming a pair of counter electrodes to the surface of said membrane. CONSTITUTION:A membrane 2 composed of metal oxide such as SnO2 is provided on the surface of a film like substrate 1 composed of a resin such as polyethylene terephthalate. Next, a pair of counter electrodes 3 are provided to the surface of the membrane 2 to form a sensor main body 4 which is, in turn, covered with a membrane 5 composed of a fluorocarbon resin. Then, the sensor main body 4 is immersed in the insulating oil of electric machinery being an object to be analyzed as it is. By this method, when the membrane 2 composed of metal oxide is brought into contact with the hydrogen gas transmitted through the membrane 5 to be reacted therewith, the surface resistance of the membrane 5 changes corresponding to the concn. of the hydrogen gas. Therefore, by detecting the surface resistance as the resistance between the electrodes 3, the concn. of the hydrogen gas can be known.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は油中に溶存している水素ガスの検知に好適な
油中ガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a gas-in-oil sensor suitable for detecting hydrogen gas dissolved in oil.

(従来の技術) 周知のように変圧器、コンデンサ、リアクトルその他の
油入電気機器においては、局部的にコロナ放電が発生す
るような異常或いは局部加熱により、絶縁油が分解され
て水素ガスが発生することが知られている。したがって
水素ガスを検出することによって、電気機器の異常を、
事故が発生ずる以前に検知することができるようになる
(Prior art) As is well known, in oil-filled electrical equipment such as transformers, capacitors, reactors, etc., insulating oil is decomposed and hydrogen gas is generated due to abnormalities such as local corona discharge or local heating. It is known to do. Therefore, by detecting hydrogen gas, abnormalities in electrical equipment can be detected.
It will be possible to detect accidents before they occur.

従来ではこのような水素ガスの検出に、電気機器より絶
縁油を採取し、これより溶存ガスを抽出し、これをガス
クロマトグラフにより分析するようにしている。しかし
このような手段によると、電気機器の設置現場では分析
できないし、またオンライン分析ができないなどの不便
がある。
Conventionally, such hydrogen gas has been detected by collecting insulating oil from electrical equipment, extracting dissolved gas from this, and analyzing it using a gas chromatograph. However, with this method, there are inconveniences such as analysis cannot be performed at the site where the electrical equipment is installed, and online analysis cannot be performed.

(発明が解決しようとする問題点) この発明は油中に溶存している水素ガスの測定に際し、
これより絶縁油を採取したり、溶存ガスを抽出したりす
ることを必要とせず、その絶縁油中に浸漬するだけの簡
単な作業で、その測定を可能にすることを目的とする。
(Problems to be solved by the invention) This invention solves the following problems when measuring hydrogen gas dissolved in oil:
The purpose of the present invention is to make it possible to measure the insulating oil by simply immersing it in the insulating oil, without the need to sample the insulating oil or extract the dissolved gas.

(問題点を解決するための手段) この発明は絶縁性の基板の表面に、金属酸化物の薄膜を
設け、その表面に互いに向かい合う一対の電極を形成す
ることによってセンサ本体を構成し、前記センサ本体の
表面を、フッ素系樹脂からなる薄膜により被覆したこと
を特徴とする。
(Means for Solving the Problems) The present invention provides a thin film of metal oxide on the surface of an insulating substrate, and forms a sensor body by forming a pair of electrodes facing each other on the surface. It is characterized in that the surface of the main body is coated with a thin film made of fluororesin.

(実施例) この発明の実施例を図によって説明する。1はたとえば
ポリエチレンテレフタレートのような樹脂からなるフィ
ルム状の基板、或いはAl2O3,SiO□などの無機
絶縁材料からなる基板、2は基板1の表面に設けられた
金属酸化物からなる薄膜である。
(Example) An example of the present invention will be described with reference to the drawings. 1 is a film-like substrate made of a resin such as polyethylene terephthalate, or a substrate made of an inorganic insulating material such as Al2O3 or SiO□; 2 is a thin film made of a metal oxide provided on the surface of the substrate 1;

これはたとえばSnO2、Tie□、WO3、Ink□
その他の単体またはこれらのうちの2種以上の複合体が
使用できる。
This includes, for example, SnO2, Tie□, WO3, Ink□
Other single substances or complexes of two or more of these can be used.

この種の金属酸化物類は、水素ガスによってその表面抵
抗が変化するものとして知られている。
This type of metal oxide is known to have a surface resistance that changes with hydrogen gas.

なおこれらの金属酸化物の薄膜は、IVD法、IBS法
、真空蒸着法、プラズマCVD法などによって適当に設
けられる。
Note that the thin film of these metal oxides is appropriately provided by an IVD method, an IBS method, a vacuum evaporation method, a plasma CVD method, or the like.

薄膜2の表面には互いに向かい合う一対の電極3が形成
される。これは図のように櫛型とするのが好ましい。電
極3はたとえばAu、 Pdなどによって形成される。
A pair of electrodes 3 facing each other are formed on the surface of the thin film 2. This is preferably comb-shaped as shown in the figure. The electrode 3 is made of, for example, Au or Pd.

なお電極3にはリードが接続され、後記する袋より外部
に導出される。
Note that a lead is connected to the electrode 3 and led out from a bag to be described later.

以上のようにしてセンサ本体4が構成されるが、この発
明ではこのセンサ本体4を、フッ素系樹脂からなる薄膜
5で被覆する。フッ素系樹脂は水素ガスを透過する特性
を具備している。薄膜5で被覆したセンサ本体4を、分
析対象の電気機器の絶縁油中にそのまま浸漬する。
The sensor main body 4 is constructed as described above, and in the present invention, the sensor main body 4 is coated with a thin film 5 made of fluororesin. Fluororesin has the property of permeating hydrogen gas. The sensor body 4 coated with the thin film 5 is immersed as it is in the insulating oil of the electrical equipment to be analyzed.

ここで薄膜5を透過してきた水素ガスに金属酸化物の薄
膜2が接触して反応すると、その薄膜2の表面抵抗が、
水素ガスの濃度に応じて変化する。
When the metal oxide thin film 2 comes into contact with the hydrogen gas that has passed through the thin film 5 and reacts, the surface resistance of the thin film 2 becomes
It changes depending on the concentration of hydrogen gas.

したがってこの表面抵抗を電極3間の抵抗として検知す
ることによって、水素ガスの濃度を知ることができるよ
うになる。
Therefore, by detecting this surface resistance as the resistance between the electrodes 3, the concentration of hydrogen gas can be determined.

なおここに使用できるフッ素系樹脂としては、4フッ化
エチレン−パーフロロアルキルビニル共重合物、4フッ
化エチレン−6フツ化プロピレン共重合物、4フッ化エ
チレン−エチレン共重合物、4フツ化エチレンなどが使
用できる。
The fluororesins that can be used here include tetrafluoroethylene-perfluoroalkylvinyl copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, and tetrafluoroethylene copolymer. Ethylene etc. can be used.

次にこの発明の実験例について説明する。厚さ15μm
、50mm平方のポリエチレンテレフタシー1−フィル
ムからなる基板1の表面に、IVD法により厚さ1.0
μmに金属酸化物であるSnO□の薄膜2を設け、この
薄膜2の表面にAuによって櫛状の電極3を形成して、
センサ本体4を構成した。そしてこれを厚さ1.0μm
の4フッ化エチレン−パーフロロアルキルビニル共重合
物からなる薄膜5で被覆した。
Next, an experimental example of this invention will be explained. Thickness 15μm
, 1.0 mm thick by IVD method on the surface of a substrate 1 made of a 50 mm square polyethylene terephthalate film.
A thin film 2 of SnO□, which is a metal oxide, is provided in μm, and a comb-shaped electrode 3 is formed with Au on the surface of this thin film 2.
A sensor main body 4 was constructed. And this is 1.0μm thick
It was coated with a thin film 5 made of a tetrafluoroethylene-perfluoroalkylvinyl copolymer.

第3図は前記のようにして製作したガスセンサを、水素
ガスが溶存している油中に浸漬して、そのときの水素ガ
ス濃度に対する抵抗変化率(水素ガスと反応した後の抵
抗値/反応前の初期の抵抗値)をグラフにした特性曲線
である。これによれば水素ガス濃度に対して抵抗変化率
は、はぼ直線的に変化していることが判明する。
Figure 3 shows the rate of resistance change (resistance value after reacting with hydrogen gas/reaction This is a characteristic curve that is a graph of the previous initial resistance value. According to this, it is clear that the resistance change rate changes approximately linearly with respect to the hydrogen gas concentration.

第4図は同じ池内の水素ガス濃度を、ガスクロマトグラ
フによって測定したときの測定値Aと、この発明による
ガスセンサによって測定したときの測定値(油中濃度換
算値)Bとの相関関係を示す特性曲線である。これによ
ると水素ガス濃度が50ppm以上のとき、両側定値A
、Bは互いにほぼ同じ値を呈するようになる。
Figure 4 shows the characteristics showing the correlation between the hydrogen gas concentration in the same pond, measured value A when measured by a gas chromatograph, and measured value B (concentration in oil converted value) when measured by the gas sensor according to the present invention. It is a curve. According to this, when the hydrogen gas concentration is 50 ppm or more, both sides constant value A
, B have almost the same value.

以上の結果、この発明によるガスセンサによって水素ガ
ス濃度を計測するとき、その濃度に対応−ζ − して感度よく抵抗が変化するとともに、これによる測定
値は、ガスクロマトグラフによる測定値とほぼ匹敵する
正確な値となることが理解される。
As a result of the above, when the hydrogen gas concentration is measured by the gas sensor according to the present invention, the resistance changes with high sensitivity corresponding to the concentration, and the measured value obtained by this method is accurate and almost comparable to the measured value by a gas chromatograph. It is understood that the value is

なお水素ガスを選択的に透過する物質としてポリイミド
樹脂がある。しかしこの種ポリイミド樹脂は水素ガスの
透過係数がフッ素系樹脂に比較して小さく、そのため反
応速度が遅い欠点がある。
Note that polyimide resin is a material that selectively permeates hydrogen gas. However, this type of polyimide resin has a disadvantage that the hydrogen gas permeability coefficient is smaller than that of fluororesin, and therefore the reaction rate is slow.

すなわちポリイミド(膜厚50μm)の透過係数(mΩ
・cm/d−8−■・Hg)が1.3であるのに対し、
4フッ化エチレン−パーフロロアルキルビニル共重合物
(膜厚75μm)では16.4フッ化エチレン−6フツ
化プロピレン共重合物(膜厚75μm)では111.4
フッ化エチレン−エチレン共重合物(膜厚38μm)で
は3.31.4フツ化エチレン(膜厚50μm)では8
.9であって、いずわもポリイミドよりも大きい。した
がってこの発明による方が水素ガスに迅速に反応するこ
とが理解されよう。
In other words, the permeability coefficient (mΩ) of polyimide (film thickness 50 μm)
・cm/d-8-■・Hg) is 1.3, whereas
16.4 for tetrafluoroethylene-perfluoroalkylvinyl copolymer (film thickness 75 μm); 111.4 for fluoroethylene-hexafluoropropylene copolymer (75 μm film thickness)
Fluorinated ethylene-ethylene copolymer (film thickness 38 μm): 3.31.4 Fluorinated ethylene (film thickness 50 μm): 8
.. 9, both of which are larger than polyimide. Therefore, it will be understood that the method according to the present invention reacts more quickly to hydrogen gas.

(発明の効果) 以上詳述したようにこの発明によれば、油中に溶存する
水素ガス濃度の測定を、その測定対象の油の中に単に浸
漬するだけの簡単な操作で可能となるし、またポリイミ
ド膜を使用する場合よりも、反応速度が早まるといった
効果を奏する。
(Effects of the Invention) As detailed above, according to the present invention, it is possible to measure the concentration of hydrogen gas dissolved in oil with a simple operation of simply immersing it in the oil to be measured. Moreover, the reaction rate is faster than when using a polyimide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す断面図、第2図は同じ
くセンサ本体の正面図、第3図は抵抗変化率を示す特性
曲線図、第4図は測定値の相関関係を示す特性曲線図で
ある。 1・・・基板、2・・・薄膜、3・・・電極、4・・・
センサ本体、5・・・薄膜、
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a front view of the sensor body, Fig. 3 is a characteristic curve diagram showing the rate of change in resistance, and Fig. 4 is a characteristic curve showing the correlation of measured values. It is a curve diagram. 1... Substrate, 2... Thin film, 3... Electrode, 4...
Sensor main body, 5... thin film,

Claims (1)

【特許請求の範囲】[Claims] 絶縁性の基板の表面に、金属酸化物の薄膜を設け、その
表面に互いに向かい合う一対の電極を形成することによ
ってセンサ本体を構成し、前記センサ本体の表面を、フ
ッ素系樹脂からなる薄膜により被覆してなる油中ガスセ
ンサ。
A sensor body is constructed by providing a thin film of metal oxide on the surface of an insulating substrate, forming a pair of electrodes facing each other on the surface, and covering the surface of the sensor body with a thin film made of fluororesin. Gas sensor in oil.
JP25130987A 1987-10-05 1987-10-05 Hydrogen gas sensor dissolved in oil Expired - Fee Related JPH0781972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25130987A JPH0781972B2 (en) 1987-10-05 1987-10-05 Hydrogen gas sensor dissolved in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25130987A JPH0781972B2 (en) 1987-10-05 1987-10-05 Hydrogen gas sensor dissolved in oil

Publications (2)

Publication Number Publication Date
JPH0194253A true JPH0194253A (en) 1989-04-12
JPH0781972B2 JPH0781972B2 (en) 1995-09-06

Family

ID=17220890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25130987A Expired - Fee Related JPH0781972B2 (en) 1987-10-05 1987-10-05 Hydrogen gas sensor dissolved in oil

Country Status (1)

Country Link
JP (1) JPH0781972B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242644A (en) * 2005-03-01 2006-09-14 Tohoku Univ Dissolved hydrogen sensor using metal thin film
JP2010223816A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Element and sensor for detecting hydrogen
CN109459560A (en) * 2018-12-27 2019-03-12 日新电机(无锡)有限公司 A kind of high-voltage parallel capacitor device and power equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242644A (en) * 2005-03-01 2006-09-14 Tohoku Univ Dissolved hydrogen sensor using metal thin film
JP4714825B2 (en) * 2005-03-01 2011-06-29 国立大学法人東北大学 Dissolved hydrogen sensor using metal thin film
JP2010223816A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Element and sensor for detecting hydrogen
CN109459560A (en) * 2018-12-27 2019-03-12 日新电机(无锡)有限公司 A kind of high-voltage parallel capacitor device and power equipment

Also Published As

Publication number Publication date
JPH0781972B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US4549134A (en) Moisture probe and technique
KR970705022A (en) Method of measuring gas concentration and micro-fabricated sensor
JPH06508432A (en) Electrical analysis of liquids and detection elements used for it
JPH0194253A (en) Gas-in-oil sensor
EP4166940A1 (en) Gas sensor, method of making the sensor and method of using the sensor
GB2142147A (en) Gas sensor
JPH0194254A (en) Gas-in-oil sensor
JPH01456A (en) Gas sensor in oil
JPH0194255A (en) Gas-in-oil sensor
JPH01455A (en) Gas sensor in oil
US4990236A (en) Thin film moisture sensing element
JPS6312252B2 (en)
JP2007271287A (en) Detection sensor of oxidation stress substance
CA1316715C (en) Thin film moisture sensing elements and process for the manufacture thereof
RU2086971C1 (en) Sensor structure
RU2772443C1 (en) Trace ammonia sensor
RU2797767C1 (en) Trace ammonia sensor
KR102557583B1 (en) Oxide film etch rate monitoring apparatus and monitoring method thereof
JP4141098B2 (en) Gas sensor
JPH1078403A (en) Gassensor
JPS6318256A (en) Measurement of dissolved substance
RU2607733C1 (en) Semiconductor gas sensor of ammonia trace impurities
JPH04131756A (en) Semiconductor gas sensor and gas concentration measuring method
Baccar et al. New fluoride-sensitive membranes prepared through an ion implantation process
RU2641016C2 (en) Semiconductor sensor of ammonia trace substances

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees