JP2007271287A - Detection sensor of oxidation stress substance - Google Patents

Detection sensor of oxidation stress substance Download PDF

Info

Publication number
JP2007271287A
JP2007271287A JP2006093756A JP2006093756A JP2007271287A JP 2007271287 A JP2007271287 A JP 2007271287A JP 2006093756 A JP2006093756 A JP 2006093756A JP 2006093756 A JP2006093756 A JP 2006093756A JP 2007271287 A JP2007271287 A JP 2007271287A
Authority
JP
Japan
Prior art keywords
oxidative stress
insulating film
electrodes
substrate
stress substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006093756A
Other languages
Japanese (ja)
Inventor
Takasato Isoda
隆聡 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2006093756A priority Critical patent/JP2007271287A/en
Publication of JP2007271287A publication Critical patent/JP2007271287A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection sensor of an oxidation stress substance having a simple structure, capable of miniaturizing the whole of a system, capable of being manufactured by utilizing a semiconductor manufacturing technique, excellent in mass productivity, usable repeatedly, excellent in resources saving properties, capable of precisely detecting the oxidation stress substance such as nitrogen monoxide or the like of an extremely small amount of about 1 ppm contained in a liquid to be inspected in an extremely short time and excellent in reliability and workability. <P>SOLUTION: The detection sensor of the oxidation stress substance includes a substrate, a pair of the electrodes arranged on the substrate at a predetermined interval and the insulating film applied to the surfaces of a pair of the electrodes and the surface of the substrate between a pair of the electrodes and coming into contact with the liquid to be inspected containing body fluids such as blood, lymph, cytoplasm substrate, etc. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、血液、リンパ液、細胞質基質などの体液を含む被検体液に含まれる一酸化窒素などの酸化ストレス物質の量を電圧変化又は電流変化に基づいて検知することのできる酸化ストレス物質検知センサに関する。   The present invention relates to an oxidative stress substance detection sensor capable of detecting the amount of an oxidative stress substance such as nitric oxide contained in a sample fluid including a body fluid such as blood, lymph, and cytoplasm based on a voltage change or a current change. About.

従来、マイクロマシン技術の一種として、微量液体の分析、反応、ならびに分離操作に利用する液体マイクロシステム(fluid MEMS:micro electro
mechanical system)が知られている。
液体マイクロシステムはマイクロポンプ、ミキサ、バルブ、リアクタ、セパレータ、センサなどの各要素を基板(チップを含む)上に実装し、パッケージ化したものであり、ポストゲノム研究およびプロテオーム研究の発展に欠かせないツールとして期待されている。
このような液体マイクロシステムにおける被検体液の化学変化、あるいは物理変化を計測する手段として、例えば(特許文献1)には、「光が所定パターンで照射される基板と、前記基板上に所定間隔をおいて配置され血液や口腔液、DNA含有液などの被検体液と接触する電極対と、を備えていることを特徴とする被検体液特性検知センサ」が開示されている。
特開2005−90961号公報
Conventionally, as a kind of micromachine technology, a liquid microsystem (fluid MEMS) used for analysis, reaction, and separation operation of a minute amount of liquid.
mechanical system) is known.
A liquid microsystem is a package of micropumps, mixers, valves, reactors, separators, sensors, etc. mounted on a substrate (including a chip) and packaged. Indispensable for the development of post-genome research and proteomic research. Not expected as a tool.
As a means for measuring the chemical change or physical change of the analyte liquid in such a liquid microsystem, for example, (Patent Document 1) includes “a substrate irradiated with light in a predetermined pattern and a predetermined interval on the substrate” And a pair of electrodes in contact with an analyte liquid such as blood, oral fluid, and DNA-containing liquid, and a liquid analyte detection sensor ”is disclosed.
JP 2005-90961 A

しかしながら、上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)の被検体液特性検知センサは、本願出願人らが出願したものであり、電極対に被検体液を接触させると、被検体液の濃度あるいは照射される光強度に応じて、抵抗あるいは電圧変化が電極対に接続したデジタルマルチメータなどの検出部にて検出でき、電解質溶液、あるいは血液、酵素、タンパク質、細胞・細菌などを含んだ非電解質液体の被検体液を定量・定性分析でき、被検体液中の物質濃度等を極微量の被検体液を用い極短時間で検知可能なものであるが、検出できる物質濃度の限界が100ppm程度で
あり、さらなる検出感度の向上が強く望まれていた。
(2)また、Cu等の安価な金属を基板上に積層させ、これをパターニングすることでセンサ電極を作製しており、センサ表面(電極)が被検体液に直接接することで電圧変化を検出するものであるため、測定毎に電極表面が劣化してしまい、繰り返し使用には向かず、使い捨てで省資源性に欠けるという課題もあった。
However, the above conventional techniques have the following problems.
(1) The analyte liquid characteristic detection sensor of (Patent Document 1) was filed by the applicants of the present application. When the analyte liquid is brought into contact with an electrode pair, the concentration of the analyte liquid or the intensity of light irradiated. Depending on the condition, resistance or voltage change can be detected by a detection unit such as a digital multimeter connected to the electrode pair, and the sample solution is an electrolyte solution or a non-electrolyte liquid containing blood, enzymes, proteins, cells, bacteria, etc. Quantitative and qualitative analysis is possible, and the substance concentration in the sample liquid can be detected in a very short time using a very small amount of the sample liquid, but the limit of the detectable substance concentration is about 100 ppm, and further detection Improvement of sensitivity was strongly desired.
(2) In addition, an inexpensive metal such as Cu is laminated on the substrate and patterned to produce a sensor electrode, and the sensor surface (electrode) is in direct contact with the analyte liquid to detect a voltage change. As a result, the electrode surface deteriorates at every measurement, which is not suitable for repeated use, and it is disposable and lacks resource saving.

本発明は上記要望に応えるもので、構造が簡単でシステム全体を小型化することができ、半導体製造技術を利用して製造することができ量産性に優れ、繰り返し使用することが可能で省資源性に優れ、被検体液中に含まれる1ppm程度の極微量の一酸化窒素などの酸化ストレス物質を極短時間で精度よく検知可能な信頼性、作業性に優れる酸化ストレス物質検知センサの提供を目的とする。   The present invention responds to the above-mentioned demands. The structure is simple, the entire system can be miniaturized, it can be manufactured using semiconductor manufacturing technology, is excellent in mass productivity, can be used repeatedly, and is resource-saving. Providing an oxidative stress substance detection sensor that excels in reliability, can detect oxidative stress substances such as nitric oxide, such as a very small amount of about 1 ppm contained in a sample liquid, in an extremely short time, and has excellent workability. Objective.

上記課題を解決するために本発明の酸化ストレス物質検知センサは、以下の構成を有している。
本発明の請求項1に記載の酸化ストレス物質検知センサは、基板と、前記基板上に2つの電極が離間して配置された電極対と、前記電極の表面及び前記電極間の前記基板の表面を被覆し血液、リンパ液、細胞質基質などの体液を含む被検体液と接触する絶縁膜と、を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)電極の表面及び電極間の基板の表面が絶縁膜で被覆されていることにより、絶縁膜上に滴下した微量の血液、リンパ液、細胞質基質などの体液を含む被検体液中に含まれる一酸化窒素などの酸化ストレス物質の量に応じて変化する電極間の電圧値又は電流値を短時間で精度よく検出することができ、被検体を提供した被験者の生理状態を簡便に判定することができる。
(2)電極表面が絶縁膜で被覆されていることにより、電極表面を化学的に安定させると共に、機械的強度を高めることができ、耐久性に優れ化学センサとして再現性よく繰り返し使用が可能で省資源性に優れる。
(3)構造が簡単な電極対を半導体作製技術によって基板上に高密度に集積させることができ、小型化が容易で量産性に優れ、電気回路や半導体集積回路などに容易に組み込むことができ、検出した化学的な情報を電気信号として短時間で処理することができ、高度で複雑な分析が可能な検知システムを構築することもできる。
(4)電極表面が絶縁膜で被覆されていることにより、絶縁膜上に被検体液を滴下或いは塗布するだけで、絶縁膜と被検体液の界面に電荷の分離が発生し、被検体液に含まれる電解効果の大きな一酸化窒素などの酸化ストレス物質(ラジカル活性種)を検出することができるので、1〜10μLの極微量な被検体液で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、被検体液の採取や取り扱いが容易で作業性に優れる。
In order to solve the above problems, the oxidative stress substance detection sensor of the present invention has the following configuration.
The oxidative stress substance detection sensor according to claim 1 of the present invention includes a substrate, an electrode pair in which two electrodes are spaced apart on the substrate, a surface of the electrode, and a surface of the substrate between the electrodes. And an insulating film that comes into contact with an analyte fluid containing body fluid such as blood, lymph, and cytoplasmic substrate.
This configuration has the following effects.
(1) Since the surface of the electrode and the surface of the substrate between the electrodes are covered with an insulating film, it is contained in a sample liquid containing a small amount of blood, lymph, cytoplasmic substrate, etc. dripped onto the insulating film. It is possible to accurately detect the voltage value or current value between the electrodes that changes according to the amount of oxidative stress substance such as nitric oxide in a short time, and to easily determine the physiological state of the subject who provided the subject. Can do.
(2) Since the electrode surface is coated with an insulating film, the electrode surface can be chemically stabilized and mechanical strength can be enhanced, and it can be used repeatedly as a chemical sensor with excellent durability and reproducibility. Excellent resource saving.
(3) Electrode pairs with a simple structure can be integrated on a substrate with high density by a semiconductor fabrication technology, and can be easily miniaturized and excellent in mass productivity, and can be easily incorporated into electrical circuits and semiconductor integrated circuits. The detected chemical information can be processed as electrical signals in a short time, and a detection system capable of advanced and complicated analysis can be constructed.
(4) Since the electrode surface is covered with an insulating film, the separation of electric charges occurs at the interface between the insulating film and the sample liquid just by dropping or applying the sample liquid on the insulating film, and the sample liquid Can detect oxidative stress substances (radical active species) such as nitric oxide, which have a large electrolytic effect, so that it can be measured with a very small amount of analyte liquid of 1 to 10 μL. Since it is not necessary to perform any pre-treatment or the like, the sample liquid can be easily collected and handled, and the workability is excellent.

ここで、絶縁膜の表面に被検体液を滴下或いは塗布する等して接触させると、絶縁膜と被検体液の界面に電荷の分離が生じ、溶液側と絶縁膜側は等しい数の極性の異なる電荷で帯電状態になる。その結果、絶縁膜が誘導分極し、電極間と接している絶縁膜内側にも電荷が生じる。電極間に電圧を負荷させると、この電荷が電子の流れを加速するため、電極間の電流値や電圧値に変化が生じる。被検体液中に含まれる一酸化窒素などの酸化ストレス物質(ラジカル活性種)は、この誘導分極効果が大きいため、酸化ストレス物質の濃度に比例した電流値や電圧値の変化を検出することができる。   Here, when the sample liquid is brought into contact with the surface of the insulating film by dropping or applying it, charge separation occurs at the interface between the insulating film and the sample liquid, and the solution side and the insulating film side have the same number of polarities. Charged with different charges. As a result, the insulating film is inductively polarized and charges are generated inside the insulating film in contact with the electrodes. When a voltage is applied between the electrodes, this charge accelerates the flow of electrons, so that a current value or a voltage value between the electrodes changes. Oxidative stress substances (radical active species) such as nitric oxide contained in the sample liquid have a large inductive polarization effect. Therefore, it is possible to detect a change in current value or voltage value proportional to the concentration of the oxidative stress substance. it can.

基板の材質としては分析する被検体液によって侵されず、基板上に電極対及び絶縁膜を形成することができ、電極対を電気的に絶縁できるものであればよく、例えば、各種の合成樹脂、ガラス、セラミックスなどが好適に用いられる。特にガラス等の透明な材質を用いた場合は、顕微鏡などによる被検体液の観察も行うことができ汎用性に優れる。また、基板の形状は、矩形状、多角形状、円盤状などの種々な形状に形成することができる。
電極の素材としては、例えばPt、Au、Ag、Fe、Ni、Co、Cr、Cu、Al、Ti、Mn、Zn等の金属、ステンレス、ブリキ等の合金などを採用することができる。電極は、基板上に化学蒸着して形成してもよいし、あらかじめ基板上に作成した金属薄膜をドライエッチングやウエットエッチングでパターニングして形成してもよい。また、電極対の各々の電極は同種の金属を用いてもよいし、異種金属を組み合わせてもよい。尚、ガラス基板にCrを蒸着した上からAu電極を形成することにより、Crがバインダとなって密着性を向上させることができる。
As the material of the substrate, any material can be used as long as it can form an electrode pair and an insulating film on the substrate without being affected by the analyte liquid to be analyzed, and can electrically insulate the electrode pair. Glass, ceramics, etc. are preferably used. In particular, when a transparent material such as glass is used, the sample liquid can be observed with a microscope or the like, and the versatility is excellent. The substrate can be formed in various shapes such as a rectangular shape, a polygonal shape, and a disk shape.
As a material for the electrode, for example, a metal such as Pt, Au, Ag, Fe, Ni, Co, Cr, Cu, Al, Ti, Mn, Zn, an alloy such as stainless steel, tin plate, or the like can be used. The electrode may be formed by chemical vapor deposition on the substrate, or may be formed by patterning a metal thin film previously formed on the substrate by dry etching or wet etching. Moreover, the same kind of metal may be used for each electrode of the electrode pair, or different kinds of metals may be combined. In addition, by forming an Au electrode after depositing Cr on a glass substrate, Cr can be a binder to improve adhesion.

尚、1枚の基板上には1乃至複数の電極対を形成することがき、その配置は任意に選択することができる。また、電極対の各々の電極の形状は限定されるものではないが、三角形状、矩形状、半円形状等に形成することができる。また、電極対は非対称であっても、大きさが異なっていてもよく、辺部同士が対向するように配置される。
対向する2つの電極の辺部間の間隔は、被検体液や電極の種類などにもよるが、5μm〜10mm、好ましくは10μm〜5mmの範囲とすることが好ましい。辺部間の間隔が10μmより狭くなるにつれ、被検体液中の酸化ストレス物質の濃度に対する電流値等の電気特性の相関が小さくなり、応答感度が低下する傾向が見られ、間隔が5mmより広くなるにつれ、検出感度が低下し易くなり、データの再現性に欠ける傾向が見られるためである。特に電極の辺部間の間隔が5μmより狭くなるか10mmより広くなるにつれ、信号ノイズが大きくなり、電流値や電圧値の変化を正確に検出することが困難になる傾向があり、いずれも好ましくない。
One or a plurality of electrode pairs can be formed on one substrate, and the arrangement can be arbitrarily selected. In addition, the shape of each electrode of the electrode pair is not limited, but can be formed in a triangular shape, a rectangular shape, a semicircular shape, or the like. The electrode pairs may be asymmetrical or different in size, and are arranged so that the sides face each other.
The interval between the sides of the two electrodes facing each other depends on the analyte liquid, the type of electrode, and the like, but is preferably in the range of 5 μm to 10 mm, preferably 10 μm to 5 mm. As the distance between the side portions becomes narrower than 10 μm, the correlation between the electrical characteristics such as the current value with respect to the concentration of the oxidative stress substance in the sample liquid decreases, and the response sensitivity tends to decrease, and the distance is wider than 5 mm. This is because the detection sensitivity tends to be lowered and the data reproducibility tends to be lacking. In particular, as the distance between the sides of the electrode becomes narrower than 5 μm or wider than 10 mm, the signal noise increases, and it tends to be difficult to accurately detect changes in the current value and voltage value. Absent.

絶縁膜は電極の機械強度を保持するため、基板全面を被覆することが好ましいが、少なくとも電極の表面を被覆していればよい。
絶縁膜の膜厚は材質によって異なるが、被検体液と電極対の間を確実に絶縁でき、センサとしての応答性を保つことができる範囲で選択する必要がある。絶縁膜の膜厚が薄くなるにつれ、絶縁膜の効果が不十分となりセンサの感度が低下する傾向があり、厚くなるにつれ、被検体液中の酸化ストレス物質濃度が変化しても電圧値や電流値に変化が見られなくなりセンサの応答性が消失する傾向があり、いずれも好ましくない。例えば、フルオロオレフィンビニルエーテール重合体(分子量分布100〜1000)であれば0.2μm〜0.8μmが好ましく、ノボラック系フェノール樹脂(分子量分布1000〜10000)であれば、5μm〜20μmが好ましい。
The insulating film preferably covers the entire surface of the substrate in order to maintain the mechanical strength of the electrode. However, it is sufficient that the insulating film covers at least the surface of the electrode.
Although the thickness of the insulating film varies depending on the material, it is necessary to select it within a range in which the analyte liquid and the electrode pair can be reliably insulated and the responsiveness as a sensor can be maintained. As the film thickness of the insulating film decreases, the effect of the insulating film becomes insufficient and the sensitivity of the sensor tends to decrease.As the film thickness increases, the voltage value and current are changed even if the concentration of the oxidative stress substance in the sample liquid changes. There is a tendency that the change in the value is not observed and the responsiveness of the sensor is lost. For example, 0.2 μm to 0.8 μm is preferable for a fluoroolefin vinyl ether polymer (molecular weight distribution 100 to 1000), and 5 μm to 20 μm is preferable for a novolac phenol resin (molecular weight distribution 1000 to 10,000).

請求項2に記載の酸化ストレス物質検知センサは、前記絶縁膜が、有機薄膜層で形成された構成を有している。
この構成により、請求項1の作用に加え、以下のような作用を有する。
(1)絶縁膜が、有機薄膜層で形成されていることにより、被検体液を滴下或は塗布する等して接触させると界面に電荷の分離が生じ、溶液側と絶縁膜側は極性の異なる電荷で等しい電荷数で帯電状態になる。その結果、絶縁膜が誘導分極し、電極間と接している絶縁膜内側にも電荷が生じる。電極間に電圧を負荷させると、この電荷が電極間の電子の流れを加速するため、電極間の電流値や電圧値に変化が生じるが、有機薄膜表面には高分子末端あるいは分岐末端の化学構造に由来する各種官能基(カルボキシル基、ケトン基、水酸基、アミノ基、エーテル基等)ならびに極性基(フッ素、塩素、臭素等)が存在するため、この分極現象が大きく、検出感度を向上させることができる。
ここで、絶縁膜としては前述のフルオロオレフィンビニルエーテール重合体やノボラック系フェノール樹脂等が好適に用いられる。
尚、被検体液中の化学種によっては、有機薄膜表面の各種官能基と特異的な分極を生じる。そのため応答感度の高い酸化ストレス物質検知センサの作製が可能となる。
The oxidative stress substance detection sensor according to claim 2 has a configuration in which the insulating film is formed of an organic thin film layer.
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) Since the insulating film is formed of an organic thin film layer, when the analyte liquid is brought into contact by dropping or coating, charge separation occurs at the interface, and the solution side and the insulating film side are polar. It becomes charged with the same number of charges with different charges. As a result, the insulating film is inductively polarized and charges are generated inside the insulating film in contact with the electrodes. When a voltage is applied between the electrodes, this charge accelerates the flow of electrons between the electrodes, causing a change in the current value or voltage value between the electrodes. Since various functional groups derived from the structure (carboxyl group, ketone group, hydroxyl group, amino group, ether group, etc.) and polar groups (fluorine, chlorine, bromine, etc.) exist, this polarization phenomenon is large and improves detection sensitivity. be able to.
Here, as the insulating film, the above-mentioned fluoroolefin vinyl ether polymer, novolac phenol resin, or the like is preferably used.
Depending on the chemical species in the sample liquid, specific polarization occurs with various functional groups on the surface of the organic thin film. Therefore, it is possible to produce an oxidative stress substance detection sensor with high response sensitivity.

請求項3に記載の発明は、請求項1又は2に記載の酸化ストレス物質検知センサであって、前記電極対に接続され前記電極間の電圧変化又は電流変化を検出する検出部を備えた構成を有している。
この構成により、請求項1又は2の作用に加え、以下のような作用を有する。
(1)電極対に接続された検出部を備えているので、電極間の電圧変化又は電流変化を簡便に検出することができ、その測定値に基づいて直ちに被検体液中の酸化ストレス物質濃度を求めることができる。
A third aspect of the present invention is the oxidative stress substance detection sensor according to the first or second aspect, comprising a detection unit that is connected to the electrode pair and detects a voltage change or a current change between the electrodes. have.
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1) Since the detection unit connected to the electrode pair is provided, the voltage change or current change between the electrodes can be easily detected, and the concentration of the oxidative stress substance in the sample liquid is immediately determined based on the measured value. Can be requested.

ここで、検出部としては、電極間に生じる微小電流値あるいは電圧値を測定可能な種々の測定装置を用いることができ、例えば、電位差計、電流計、電圧計などの機能を有したテスターあるいはデジタルマルチメータ等の測定装置、ホイーストンブリッジ回路が組み込まれた測定装置、前記機能を有するデータロガー装置等を用いることができる。また、A/Dコンバータ等に直接組み込んで、電流あるいは電圧変化をアナログ信号からデジタル信号に変換して測定してもよい。電極対から得られる信号は測定装置にて直接測定できるが、増幅回路等で増幅してから測定したりノイズフィルターを通して信号処理したりすることができ、データの信頼性を高めることができる。   Here, as the detection unit, various measuring devices capable of measuring a minute current value or a voltage value generated between the electrodes can be used, for example, a tester having functions such as a potentiometer, an ammeter, a voltmeter, or the like. A measuring device such as a digital multimeter, a measuring device incorporating a Wheatstone bridge circuit, a data logger device having the above function, or the like can be used. Alternatively, it may be directly incorporated into an A / D converter or the like, and a current or voltage change may be converted from an analog signal to a digital signal and measured. A signal obtained from the electrode pair can be directly measured by a measuring device, but can be measured after being amplified by an amplifier circuit or the like, or can be processed through a noise filter, thereby improving data reliability.

請求項4に記載の発明は、請求項1乃至3の内いずれか1項に記載の酸化ストレス物質検知センサであって、前記検出部が検出した検出データに基づいて前記被検体液に含まれる酸化ストレス物質の量を検知して生理状態を判定する判定部を備えていることを特徴とするに記載のされた構成を有している。
この構成により、請求項1乃至3の内いずれか1項の作用に加え、以下のような作用を有する。
(1)検出部が検出した検出データに基づいて被検体液に含まれる酸化ストレス物質の量を検知して生理状態を判定する判定部を有するので、短時間で即座に被検体液を提出した被験者の生理状態を知ることができ、取扱い性に優れる。
A fourth aspect of the present invention is the oxidative stress substance detection sensor according to any one of the first to third aspects, wherein the oxidative stress substance detection sensor is included in the analyte liquid based on detection data detected by the detection unit. It has the structure described in that it comprises a determination unit for detecting the amount of the oxidative stress substance and determining the physiological state.
With this configuration, in addition to the operation of any one of claims 1 to 3, the following operation is provided.
(1) Since there is a determination unit that detects the amount of oxidative stress substance contained in the sample liquid based on the detection data detected by the detection unit and determines the physiological state, the sample liquid is immediately submitted in a short time It is possible to know the physiological state of the subject and is excellent in handling.

ここで、判定部に予め酸化ストレス物質の濃度と電圧値若しくは電流値との関係を記憶させておき、その標準データと検出データ(測定データ)を比較することにより、確実かつ迅速な判定を行うことができる。
また、記憶部を設けて検出データを継続的或いは定期的に記憶させておくことにより、被験者の生理状態の変化や進行を管理することができ汎用性に優れる。
Here, the determination unit stores in advance the relationship between the concentration of the oxidative stress substance and the voltage value or current value, and compares the standard data with the detection data (measurement data), thereby making a reliable and quick determination. be able to.
Further, by providing a storage unit and storing the detection data continuously or periodically, it is possible to manage the change and progress of the physiological state of the subject, which is excellent in versatility.

以上のように、本発明の酸化ストレス物質検知センサによれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、以下のような効果を有する。
(1)電極間の電圧値又は電流値を測定するだけで、短時間で被検体液中に含まれる一酸化窒素などの極微量な酸化ストレス物質の量を精度よく検出することができ、被験者の生理状態を簡便に判定することができる信頼性、作業性に優れた酸化ストレス物質検知センサを提供することができる。
As described above, according to the oxidative stress substance detection sensor of the present invention, the following advantageous effects can be obtained.
According to invention of Claim 1, it has the following effects.
(1) By measuring the voltage value or the current value between the electrodes, it is possible to accurately detect an extremely small amount of an oxidative stress substance such as nitric oxide contained in the sample liquid in a short time. Therefore, it is possible to provide an oxidative stress substance detection sensor excellent in reliability and workability that can easily determine the physiological state.

請求項2に記載の発明によれば、請求項1の効果に加え、以下のような効果を有する。
(1)有機薄膜層で形成された絶縁膜を有することにより、絶縁膜と被検体液の界面で生じる分極現象が大きくなり帯電量が増加する。この結果誘導分極が起り、電極と接している絶縁膜内側にも電荷が生じるので、電極間に電圧を負荷することによって電荷が電子の流れを加速し、電極間の電流値や電圧値の変化を精度よく検出することが可能となり、また被検体液中の化学種によっては、有機薄膜表面の各種官能基と特異的な分極を生じるため、応答感度の高い信頼性に優れた酸化ストレス物質検知センサを提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1, it has the following effects.
(1) By having an insulating film formed of an organic thin film layer, the polarization phenomenon generated at the interface between the insulating film and the sample liquid increases, and the amount of charge increases. As a result, inductive polarization occurs and charges are also generated inside the insulating film in contact with the electrodes. By applying a voltage between the electrodes, the charge accelerates the flow of electrons and changes in the current value and voltage value between the electrodes. In addition, depending on the chemical species in the analyte liquid, specific polarization occurs with various functional groups on the surface of the organic thin film, which makes it possible to detect oxidative stress substances with high response sensitivity and excellent reliability. A sensor can be provided.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、以下のような効果を有する。
(1)電極対に接続された検出部により、電極間の電圧変化又は電流変化を簡便に検出することができ、その測定値に基づいて直ちに被検体液中の酸化ストレス物質濃度を求めることができる作業性に優れた酸化ストレス物質検知センサを提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2, it has the following effects.
(1) The change in voltage or current between the electrodes can be easily detected by the detection unit connected to the electrode pair, and the concentration of the oxidative stress substance in the sample liquid can be immediately obtained based on the measured value. It is possible to provide an oxidative stress substance detection sensor excellent in workability.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1項の効果に加え、以下のような効果を有する。
(1)検出部で検出した検出データに基づいて判定部が生理状態を判定することにより、煩雑な作業を行うことなく、短時間で即座に被験者の生理状態を知ることができる取扱い性、信頼性に優れた酸化ストレス物質検知センサを提供することができる。
According to invention of Claim 4, in addition to the effect of any one of Claims 1 thru | or 3, it has the following effects.
(1) The determination unit determines the physiological state based on the detection data detected by the detection unit, so that the physiological state of the subject can be immediately known in a short time without performing complicated work. It is possible to provide an oxidative stress substance detection sensor excellent in properties.

(実施の形態1)
本発明の実施の形態1における酸化ストレス物質検知センサについて、以下図面を参照しながら説明する。
図1(a)は実施の形態1における酸化ストレス物質検知センサを示す平面図であり、図1(b)は図1(a)のA−A線矢視断面模式図である。
図1中、1は本発明の実施の形態1における酸化ストレス物質検知センサ、2は各種の合成樹脂、ガラス、セラミックスなどで形成した酸化ストレス物質検知センサ1の基板、3は基板2の上面に略半円形状の2つの電極4が辺部4a同士で対向するように離間して配置された酸化ストレス物質検知センサ1の電極対、4bは各々の電極4の円弧状の側部に延設された電極対3の端子部、5は電極対3を含んで基板2の全面を被覆したフルオロオレフィンビニルエーテール重合体やノボラック系樹脂などの絶縁膜、6は端子部4bで電極対3に電気的に接続され、電極4間の電圧値や電流値等を検出するデジタルマルチメータなどの検出部、7は検出部6に接続され検出部6が検出した検出データに基づいて被検体液に含まれる酸化ストレス物質の量を検知して生理状態を判定する判定部である。
(Embodiment 1)
An oxidative stress substance detection sensor according to Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1A is a plan view showing an oxidative stress substance detection sensor according to Embodiment 1, and FIG. 1B is a schematic cross-sectional view taken along line AA in FIG.
In FIG. 1, reference numeral 1 denotes an oxidative stress substance detection sensor according to Embodiment 1 of the present invention, 2 denotes a substrate of the oxidative stress substance detection sensor 1 formed of various synthetic resins, glass, ceramics, etc., 3 denotes an upper surface of the substrate 2. The electrode pair of the oxidative stress substance detection sensor 1, which is arranged so that two substantially semicircular electrodes 4 are opposed to each other at the side portions 4 a, 4 b extend to the arc-shaped side portions of the respective electrodes 4. The terminal portion 5 of the electrode pair 3 is an insulating film such as a fluoroolefin vinyl ether polymer or a novolac resin covering the entire surface of the substrate 2 including the electrode pair 3, and 6 is an electrode pair 3 by the terminal portion 4 b. A detection unit such as a digital multimeter that is electrically connected to detect a voltage value or a current value between the electrodes 4, and 7 is connected to the detection unit 6, and is applied to the sample liquid based on detection data detected by the detection unit 6. Contained oxidative stress A determination unit for determining physiological condition by detecting the amount of quality.

図1において、基板2の材質は、本実施の形態に限定されるものではなく、分析する被検体液によって侵されず、基板2上に電極対3及び絶縁膜5を形成することができ、電極対3を電気的に絶縁できるものであればよい。特にガラス等の透明な材質を用いた場合は、顕微鏡などによる被検体液の観察も行うことができ汎用性に優れる。また、基板2の形状は、矩形状以外に多角形状、円盤状などの種々な形状に形成することができる。
本実施の形態では、基板2にCrを蒸着した上からAuの電極4を形成することにより、Crをバインダとして電極4と基板2の密着性を向上させている。
In FIG. 1, the material of the substrate 2 is not limited to the present embodiment, and the electrode pair 3 and the insulating film 5 can be formed on the substrate 2 without being affected by the analyte liquid to be analyzed. Any electrode that can electrically insulate the electrode pair 3 may be used. In particular, when a transparent material such as glass is used, the sample liquid can be observed with a microscope or the like, and the versatility is excellent. Moreover, the shape of the board | substrate 2 can be formed in various shapes, such as polygonal shape and disk shape other than rectangular shape.
In the present embodiment, the adhesion of the electrode 4 and the substrate 2 is improved by using Cr as a binder by forming the Au electrode 4 after depositing Cr on the substrate 2.

対向する2つの電極4の辺部4a間の間隔は、被検体液や電極4の種類などにもよるが、1μm〜10mmの範囲に形成した。辺部4a間の間隔が1μmより狭くなるにつれ、被検体液中の酸化ストレス物質の濃度に対する電流値等の電気特性の相関が小さくなり、応答感度が低下し易くなる傾向があり、間隔が10mmより長くなるにつれ、検出感度が低下し易くなり、データの再現性に欠ける傾向があることがわかったためである。
尚、説明の都合上、一対の電極対3のみを図示したが、基板2上には1乃至複数の電極対3を形成することがき、その配置は任意に選択することができる。また、電極対の各々の電極の形状は限定されるものではないが、三角形状、矩形状、半円形状等に形成することができる。尚、電極対は非対称であっても、大きさが異なっていてもよく、辺部同士が対向するように配置される。また、本実施の形態では各々の電極4の側部から延設された2本の端子部4bを略L字型に形成し、基板2の一端部から取り出したが、これに限定されるものではなく、端子部4bの取り出し位置や取り出し方向は任意に選択することができる。
The interval between the side portions 4a of the two electrodes 4 facing each other was formed in a range of 1 μm to 10 mm, depending on the sample liquid and the type of the electrode 4. As the distance between the side portions 4a becomes narrower than 1 μm, the correlation between the electrical characteristics such as the current value with respect to the concentration of the oxidative stress substance in the sample liquid decreases, and the response sensitivity tends to decrease, and the distance is 10 mm. This is because it has been found that the detection sensitivity tends to decrease as the length increases, and the reproducibility of data tends to be lacking.
For convenience of explanation, only a pair of electrode pairs 3 is shown, but one or a plurality of electrode pairs 3 can be formed on the substrate 2, and the arrangement thereof can be arbitrarily selected. In addition, the shape of each electrode of the electrode pair is not limited, but can be formed in a triangular shape, a rectangular shape, a semicircular shape, or the like. The electrode pairs may be asymmetrical or different in size, and are arranged so that the sides face each other. Further, in the present embodiment, the two terminal portions 4b extending from the side portions of the respective electrodes 4 are formed in a substantially L shape and taken out from one end portion of the substrate 2. However, the present invention is not limited to this. Instead, the take-out position and take-out direction of the terminal portion 4b can be arbitrarily selected.

本実施の形態では、基板2の全面を絶縁膜5で被覆したが、絶縁膜5は少なくとも電極4の表面を被覆していればよい。
絶縁膜5の膜厚は材質によって異なるが、被検体液と電極対3の間を確実に絶縁でき、センサとしての応答性を保つことができる範囲で選択する必要がある。絶縁膜5の膜厚が薄くなるにつれ、絶縁膜5の効果が不十分となりセンサの感度が低下する傾向があり、厚くなるにつれ、被検体液中の酸化ストレス物質濃度が変化しても電圧値や電流値に変化が見られなくなりセンサの応答性が低下する傾向があることがわかったためである。例えば、フルオロオレフィンビニルエーテール重合体(分子量分布100〜1000)であれば0.2μm〜0.8μmが好ましく、ノボラック系フェノール樹脂(分子量分布1000〜10000)であれば、5μm〜20μmが好ましい。
In the present embodiment, the entire surface of the substrate 2 is covered with the insulating film 5, but the insulating film 5 only needs to cover at least the surface of the electrode 4.
Although the thickness of the insulating film 5 varies depending on the material, it is necessary to select it within a range in which the analyte liquid and the electrode pair 3 can be reliably insulated and the responsiveness as a sensor can be maintained. As the film thickness of the insulating film 5 decreases, the effect of the insulating film 5 becomes insufficient and the sensitivity of the sensor tends to decrease. As the film thickness increases, the voltage value changes even if the concentration of the oxidative stress substance in the sample liquid changes. This is because it has been found that there is a tendency that the change in the current value is not observed and the response of the sensor is lowered. For example, 0.2 μm to 0.8 μm is preferable for a fluoroolefin vinyl ether polymer (molecular weight distribution 100 to 1000), and 5 μm to 20 μm is preferable for a novolac phenol resin (molecular weight distribution 1000 to 10,000).

以下、酸化ストレス物質検知センサの動作原理について説明する。
図2は実施の形態1における酸化ストレス物質検知センサの使用状態を示す断面模式図である。
図2中、10は電極対3上の絶縁膜5に滴下した血液、リンパ液、細胞質基質などの体液を含む被検体液である。
絶縁膜5の表面に被検体液10を滴下或いは塗布する等して接触させると、絶縁膜5と被検体液10の界面に電荷の分離が生じ、溶液側と絶縁膜側は等しい数の極性の異なる電荷で帯電状態になる。その結果、絶縁膜が誘導分極し、電極間と接している絶縁膜内側にも電荷が生じる。電極間に電圧を負荷させると、この電荷が電子の流れを加速するため、電極間の電流値や電圧値に変化が生じる。被検体液10中に含まれる一酸化窒素などの酸化ストレス物質(ラジカル活性種)は、この誘導分極効果が大きいため、酸化ストレス物質の濃度に比例した電流値や電圧値の変化を検出部6で検出することができる。
判定部7に予め酸化ストレス物質の濃度と電圧値若しくは電流値との関係を記憶させておき、その標準データと検出データ(測定データ)を比較することにより、確実かつ迅速な生理状態の判定を行うことができる。
また、判定部7に記憶部を設けて検出データを継続的或いは定期的に記憶させておくことにより、被験者の生理状態の変化や進行を管理することができ汎用性に優れる。
Hereinafter, the operation principle of the oxidative stress substance detection sensor will be described.
FIG. 2 is a schematic cross-sectional view showing a usage state of the oxidative stress substance detection sensor in the first embodiment.
In FIG. 2, reference numeral 10 denotes a sample liquid containing body fluid such as blood, lymph, cytoplasmic substrate, etc. dropped on the insulating film 5 on the electrode pair 3.
When the analyte liquid 10 is brought into contact with the surface of the insulating film 5 by dropping or applying it or the like, charge separation occurs at the interface between the insulating film 5 and the analyte liquid 10, and the solution side and the insulating film side have the same number of polarities. Charged with different charges. As a result, the insulating film is inductively polarized and charges are generated inside the insulating film in contact with the electrodes. When a voltage is applied between the electrodes, this charge accelerates the flow of electrons, so that a current value or a voltage value between the electrodes changes. Since the oxidative stress substance (radical active species) such as nitric oxide contained in the sample liquid 10 has a large induced polarization effect, a change in the current value or voltage value proportional to the concentration of the oxidative stress substance is detected by the detection unit 6. Can be detected.
The determination unit 7 stores the relationship between the concentration of the oxidative stress substance and the voltage value or current value in advance, and compares the standard data with the detection data (measurement data), thereby making a reliable and quick determination of the physiological state. It can be carried out.
In addition, by providing a storage unit in the determination unit 7 and storing the detection data continuously or periodically, it is possible to manage changes and progress of the physiological state of the subject, which is excellent in versatility.

実施の形態1の酸化ストレス物質検知センサは以上のように構成されているので、以下の作用を有する。
(1)電極4の表面及び電極4間の基板2の表面が絶縁膜で被覆されていることにより、絶縁膜5上に滴下した微量のリンパ液、細胞質基質などの体液を含む被検体液10中に含まれる一酸化窒素などの酸化ストレス物質の量に応じて変化する電極4間の電圧値又は電流値を短時間で精度よく検出することができ、被検体を提供した被験者の生理状態を簡便に判定することができる。
(2)構造が簡単な電極対3を半導体作製技術によって基板2上に高密度に集積させることができ、小型化が容易で量産性に優れ、電気回路や半導体集積回路などに容易に組み込むことができ、検出した化学的な情報を電気信号として短時間で処理することができ、高度で複雑な分析が可能な検知システムを構築することもできる。
(3)電極4表面が絶縁膜5で被覆されていることにより、絶縁膜5上に被検体液10を滴下或いは塗布するだけで、絶縁膜5と被検体液10の界面に電荷の分離が発生し、帯電量が増加して誘導分極が起る。電極4と接している絶縁膜5内側にも電荷が生じるため、電極4間に電圧を負荷させることにより、その電荷が電子の流れを加速して被検体液10に含まれる分極効果の大きな一酸化窒素などの酸化ストレス物質(ラジカル活性種)を検出することができるので、1〜10μLの極微量な被検体液10で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、被検体液10の採取や取り扱いが容易で作業性に優れる。
(4)絶縁膜5上に被検体液10を滴下或は塗布する等して接触させると、絶縁膜5と被検体液10の界面に電荷の分離が生じるが、絶縁膜5を形成する有機薄膜層の表面には高分子末端あるいは分岐末端の化学構造に由来する各種官能基(カルボキシル基、ケトン基、水酸基、アミノ基、エーテル基等)ならびに極性基(フッ素、塩素、臭素等)が存在するため、この分極現象が大きく、酸化ストレス物質検知センサ1の応答性を向上させることができる。また被検体液10中の化学種によっては、有機薄膜表面の各種官能基と特異的な分極を生じるため、応答感度の高い酸化ストレス物質検知センサ1の作製が可能となる。
(5)電極対3に接続された検出部6を備えているので、電極4間の電圧変化又は電流変化を簡便に検出することができ、その測定値に基づいて直ちに被検体液10中の酸化ストレス物質濃度を求めることができる。
(6)検出部6が検出した検出データに基づいて被検体液10に含まれる酸化ストレス物質の量を検知して生理状態を判定する判定部7を有するので、短時間で即座に被検体液10を提出した被験者の生理状態を知ることができ、取扱い性に優れる。
Since the oxidative stress substance detection sensor of Embodiment 1 is configured as described above, it has the following actions.
(1) Since the surface of the electrode 4 and the surface of the substrate 2 between the electrodes 4 are covered with an insulating film, the subject liquid 10 contains a small amount of lymph fluid dropped on the insulating film 5 and body fluid such as cytoplasmic substrate. The voltage value or current value between the electrodes 4 that changes in accordance with the amount of oxidative stress substance such as nitric oxide contained in can be detected with high accuracy in a short time, and the physiological state of the subject who provided the subject can be easily Can be determined.
(2) The electrode pair 3 having a simple structure can be integrated on the substrate 2 with a high density by a semiconductor manufacturing technique, and can be easily miniaturized and excellent in mass productivity, and can be easily incorporated into an electric circuit or a semiconductor integrated circuit. Therefore, it is possible to construct a detection system capable of processing the detected chemical information as an electrical signal in a short time and capable of advanced and complex analysis.
(3) Since the surface of the electrode 4 is covered with the insulating film 5, charges can be separated at the interface between the insulating film 5 and the analyte liquid 10 simply by dropping or applying the analyte liquid 10 on the insulating film 5. Occurs, and the amount of charge increases to induce polarization. Since charges are also generated inside the insulating film 5 in contact with the electrodes 4, by applying a voltage between the electrodes 4, the charges accelerate the flow of electrons and have a large polarization effect contained in the analyte liquid 10. Since oxidative stress substances (radical active species) such as nitric oxide can be detected, measurement can be performed with a very small amount of the sample liquid 10 of 1 to 10 μL, and special pretreatment or the like is required before measurement. Therefore, the sample liquid 10 can be easily collected and handled and has excellent workability.
(4) When the analyte liquid 10 is brought into contact with the insulating film 5 by dropping or applying it, charges are separated at the interface between the insulating film 5 and the analyte liquid 10, but the organic that forms the insulating film 5 Various functional groups (carboxyl group, ketone group, hydroxyl group, amino group, ether group, etc.) and polar groups (fluorine, chlorine, bromine, etc.) derived from the chemical structure of the polymer terminal or branch terminal exist on the surface of the thin film layer Therefore, this polarization phenomenon is large, and the responsiveness of the oxidative stress substance detection sensor 1 can be improved. In addition, depending on the chemical species in the analyte liquid 10, specific polarization occurs with various functional groups on the surface of the organic thin film, so that the oxidative stress substance detection sensor 1 with high response sensitivity can be produced.
(5) Since the detection unit 6 connected to the electrode pair 3 is provided, a voltage change or a current change between the electrodes 4 can be easily detected, and immediately in the sample liquid 10 based on the measured value. An oxidative stress substance concentration can be obtained.
(6) Since the determination unit 7 that determines the physiological state by detecting the amount of the oxidative stress substance contained in the sample liquid 10 based on the detection data detected by the detection unit 6 is provided, the sample liquid is instantly obtained in a short time. It is possible to know the physiological state of the subject who submitted 10 and is excellent in handleability.

以下、本発明を実施例により具体的に説明する。
まず、実施の形態1で説明した酸化ストレス物質検知センサ1について、酸化ストレス物質の検出能力について実験を行った。
(実験例1)
酸化ストレス物質検知センサ1の基板2は1mm厚のガラス基板とし、半円形状の電極4を10μm離間させて対向配置した略円形状の電極対3の直径は150μmとした。電極4はスパッタリング法にてCr層0.1μm、Au層1μmを積層させ、フォトリソグラフィー法にてパターニングした。また、基板2の全面を膜厚5μmのノボラック系フェノール樹脂(分子量分布1000〜10000)の絶縁膜5で被覆した。
この絶縁膜5の表面に被検体液10として1−Hydroxy−2−oxo−3−(N−methyl−3−aminopropyl)−3−methyl−1−triazene(以下NOCと略記)+NaOH溶液を各々1μm滴下した後、リン酸緩衝液(PBS)を添加し、酸化ストレス物質であるNOを発生させた。
このときのNOCの濃度に対し、検出部6で検出される電極4間の電圧値をNO発生電圧として測定した。
図3はNOC濃度とNO発生電圧との関係を示す図である。
図3に示すように、NOC濃度の増加に伴ってNO発生電圧が増加することがわかった。これにより、酸化ストレス物質検知センサ1によって酸化ストレス物質の濃度を検出できることが確認された。
Hereinafter, the present invention will be specifically described by way of examples.
First, with respect to the oxidative stress substance detection sensor 1 described in the first embodiment, an experiment was conducted on the ability to detect an oxidative stress substance.
(Experimental example 1)
The substrate 2 of the oxidative stress substance detection sensor 1 is a glass substrate having a thickness of 1 mm, and the diameter of the substantially circular electrode pair 3 in which the semicircular electrodes 4 are arranged to face each other with a separation of 10 μm is 150 μm. The electrode 4 was formed by laminating a Cr layer of 0.1 μm and an Au layer of 1 μm by sputtering and patterning by photolithography. Further, the entire surface of the substrate 2 was covered with an insulating film 5 of a novolac phenol resin (molecular weight distribution 1000 to 10000) having a film thickness of 5 μm.
1 μHydroxy-2-oxo-3- (N-methyl-3-aminopropyl) -3-methyl-1-triazene (hereinafter abbreviated as NOC) + NaOH solution 1 μm each as the analyte liquid 10 on the surface of the insulating film 5 After dropping, a phosphate buffer solution (PBS) was added to generate NO as an oxidative stress substance.
The voltage value between the electrodes 4 detected by the detection unit 6 was measured as the NO generation voltage with respect to the NOC concentration at this time.
FIG. 3 is a diagram showing the relationship between the NOC concentration and the NO generation voltage.
As shown in FIG. 3, it was found that the NO generation voltage increases as the NOC concentration increases. Thereby, it was confirmed that the concentration of the oxidative stress substance can be detected by the oxidative stress substance detection sensor 1.

次に、酸化ストレス物質検知センサ1について、絶縁膜5の膜厚と酸化ストレス物質の検出感度について実験を行った。
(実験例2)
絶縁膜5の膜厚を0.5μmで形成した以外は実験例1と同様の酸化ストレス物質検知センサ1を使用した。被検体液10として濃度の異なるNaNOを滴下し、検出部6で電極4間の電圧値をセンサ電圧として測定した。
Next, with respect to the oxidative stress substance detection sensor 1, an experiment was conducted on the film thickness of the insulating film 5 and the detection sensitivity of the oxidative stress substance.
(Experimental example 2)
An oxidative stress substance detection sensor 1 similar to that in Experimental Example 1 was used except that the thickness of the insulating film 5 was 0.5 μm. NaNO 3 having different concentrations was dropped as the analyte liquid 10, and the voltage value between the electrodes 4 was measured by the detection unit 6 as a sensor voltage.

(実験例3)
絶縁膜5の膜厚を2.5μmで形成した以外は実験例2と同様にして電極4間の電圧値をセンサ電圧として測定した。
(Experimental example 3)
The voltage value between the electrodes 4 was measured as a sensor voltage in the same manner as in Experimental Example 2 except that the thickness of the insulating film 5 was 2.5 μm.

(実験例4)
絶縁膜5の膜厚を5μmで形成した以外は実験例2と同様にして電極4間の電圧値をセンサ電圧として測定した。
(Experimental example 4)
The voltage value between the electrodes 4 was measured as a sensor voltage in the same manner as in Experimental Example 2 except that the thickness of the insulating film 5 was 5 μm.

図4乃至6は、それぞれ実験例2乃至4におけるNO濃度とセンサ電圧との関係を示す図である。
図4乃至6によれば、実験例2及び3の膜厚0.5μm及び2.5μmではNO濃度とセンサ電圧との間に線形性が見られないが、実験例4の膜厚5μmでは、NO濃度とセンサ電圧との間に線形性が認められ、極微量のNO(水溶液中での酸化ストレス物質NOの化学的安定種)を検出できることが確認された。
4 to 6 are diagrams showing the relationship between the NO x concentration and the sensor voltage in Experimental Examples 2 to 4, respectively.
According to FIGS. 4-6, but linearity is not observed, the thickness 5μm of Example 4 between the Experimental Examples 2 and 3 having a thickness of 0.5μm and NO x concentration and the sensor voltage at 2.5μm Further, linearity was observed between the NO x concentration and the sensor voltage, and it was confirmed that a very small amount of NO x (a chemically stable species of the oxidative stress substance NO in an aqueous solution) could be detected.

次に、被検体液10の違いによる酸化ストレス物質検知センサ1の検出感度の違いについて実験を行った。
(実験例5)
被検体液10をNaNOとした以外は実験例4と同様にして電極4間の電圧値をセンサ電圧として測定した。
図7は実験例5におけるNO濃度とセンサ電圧との関係を示す図である。
図7によれば、被検体液10がNaNOの場合でも、NO濃度とセンサ電圧との間に比較的良好な線形性が認められ、被検体液10の違いによらず、NO(水溶液中での酸化ストレス物質NOの化学的安定種)を検出できることが確認された。
Next, an experiment was conducted on the difference in detection sensitivity of the oxidative stress substance detection sensor 1 due to the difference in the analyte liquid 10.
(Experimental example 5)
Except that the test solution 10 was NaNO 2 were measured voltage value between the to electrodes 4 in the same manner as in Experimental Example 4 as a sensor voltage.
FIG. 7 is a diagram showing the relationship between the NO x concentration and the sensor voltage in Experimental Example 5.
According to FIG. 7, even when the analyte liquid 10 is NaNO 2 , relatively good linearity is recognized between the NO x concentration and the sensor voltage, and NO x ( It was confirmed that a chemically stable species of the oxidative stress substance NO in an aqueous solution can be detected.

次に、絶縁膜5の種類の違いと絶縁膜5の膜厚及び絶縁膜5の被覆箇所と酸化ストレス物質の検出感度との違いについて実験を行った。
(実験例6)
酸化ストレス物質検知センサ1の基板2は1mm厚のガラス・エポキシ樹脂製とし、半円形状の電極4を200μm離間させて対向配置した略円形状の電極対3の直径は4mmとした。電極は電気メッキ法にてCu層を積層させ、フォトリソグラフィー法にてパターニングした。また基板2の全面を膜厚0.2μmのフルオロオレフィンビニルエーテール重合体(分子量分布100〜1000)の絶縁膜5で被覆して使用した。被検体液10として濃度の異なるNaNO(水溶液中での酸化ストレス物質NOの化学的安定種)10μLを滴下し、検出部6で電極4間の電圧値をセンサ電圧として測定した。
Next, an experiment was conducted on the difference in the type of the insulating film 5 and the difference in the film thickness of the insulating film 5 and the difference between the coating location of the insulating film 5 and the oxidative stress substance detection sensitivity.
(Experimental example 6)
The substrate 2 of the oxidative stress substance detection sensor 1 is made of glass / epoxy resin having a thickness of 1 mm, and the diameter of the substantially circular electrode pair 3 in which the semicircular electrodes 4 are arranged facing each other with a separation of 200 μm is 4 mm. The electrode was formed by laminating a Cu layer by electroplating and patterning by photolithography. Further, the entire surface of the substrate 2 was covered with an insulating film 5 of a fluoroolefin vinyl ether polymer (molecular weight distribution 100 to 1000) having a film thickness of 0.2 μm. 10 μL of NaNO 2 (chemically stable species of oxidative stress substance NO in an aqueous solution) having a different concentration was dropped as the analyte liquid 10, and the voltage value between the electrodes 4 was measured by the detection unit 6 as a sensor voltage.

(実験例7)
絶縁膜5の膜厚を0.4μmで形成した以外は実験例6と同様にして電極4間の電圧値を測定した。
(Experimental example 7)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 6 except that the thickness of the insulating film 5 was 0.4 μm.

(実験例8)
絶縁膜5の膜厚を0.6μmで形成した以外は実験例6と同様にして電極4間の電圧値を測定した。
(Experimental example 8)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 6 except that the thickness of the insulating film 5 was 0.6 μm.

(実験例9)
絶縁膜5の膜厚を0.8μmよりも厚く形成した以外は実験例6と同様にして電極4間の電圧値を測定した。
(Experimental example 9)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 6 except that the insulating film 5 was formed thicker than 0.8 μm.

(実験例10)
電極対3の片側の電極4のみを絶縁膜5で被覆した以外は実験例7と同様にして電極4間の電圧値を測定した。
(Experimental example 10)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 7 except that only the electrode 4 on one side of the electrode pair 3 was covered with the insulating film 5.

(実験例11)
電極対3の電極4間のみを絶縁膜5で被覆した以外は実験例7と同様にして電極4間の電圧値を測定した。
(Experimental example 11)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 7 except that only the gap between the electrodes 4 of the electrode pair 3 was covered with the insulating film 5.

(比較例1)
絶縁膜5を形成しない以外は実験例6と同様にして電極4間の電圧値を測定した。
(Comparative Example 1)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 6 except that the insulating film 5 was not formed.

実験例6乃至11及び比較例1におけるセンサ電圧の測定結果を(表1)に示す。

Figure 2007271287
The measurement results of the sensor voltage in Experimental Examples 6 to 11 and Comparative Example 1 are shown in (Table 1).
Figure 2007271287

実験例6乃至8によれば、絶縁膜5がフルオロオレフィンビニルエーテール重合体である場合、その膜厚が0.2μm〜0.6μmの範囲で、電極4間のセンサ電圧がNO(水溶液中での酸化ストレス物質NOの化学的安定種)濃度に比例することがわかった。
実験例9によれば、絶縁膜5がフルオロオレフィンビニルエーテール重合体である場合、その膜厚が0.8μmより厚くなると、被検体液10中のNO(水溶液中での酸化ストレス物質NOの化学的安定種)濃度が変化しても電圧値に変化が見られなくなり、酸化ストレス物質検知センサ1が応答しなくなることがわかった。
実験例10によれば、電極対3の一方の電極4のみを絶縁膜5で被覆した場合、NO濃度によらず電圧値が不安定となり、電圧を検出できなくなることがわかった。
実験例11によれば、電極対3の電極4間のみを絶縁膜5で被覆した場合、NO濃度の増加に伴ってセンサ電圧が減少し、実験例6乃至8と逆の傾向が見られることがわかった。この傾向は、比較例1の絶縁膜5を形成しない場合と同様であり、電極4が絶縁されずに被検体液10と接触しているためである。絶縁膜5で電極4が被覆される場合、検出部6の電圧値(E)、絶縁膜5の抵抗値(R)、界面の分極により誘発された絶縁膜の誘導分極によって生じた電荷が電極4間に流れる加速電流(I)の関係は、オームの法則に従い
E=R×I・・・(数1)
の関係が成立する。ここで絶縁膜5が劣化等で変化しない場合、Rは一定値である。被検体液10に含まれる酸化ストレス物質の濃度に応じ(数1)中のIが変化する。そのため、Iに比例してEは応答する。
一方、電極4が絶縁膜5で被覆されず被検体液10と直接接触している場合、Rは被検体液10の電導度(≒抵抗値)に置き換えられる。このため被検体液10の濃度が低い場合、Rは増大し、その結果検出電圧Eが増加する。逆に被検体液10の濃度が高い場合、Rは減少し、その結果検出電圧Eも減少する。このような機構の違いで、絶縁膜5がある場合と逆の応答性を示す。
According to Experimental Examples 6 to 8, when the insulating film 5 is a fluoroolefin vinyl ether polymer, the sensor voltage between the electrodes 4 is NO x (aqueous solution) when the film thickness is in the range of 0.2 μm to 0.6 μm. It was found to be proportional to the concentration of the chemically stable species of the oxidative stress substance NO.
According to Experimental Example 9, when the insulating film 5 is a fluoroolefin vinyl ether polymer, when the film thickness becomes thicker than 0.8 μm, NO x (oxidative stress substance NO in aqueous solution) It was found that the voltage value no longer changes even when the concentration changes, and the oxidative stress substance detection sensor 1 does not respond.
According to Experimental Example 10, when only one of the electrodes 4 of the electrode pairs 3 and covered with an insulating film 5, the voltage value irrespective of the concentration of NO x becomes unstable, was found to be impossible to detect the voltage.
According to Experiment 11, if only between 4 electrode pairs 3 of the electrode covered with the insulating film 5, the sensor voltage decreases with increasing concentration of NO x, the trend reversed and the Experimental Example 6-8 observed I understood it. This tendency is the same as in the case where the insulating film 5 of Comparative Example 1 is not formed, and is because the electrode 4 is in contact with the sample liquid 10 without being insulated. When the electrode 4 is covered with the insulating film 5, the voltage generated by the induced polarization of the insulating film induced by the voltage value (E) of the detection unit 6, the resistance value (R) of the insulating film 5, and the polarization of the interface is the electrode. The relation of the acceleration current (I) flowing between the four is in accordance with Ohm's law E = R × I (Equation 1)
The relationship is established. Here, when the insulating film 5 does not change due to deterioration or the like, R is a constant value. I in (Equation 1) changes according to the concentration of the oxidative stress substance contained in the sample liquid 10. Therefore, E responds in proportion to I.
On the other hand, when the electrode 4 is not covered with the insulating film 5 and is in direct contact with the analyte liquid 10, R is replaced with the conductivity (≈resistance value) of the analyte liquid 10. For this reason, when the concentration of the analyte liquid 10 is low, R increases, and as a result, the detection voltage E increases. Conversely, when the concentration of the analyte liquid 10 is high, R decreases, and as a result, the detection voltage E also decreases. Due to such a difference in mechanism, the responsiveness opposite to that when the insulating film 5 is present is exhibited.

次に、被検体液10のNO(水溶液中での酸化ストレス物質NOの化学的安定種)濃度と検出部6で検出される電極4間のセンサ電圧(電圧値)との関係について詳細に測定した。
図8はNO濃度とセンサ電圧との関係を示す図である。
Next, the relationship between the NO x (chemically stable species of oxidative stress substance NO in aqueous solution) concentration of the analyte liquid 10 and the sensor voltage (voltage value) between the electrodes 4 detected by the detection unit 6 will be described in detail. It was measured.
FIG. 8 is a diagram showing the relationship between the NO x concentration and the sensor voltage.

(実験例12)
絶縁膜5を膜厚0.2μmのフルオロオレフィンビニルエーテール重合体で形成した以外は実験例6と同様の酸化ストレス物質検知センサ1を使用した。被検体液10として濃度の異なるNaNO(水溶液中での酸化ストレス物質NOの化学的安定種)10μLを滴下し、検出部6で電極4間の電圧値をセンサ電圧として測定した。
(Experimental example 12)
The same oxidative stress substance detection sensor 1 as that of Experimental Example 6 was used except that the insulating film 5 was formed of a fluoroolefin vinyl ether polymer having a film thickness of 0.2 μm. 10 μL of NaNO 2 (chemically stable species of oxidative stress substance NO in an aqueous solution) having a different concentration was dropped as the analyte liquid 10, and the voltage value between the electrodes 4 was measured by the detection unit 6 as a sensor voltage.

(実験例13)
絶縁膜5の膜厚を0.4μmで形成した以外は、実験例12と同様にして電極4間の電圧値を測定した。
(Experimental example 13)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 12 except that the thickness of the insulating film 5 was 0.4 μm.

(実験例14)
絶縁膜5の膜厚を0.6μmで形成した以外は、実験例12と同様にして電極4間の電圧値を測定した。
(Experimental example 14)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 12 except that the thickness of the insulating film 5 was 0.6 μm.

図8に示したように、センサ電圧はNO濃度に比例しており、特に絶縁膜5の膜厚が0.6μmの場合に、良好な直線関係となって極微量の被検体液10から精度よくNO(水溶液中での酸化ストレス物質NOの化学的安定種)を検出できることがわかった。 As shown in FIG. 8, the sensor voltage is proportional to the NO x concentration. Particularly when the thickness of the insulating film 5 is 0.6 μm, the sensor voltage 10 has a good linear relationship and is very small from the analyte liquid 10. It was found that NO x (chemically stable species of the oxidative stress substance NO in an aqueous solution) can be detected with high accuracy.

次に、電極対3の対向する2つの電極4の辺部4a間の間隔と酸化ストレス物質の検出感度との関係について実験を行った。
(実験例15)
酸化ストレス物質検知センサ1の基板2は1mm厚のガラス基板とし、半円形状の電極4を1μm離間させて対向配置した略円形状の電極対3の直径は150μmとした。電極4はスパッタリング法にてCr層0.1μm、Au層1μmを積層させ、フォトリソグラフィー法にてパターニングした。また、基板2の全面を膜厚5μmのノボラック系フェノール樹脂(分子量分布1000〜10000)の絶縁膜5で被覆した。被検体液10としてNaNOを滴下し、検出部6で電極4間の電圧値をセンサ電圧として測定した。
Next, an experiment was conducted on the relationship between the distance between the side portions 4a of the two electrodes 4 facing each other in the electrode pair 3 and the detection sensitivity of the oxidative stress substance.
(Experimental example 15)
The substrate 2 of the oxidative stress substance detection sensor 1 is a glass substrate having a thickness of 1 mm, and the diameter of the substantially circular electrode pair 3 in which the semicircular electrodes 4 are arranged to face each other with a separation of 1 μm is 150 μm. The electrode 4 was formed by laminating a Cr layer of 0.1 μm and an Au layer of 1 μm by sputtering and patterning by photolithography. Further, the entire surface of the substrate 2 was covered with an insulating film 5 of a novolac phenol resin (molecular weight distribution 1000 to 10000) having a film thickness of 5 μm. NaNO 3 was dropped as the analyte liquid 10, and the voltage value between the electrodes 4 was measured by the detection unit 6 as a sensor voltage.

(実験例16)
電極4の辺部4a間の間隔を5μmで形成した以外は実験例15と同様にして電極4間の電圧値を測定した。
(Experimental example 16)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 15 except that the distance between the side portions 4a of the electrodes 4 was 5 μm.

(実験例17)
電極4の辺部4a間の間隔を10μmで形成した以外は実験例15と同様にして電極4間の電圧値を測定した。
(Experimental example 17)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 15 except that the interval between the side portions 4a of the electrodes 4 was 10 μm.

(実験例18)
電極4の辺部4a間の間隔を200μmで形成した以外は実験例15と同様にして電極4間の電圧値を測定した。
(Experiment 18)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 15 except that the distance between the side portions 4a of the electrodes 4 was 200 μm.

(実験例19)
電極4の辺部4a間の間隔を5mmで形成した以外は実験例15と同様にして電極4間の電圧値を測定した。
(Experimental example 19)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 15 except that the distance between the side portions 4a of the electrodes 4 was 5 mm.

(実験例20)
電極4の辺部4a間の間隔を10mmで形成した以外は実験例15と同様にして電極4間の電圧値を測定した。
(Experiment 20)
The voltage value between the electrodes 4 was measured in the same manner as in Experimental Example 15 except that the distance between the side portions 4a of the electrodes 4 was 10 mm.

実験例15乃至20におけるセンサ電圧の測定結果を(表2)に示す。

Figure 2007271287
The measurement results of the sensor voltage in Experimental Examples 15 to 20 are shown in (Table 2).
Figure 2007271287

実験例15によれば、電極4の辺部4a間の間隔が1μmでは、被検体液10中のNO(水溶液中での酸化ストレス物質NOの化学的安定種)濃度が変化しても電圧値に変化が見られなくなり、酸化ストレス物質検知センサ1が応答しなくなることがわかった。
実験例16によれば、電極4の辺部4a間の間隔が5μmでは、信号ノイズが大きくなり、電圧値の変化を正確に検出することが困難となることがわかった。
実験例17乃至19によれば、電極4の辺部4a間の間隔が10μm〜5mmの範囲では、NO(水溶液中での酸化ストレス物質NOの化学的安定種)濃度に比例するセンサ電圧が検出できることがわかった。
実験例20によれば、電極4の辺部4a間の間隔が10mmでは、信号ノイズが大きくなり、電圧値の変化を正確に検出することが困難となることがわかった。
According to Experimental Example 15, when the distance between the side portions 4a of the electrode 4 is 1 μm, the voltage is maintained even if the concentration of NO x (chemically stable species of the oxidative stress substance NO in the aqueous solution) in the sample liquid 10 changes. It was found that the value was not changed and the oxidative stress substance detection sensor 1 stopped responding.
According to Experimental Example 16, it was found that when the distance between the side portions 4a of the electrode 4 is 5 μm, the signal noise increases and it is difficult to accurately detect the change in the voltage value.
According to Experimental Examples 17 to 19, when the distance between the side portions 4a of the electrode 4 is in the range of 10 μm to 5 mm, the sensor voltage proportional to the concentration of NO x (chemically stable species of the oxidative stress substance NO in the aqueous solution) is increased. It turns out that it can be detected.
According to Experimental Example 20, it was found that when the distance between the side portions 4a of the electrode 4 is 10 mm, the signal noise increases and it is difficult to accurately detect the change in the voltage value.

本発明は、構造が簡単でシステム全体を小型化することができ、半導体製造技術を利用して製造することができ量産性に優れ、繰り返し使用することが可能で省資源性に優れ、被検体液中に含まれる1ppm程度の極微量の一酸化窒素などの酸化ストレス物質を極短時間で精度よく検知可能な信頼性、作業性に優れる酸化ストレス物質検知センサの提供を行って、一般化家庭などにおいて簡便に被験者の生理状態の判定を行うことを可能とする。   The present invention is simple in structure, can downsize the entire system, can be manufactured using semiconductor manufacturing technology, has excellent mass productivity, can be used repeatedly, has excellent resource savings, Providing an oxidative stress substance detection sensor with excellent reliability and workability that can accurately detect oxidative stress substances such as nitric oxide, such as trace amounts of 1ppm contained in the liquid, in a very short time. Thus, it is possible to easily determine the physiological state of the subject.

(a)実施の形態1における酸化ストレス物質検知センサを示す平面図(b)図1(a)のA−A線矢視断面模式図(A) Plan view showing the oxidative stress substance detection sensor in Embodiment 1 (b) Schematic cross-sectional view taken along line AA in FIG. 実施の形態1における酸化ストレス物質検知センサの使用状態を示す断面模式図Sectional schematic diagram which shows the use condition of the oxidative stress substance detection sensor in Embodiment 1 NOC濃度とNO発生電圧との関係を示す図Diagram showing the relationship between NOC concentration and NO generation voltage 実験例2におけるNO濃度とセンサ電圧との関係を示す図The figure which shows the relationship between the NOx density | concentration and sensor voltage in Experimental example 2. 実験例3におけるNO濃度とセンサ電圧との関係を示す図The figure which shows the relationship between the NOx density | concentration and sensor voltage in Experimental example 3. 実験例4におけるNO濃度とセンサ電圧との関係を示す図The figure which shows the relationship between the NOx density | concentration and sensor voltage in Experimental example 4. 実験例5におけるNO濃度とセンサ電圧との関係を示す図The figure which shows the relationship between the NOx density | concentration and sensor voltage in Experimental example 5. NO濃度とセンサ電圧との関係を示す図Diagram showing the relationship between the concentration of NO x and the sensor voltage

符号の説明Explanation of symbols

1 酸化ストレス物質検知センサ
2 基板
3 電極対
4 電極
4a 辺部
4b 端子部
5 絶縁膜
6 検出部
7 判定部
10 被検体液
DESCRIPTION OF SYMBOLS 1 Oxidative stress substance detection sensor 2 Board | substrate 3 Electrode pair 4 Electrode 4a Side part 4b Terminal part 5 Insulating film 6 Detection part 7 Determination part 10 Analyte liquid

Claims (4)

基板と、前記基板上に所定間隔をおいて配置された電極対と、前記電極対の表面及び前記電極対間の前記基板の表面を被覆し血液、リンパ液、細胞質基質などの体液を含む被検体液と接触する絶縁膜と、を備えていることを特徴とする酸化ストレス物質検知センサ。 A subject including a substrate, electrode pairs arranged on the substrate at a predetermined interval, and body fluids such as blood, lymph, and cytoplasmic substrate covering the surfaces of the electrode pairs and the surface of the substrate between the electrode pairs. An oxidative stress substance detection sensor comprising an insulating film in contact with a liquid. 前記絶縁膜が、有機薄膜層で形成されていることを特徴とする請求項1に記載の酸化ストレス物質検知センサ。 The oxidative stress substance detection sensor according to claim 1, wherein the insulating film is formed of an organic thin film layer. 前記電極対に接続され前記電極対間の電圧変化又は電流変化を検出する検出部を備えていることを特徴とする請求項1又は2に記載の酸化ストレス物質検知センサ。 3. The oxidative stress substance detection sensor according to claim 1, further comprising a detection unit that is connected to the electrode pair and detects a voltage change or a current change between the electrode pair. 前記検出部が検出した検出データに基づいて前記被検体液に含まれる酸化ストレス物質の量を検知して生理状態を判定する判定部を備えていることを特徴とする請求項1乃至3の内いずれか1項に記載の酸化ストレス物質検知センサ。 4. The apparatus according to claim 1, further comprising a determination unit that detects a physiological state by detecting an amount of an oxidative stress substance contained in the sample liquid based on detection data detected by the detection unit. The oxidative stress substance detection sensor of any one of Claims.
JP2006093756A 2006-03-30 2006-03-30 Detection sensor of oxidation stress substance Pending JP2007271287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093756A JP2007271287A (en) 2006-03-30 2006-03-30 Detection sensor of oxidation stress substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093756A JP2007271287A (en) 2006-03-30 2006-03-30 Detection sensor of oxidation stress substance

Publications (1)

Publication Number Publication Date
JP2007271287A true JP2007271287A (en) 2007-10-18

Family

ID=38674260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093756A Pending JP2007271287A (en) 2006-03-30 2006-03-30 Detection sensor of oxidation stress substance

Country Status (1)

Country Link
JP (1) JP2007271287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134105A (en) * 2006-11-27 2008-06-12 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Solution component sensor
JP2013113627A (en) * 2011-11-25 2013-06-10 Ulvac Seimaku Kk Solution component sensor, method for manufacturing the same, solution component analysis system, solution component analysis kit, and method for analyzing analyte solution
WO2018191226A1 (en) * 2017-04-10 2018-10-18 Lifehealth, Llc System for liberating and measuring nitric oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171846A (en) * 1983-02-28 1984-09-28 セオドア・エツチ・クル−ガ− Chemical analysis system and method
JPH02177950A (en) * 1988-12-28 1990-07-11 Nikken Food Honsha Kk Method for measuring degree of aging of human body
JPH05135329A (en) * 1991-11-08 1993-06-01 Sumitomo Metal Ind Ltd Production of thin-film magnetic head
JPH0620528A (en) * 1992-07-03 1994-01-28 Hitachi Cable Ltd Thin thickness insulated electric wire
JP2005090961A (en) * 2003-09-11 2005-04-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Detection sensor of characteristics of liquid specimen, detector for characteristics of liquid specimen and method for detecting characteristics of liquid specimen
JP2005156340A (en) * 2003-11-26 2005-06-16 Toshiba Corp Method and apparatus for detecting oh radical

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171846A (en) * 1983-02-28 1984-09-28 セオドア・エツチ・クル−ガ− Chemical analysis system and method
JPH02177950A (en) * 1988-12-28 1990-07-11 Nikken Food Honsha Kk Method for measuring degree of aging of human body
JPH05135329A (en) * 1991-11-08 1993-06-01 Sumitomo Metal Ind Ltd Production of thin-film magnetic head
JPH0620528A (en) * 1992-07-03 1994-01-28 Hitachi Cable Ltd Thin thickness insulated electric wire
JP2005090961A (en) * 2003-09-11 2005-04-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Detection sensor of characteristics of liquid specimen, detector for characteristics of liquid specimen and method for detecting characteristics of liquid specimen
JP2005156340A (en) * 2003-11-26 2005-06-16 Toshiba Corp Method and apparatus for detecting oh radical

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134105A (en) * 2006-11-27 2008-06-12 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Solution component sensor
JP2013113627A (en) * 2011-11-25 2013-06-10 Ulvac Seimaku Kk Solution component sensor, method for manufacturing the same, solution component analysis system, solution component analysis kit, and method for analyzing analyte solution
WO2018191226A1 (en) * 2017-04-10 2018-10-18 Lifehealth, Llc System for liberating and measuring nitric oxide

Similar Documents

Publication Publication Date Title
AU2017237981B2 (en) Wafer-scale assembly of insulator-membrane-insulator devices for nanopore sensing
Juskova et al. Fabrication and characterization of solid mercury amalgam electrodes for protein analysis
US11592415B2 (en) Bio-sensor having interdigitated microelectrode using response of receptor and target bioproducts
WO2016032314A1 (en) An egfet phosphate sensor device
JP2007271287A (en) Detection sensor of oxidation stress substance
Gardner et al. Development of a microelectrode array sensing platform for combination electrochemical and spectrochemical aqueous ion testing
US20210239635A1 (en) Planar conformal circuits for diagnostics
US8308922B2 (en) Electrochemical transducer array and use thereof
JP5837808B2 (en) Solution component analysis kit and manufacturing method thereof, solution component analysis system, and method for measuring concentration of analyte liquid
Narakathu et al. Pico-mole level detection of toxic bio/chemical species using impedance based electrochemical biosensors
KR20200140165A (en) Flexible biosensor and method for manufacturing thereof
Hrdý et al. Portable lock-in amplifier-based electrochemical method to measure an array of 64 sensors for point-of-care applications
JP4859226B2 (en) Solution component sensor
US20180011054A1 (en) Metal ion detection method, test substance detection method
US7716965B2 (en) Electrochemical sensor having suspended element counter electrode and deflection method for current sensing
Isoda et al. Development of a source–drain electrode coated with an insulation layer for detecting concentration changes in a nitrate ion solution
EP3851855A1 (en) Sensing of molecules by electrochemical detection of nanoparticles
JP5947795B2 (en) Individually addressable band electrode array and method of manufacturing the same
Cai et al. Full automatic monitor for in-situ measurements of trace heavy metals in aqueous environment
KR20160055186A (en) Electrochemical-based analytical test strip with ultra-thin discontinuous metal layer
TW589449B (en) Micro-current sensing chip
Xue et al. Fabrication of a 3D interdigitated double-coil microelectrode chip by MEMS technique
CN115791934A (en) Composite heavy metal ion detection chip and method
Zou et al. Improved design of electronic tongue integrated MEA with MLAPS for environmental monitoring
Vogt et al. Characterization of sputtered thin film electrodes on PMMA microchips with electrochemical impedance spectroscopy and cyclic voltammetry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111208