JPS6318256A - Measurement of dissolved substance - Google Patents

Measurement of dissolved substance

Info

Publication number
JPS6318256A
JPS6318256A JP16161286A JP16161286A JPS6318256A JP S6318256 A JPS6318256 A JP S6318256A JP 16161286 A JP16161286 A JP 16161286A JP 16161286 A JP16161286 A JP 16161286A JP S6318256 A JPS6318256 A JP S6318256A
Authority
JP
Japan
Prior art keywords
layer
measured
pulse
liquid
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16161286A
Other languages
Japanese (ja)
Inventor
Kenichi Sugano
菅野 憲一
Tetsuya Katayama
潟山 哲哉
Masao Koyama
小山 昌夫
Masayoshi Okamoto
正義 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16161286A priority Critical patent/JPS6318256A/en
Publication of JPS6318256A publication Critical patent/JPS6318256A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly sensitive measurement of electrically neutral substance with a relatively large molecular weight dissolved in a solution to be measured, by applying an electrical pulse with the pulse width of below 10<-1>s between a conductor layer and an opposed electrode to measure changes in the drain current corresponding to the capacitance of the interface between the conductor layer and the liquid being measured. CONSTITUTION:An Ag layer 9 (conductor layer) formed on the gate of an FET sensor 3, a platinum wire 10 as opposed electrode and an insaturated calomel electrode 11 as reference electrode are immersed into a liquid 2 to be measured in a measuring cell 1. An electrode 11 is connected to a source region 5 and the Ag layer 9 respectively through potentiometers 12 and 13 to set a potential between the source and the Ag layer for a specified value. A pulse generator 14 is connected between the Ag layer 9 and the platinum wire 10 while a voltage-applying and -measuring mechanism 15 is connected between a source region 5 and a drain region 6 to apply a drain-source voltage or to measure a drain-source current. Then, a fixed current pulse with the width of 10<-1>s is applied between the platinum wire 10 and the Ag layer 9 with a pulse generator 14 to measure changes in the drain current.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は被測定液に溶存している物質を測定する方法の
改良に関し、特に電界効果トランジスタを用いて被測定
液中の中性物質を分析するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to an improvement in a method for measuring substances dissolved in a liquid to be measured, and in particular to the improvement of a method for measuring substances dissolved in a liquid to be measured using a field effect transistor. This is to analyze neutral substances.

(従来の技術) 電界効果トランジスタ(FET)のゲートの表面に、あ
る特定の物質に感応する物質を付着させたものは、その
特定物質に対するセンサとして機能する。このFETセ
ンサは、ゲート部が高インピーダンスで、出力側が低イ
ンピーダンスであるため、センサ機能とともにインピー
ダンス変換器1能をも有する。このため、FETセンサ
を用いた訓定では、環境からのノイズの影響が少なくな
り、正確さが保障される。また、FETセンサは、トラ
ンジスタ、IC,LSI等を製造する場合と同様なシリ
コン加工プロセスを用いて同時に複数個製造することが
でき、多重化、小型化が容易であり、大量生産による低
コスト化も期待できるという特長を有する。
(Prior Art) A field effect transistor (FET) in which a substance sensitive to a specific substance is attached to the surface of the gate functions as a sensor for the specific substance. This FET sensor has a gate section with high impedance and an output side with low impedance, so it has an impedance converter function as well as a sensor function. Therefore, in training using the FET sensor, the influence of noise from the environment is reduced and accuracy is guaranteed. Additionally, multiple FET sensors can be manufactured at the same time using the same silicon processing process used to manufacture transistors, ICs, LSIs, etc., making it easy to multiplex and downsize, and reducing costs through mass production. It has the advantage that it can also be expected.

以上のような特長を有するFETセンサについては、例
えば血液中の各種イオンの検出に応用するために、多く
の研究がなされている。しかし、現在のところ、FET
センサでは?!!2測定液中に溶存する電気的に中性な
物質を検出することは不可能である。
Many studies have been conducted on FET sensors having the above-mentioned features in order to apply them, for example, to detecting various ions in blood. However, at present, FET
What about sensors? ! ! 2. It is impossible to detect electrically neutral substances dissolved in the measurement liquid.

このような電気的に中性な物質のなかには、中性の界面
活性剤であるポリエチレングリコール(PEG)、トラ
イトンX−100あるいはポリオキシエチレンラウリル
エーテル等や生化学分析の重要項目である中性脂質、溶
存酸素あるいは8202等多くの物質が該当する。この
ため、FETセンサの用途を拡大することが要望されて
いた。
Among these electrically neutral substances, there are neutral surfactants such as polyethylene glycol (PEG), Triton , dissolved oxygen, or 8202. For this reason, there has been a desire to expand the uses of FET sensors.

〈発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたものであ
り、FETセンサを用い、被珂定液中に溶存する電気的
に中性で比較的分子量の大きい物質を調定しうる方法を
提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and uses an FET sensor to detect electrically neutral and relatively molecular The purpose is to provide a method that allows the preparation of large substances.

[発明の構成コ (問題点を解決するための手段) 本発明の溶存物質の測定方法は、被測定液中に、絶縁ゲ
ート型電界効果トランジスタのゲート上に形成された作
用電極となる導電体層と、対極とを浸漬し、前記導電体
層と対極との間にパルス幅が10″IS以下の電気パル
スを印加し、被測定液に溶存する中性物質の導電体層上
への吸着に起因する導電体層−被測定液界面の客層に対
応するゲート電圧変化又はドレイン電流変化を測定する
ことを特徴とするものである。
[Structure of the Invention (Means for Solving the Problems)] The method for measuring dissolved substances of the present invention includes a method for measuring dissolved substances in which a conductor serving as a working electrode is formed on the gate of an insulated gate field effect transistor in a liquid to be measured. The layer and the counter electrode are immersed, and an electric pulse with a pulse width of 10"IS or less is applied between the conductor layer and the counter electrode to adsorb neutral substances dissolved in the liquid to be measured onto the conductor layer. It is characterized by measuring the gate voltage change or drain current change corresponding to the customer layer at the conductor layer-measuring liquid interface caused by.

本発明において、作用電極となる導電体層は、被あ定物
質(中性物質)が吸着することにより、導電体層−被測
定液界面の容量が変化するものであれば何でもよく、例
えば白金、金等の金属、カーボン又は導電性のプラスチ
ック等積々の材料が挙げられる。
In the present invention, the conductor layer serving as the working electrode may be any material as long as the capacitance at the interface between the conductor layer and the liquid to be measured changes when the substance to be measured (neutral substance) is adsorbed, such as platinum. , metals such as gold, carbon, or conductive plastics.

本発明において、作用電極となる導電体層と対極との間
に印加される電気パルスとしては、定電流交流パルスの
一種である定電流矩形波パルス又は定電荷パルスが好ま
しい。
In the present invention, the electric pulse applied between the conductor layer serving as the working electrode and the counter electrode is preferably a constant current rectangular wave pulse or a constant charge pulse, which is a type of constant current alternating current pulse.

また、被測定物である中性物質を高感度で定量できるよ
うに、予め作用電極となる導電体層の電位を所定の値に
設定しておくことが好ましい。
Further, it is preferable to set the potential of the conductor layer serving as the working electrode to a predetermined value in advance so that the neutral substance to be measured can be quantified with high sensitivity.

(作用) 被測定液に溶存する中性物質が導電体層に吸着したとき
の導電体層−被測定液界面の二重層の微分容ff1cd
は界面の電位Eの関数である。ところで、Cdが一定と
みなせる電位領域では、界面の電位変化ΔEと表面電荷
密度変化Δqとの間には、Δq=ΔE −Cdの関係が
成立する。このため、作用電極となる導電体1と対極と
の間に、電極反応の影響が生じない程度の電気パルス(
定電流矩形波パルスや定電荷パルス)を与えたときの電
伶変化△EはCdの関数となる。
(Function) Differential volume of the double layer at the interface between the conductor layer and the liquid to be measured when a neutral substance dissolved in the liquid to be measured is adsorbed to the conductor layer ff1cd
is a function of the interface potential E. By the way, in a potential region where Cd can be regarded as constant, the relationship Δq=ΔE−Cd holds between the potential change ΔE at the interface and the surface charge density change Δq. Therefore, an electric pulse (
The change in electric current ΔE when a constant current square wave pulse or constant charge pulse is applied is a function of Cd.

一般に、Cdは導電体、否への種々の物質の吸脱着に応
じて変化する。一方、電位変化ΔEはFETセンサの出
力であるゲート電圧変化又はドレイン電流変化として検
出できる。したがって、Cdが被測定物X(中性物質)
の濃度、すなわち導電体層への中性物質の吸着日に対応
して変化する範囲では、ゲート重圧又はドレイン電流の
変化をとらえることができれば、中性物質の濃度を定量
することができる。また、この際、電気パルスを与えて
いるので、測定するゲート電圧やドレイン電流の変化が
溶液抵抗の影響を受けることはない。
In general, Cd changes depending on the adsorption and desorption of various substances to and from conductors. On the other hand, the potential change ΔE can be detected as a gate voltage change or a drain current change, which is the output of the FET sensor. Therefore, Cd is the object to be measured (neutral substance)
In other words, the concentration of the neutral substance can be quantified if changes in the gate pressure or drain current can be detected in the range where the concentration of the neutral substance changes depending on the date of adsorption of the neutral substance to the conductor layer. Furthermore, since an electric pulse is applied at this time, changes in the gate voltage and drain current to be measured are not affected by solution resistance.

なお、印加する電気パルスのパルス幅を10”S以下と
したのは、パルス幅が10’Sより長い電気パルスを印
加した場合には、これによって生じる電極反応の寄与が
無視できなくなるためである。更に、電気パルスのパル
ス幅は10°IS以下であることがより好ましい。ただ
し、パルス幅がffi rAに短い電気パルスを印加し
た場合には、出力変化が小さくなるため、パルス幅は1
0−’ S以上であることが好ましい。
The reason why the pulse width of the applied electric pulse was set to 10"S or less is because if an electric pulse with a pulse width longer than 10'S is applied, the contribution of the electrode reaction caused by this cannot be ignored. Furthermore, it is more preferable that the pulse width of the electric pulse is 10°IS or less.However, if a short electric pulse is applied to ffi rA, the output change will be small, so the pulse width should be 10°IS or less.
It is preferable that it is 0-'S or more.

そして、電気パルスとして定電流パルスを与えた場合に
は、作用電極に与えられる電荷密度Δqは△q=1・t
(ただし、iは定N流密度、tはパルスN<s)>で示
される。この場合、パルス幅を一定にする限り、作用電
極に与えられる電気量を規制することができ、測定結果
の解析が容易になる。また、定電流矩形波パルスを与え
れば、作用電極を交互に正側、負側に分極させることが
でき、作用電極の電荷密度の変化を小さく抑えることが
できる。また、電気パルスは定電荷パルスでもよいこと
は勿論である。
When a constant current pulse is given as an electric pulse, the charge density Δq given to the working electrode is Δq=1・t
(However, i is a constant N flow density, and t is a pulse N<s)>. In this case, as long as the pulse width is kept constant, the amount of electricity applied to the working electrode can be regulated, making it easier to analyze the measurement results. Further, by applying constant current rectangular wave pulses, the working electrode can be polarized alternately to the positive side and the negative side, and changes in the charge density of the working electrode can be suppressed to a small level. Further, it goes without saying that the electric pulse may be a constant charge pulse.

なお、被測定物質である中性物質の種類と作用電(重の
材質とによって、作用電極への中性物質の吸脱着電位が
異なるため、作用電極は例えば参照電極等を基準としで
ある電位に設定しておき、この電位に電気パルスを重畳
することが望ましい。
Note that the adsorption/desorption potential of the neutral substance to the working electrode differs depending on the type of neutral substance to be measured and the working voltage (heavy material). It is desirable to set this potential to 0 and to superimpose an electric pulse on this potential.

逆に、作用電極の設定電位を走査させながら、この電位
に電気パルスを重畳し、Cdの変化が生じる電位を検出
すれば、被測定物質の定性分析を実流できる可能性があ
る。この定性分析の原理を以下に説明する。
On the other hand, if an electric pulse is superimposed on this potential while scanning the set potential of the working electrode, and a potential at which a change in Cd occurs is detected, it is possible to carry out qualitative analysis of the substance to be measured. The principle of this qualitative analysis will be explained below.

すなわち、電気二重層が、一方は作用電極上が吸着物質
で覆われ、他方は作用電極上に吸着物質がない2つの並
列のコンデンサからなるモデルで近似できると考えると
、作用電極上の電荷q;ま、Q=Q   (1−〇)+
Q   e  ・・・■θ−00=1 で表わされる。ここで、θは吸4物貿による作用電極の
表面被覆率、q  は作用電極上に吸着物θ=0 質がないときの表面電荷密度、q  は作用電(シ&−
1 上が全て吸着物質で覆われているときの表面電荷密度で
ある。
That is, if we consider that the electric double layer can be approximated by a model consisting of two parallel capacitors, one covered with an adsorbent on the working electrode and the other with no adsorbent on the working electrode, then the charge q on the working electrode ;Well, Q=Q (1-〇)+
Q e ... is expressed as ■θ-00=1. Here, θ is the surface coverage of the working electrode due to absorption, q is the surface charge density when there is no adsorbate θ=0 on the working electrode, and q is the working electrode (shi&-
1 This is the surface charge density when the entire surface is covered with an adsorbent.

■式を電位Eで微分すると、 ここで、C60−8は0−0のときのCd 、 C60
−1はe−1のときのCdである。
■Differentiating the equation with the potential E, where C60-8 is Cd when 0-0, C60
-1 is Cd at e-1.

したがって、電位Eを走査させると、表面被覆率が大き
く変化する電位でdθ/dEが大きくなり、cdにピー
クが現われる。このピーク位置、すなわち吸脱着量に大
きな変化が生じる電位は、中性物質の性質によって異な
るため、電位Eを走査させながらこの電位に電気パルス
を重畳し、Cdの変化(これに対応するゲート電圧又は
ドレイン電流の変化)を追跡することにより定性分析を
行なうことができる。
Therefore, when the potential E is scanned, dθ/dE increases at a potential where the surface coverage changes greatly, and a peak appears at cd. This peak position, that is, the potential at which a large change in the adsorption/desorption amount occurs, differs depending on the nature of the neutral substance. Therefore, while scanning the potential E, an electric pulse is superimposed on this potential to change the Cd Qualitative analysis can be performed by tracking (or changes in drain current).

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明方法を実施するためのFETセンサを用
いた測定系の構成図である。第1図において、測定セル
1内には被測定液2が収容されている。この被測定液2
にはFETセンサ3のゲート上に形成された作用電極が
浸漬されている。すなわら、このFETセンサ3はシリ
コン基板4の素子vA!aにソース領域5及びドレイン
領域6が互いに分離して形成され、その表面に絶縁層で
ある5102層7及びSi3N+層8が順次積層して形
成され、更に3i3N+層8上に作用電極となるAQ層
9が形成されており、このAg層9が被III定液2に
浸漬されている。また、被測定液2には対極となる白金
線10及び参照電極となる飽和カロメルlI!1ill
が浸漬されている。
FIG. 1 is a block diagram of a measurement system using an FET sensor for carrying out the method of the present invention. In FIG. 1, a measuring cell 1 contains a liquid to be measured 2. As shown in FIG. This liquid to be measured 2
A working electrode formed on the gate of the FET sensor 3 is immersed in the. In other words, this FET sensor 3 has an element vA! of the silicon substrate 4! A source region 5 and a drain region 6 are formed separately from each other on the surface thereof, and a 5102 layer 7 and a Si3N+ layer 8, which are insulating layers, are sequentially laminated on the surface thereof, and an AQ layer, which is a working electrode, is further formed on the 3i3N+ layer 8. A layer 9 is formed, and this Ag layer 9 is immersed in the constant liquid 2 to be treated. In addition, the liquid to be measured 2 includes a platinum wire 10 serving as a counter electrode and a saturated calomel lI! serving as a reference electrode. 1ill
is immersed.

この飽和カロメル電極11はポテンシオメータ(P+)
12を介してソース領域5に、ポテンシオメータ(P2
)13を介してAn!9にそれぞれ接続されており、ソ
ース−AQU間の電位が所定の値に設定されている。ま
た、AQ層9と白金線10との間にはパルス発生器14
が接続されている。更に、ソース領域5とトレイン領域
6との間にはドレイン−ソース電圧を与え、ドレイン−
ソース電流を測定するための加電圧及び測定濾溝15が
接続されている。
This saturated calomel electrode 11 is a potentiometer (P+)
12 to the source region 5, a potentiometer (P2
)13 via An! 9, and the potential between the source and AQU is set to a predetermined value. Further, a pulse generator 14 is provided between the AQ layer 9 and the platinum wire 10.
is connected. Further, a drain-source voltage is applied between the source region 5 and the train region 6, and the drain-source voltage is applied between the source region 5 and the train region 6.
An applied voltage and a measuring groove 15 for measuring the source current are connected.

上記より足糸において、被測定液2として1度を10′
3〜1 Q/d℃の範囲で変化させた牛血清アルブミン
溶液を用い、パルス発生器14により白金線10−AQ
FIJ9間1.: 1.04X 10 ’コAの定電流
パルスを10′4S間印加してドレイン電流変化△ld
を測定した。その結果を第2図に示す。
From the above, in the byssus, 1 degree is 10' as the liquid to be measured 2.
Using a bovine serum albumin solution varied in the range of 3 to 1 Q/d°C, a platinum wire 10-AQ was generated using a pulse generator 14.
FIJ9 period 1. : Drain current change △ld by applying constant current pulse of 1.04X 10'A for 10'4S
was measured. The results are shown in FIG.

第2図から明らかなように、牛血清アルブミン濃度とΔ
Idとの間には対応関係があり、本発明方法により被測
定液に溶存している中性物質の2度を測定できることが
わかる。
As is clear from Figure 2, bovine serum albumin concentration and Δ
It can be seen that there is a correspondence relationship between Id and Id, and that the method of the present invention can measure 2 degrees of neutral substances dissolved in the liquid to be measured.

なお、上記実施例では中性物質の定デを行なうFETセ
ンサのみについて説明したが、このFETセンサとその
他の8種イオンを測定するFETセンサとを一体化した
マルチセンサ2a21することも可能である。このよう
なマルチセンサは、特に中性物質を検出することが多い
生化学分析では有効性が高い。
In the above embodiment, only the FET sensor that measures neutral substances was described, but it is also possible to form a multi-sensor 2a21 that integrates this FET sensor with FET sensors that measure eight other types of ions. . Such a multi-sensor is particularly effective in biochemical analysis that often detects neutral substances.

「発明の効果1 以上詳述したように本発明方法によれば、被測定液に溶
存する電気的に中性で比較的分子量の大きい物質を高感
度で測定できる等顕著な効果を奏するものである。
"Effects of the Invention 1 As detailed above, the method of the present invention has remarkable effects such as being able to measure electrically neutral and relatively large molecular weight substances dissolved in the liquid to be measured with high sensitivity. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるFETセンサを用いた
測定系の構成図、第2図は同工1定系で測定されたギ血
清アルブミン濃度とドレイン電流変化との関係を示す特
性図である。 1・・・測定セル、2・・・被測定液、3・・・FET
センサ、4・・・シリコン基板、5・・・ソース領域、
6・・・ドレイン領域、7・・・5i02層、8・・・
Si3N4俯、9・・・AQ層(導電体1)、10・・
・白金線(対極)、11・・・飽和カロメル電極(参照
電極)、12.13・・・ポテンシオメータ、14・・
・パルス発生器、15・・・加電圧及び測定は横。
Figure 1 is a configuration diagram of a measurement system using an FET sensor in an example of the present invention, and Figure 2 is a characteristic diagram showing the relationship between serum albumin concentration and drain current change measured with the same system. be. 1...Measurement cell, 2...Measurement liquid, 3...FET
Sensor, 4... Silicon substrate, 5... Source region,
6...Drain region, 7...5i02 layer, 8...
Si3N4 downward, 9...AQ layer (conductor 1), 10...
・Platinum wire (counter electrode), 11... Saturated calomel electrode (reference electrode), 12.13... Potentiometer, 14...
・Pulse generator, 15... Applied voltage and measurement are horizontal.

Claims (3)

【特許請求の範囲】[Claims] (1)被測定液中に、絶縁ゲート型電界効果トランジス
タのゲート上に形成された作用電極となる導電体層と、
対極とを浸漬し、前記導電体層と対極との間にパルス幅
が10^−^1S以下の電気パルスを印加し、被測定液
に溶存する中性物質の導電体層上への吸着に起因する導
電体層−被測定液界面の容量に対応するゲート電圧変化
又はドレイン電流変化を測定することを特徴とする溶存
物質の測定方法。
(1) A conductive layer serving as a working electrode formed on the gate of an insulated gate field effect transistor in the liquid to be measured;
A counter electrode is immersed, and an electric pulse with a pulse width of 10^-^1S or less is applied between the conductor layer and the counter electrode to adsorb neutral substances dissolved in the liquid to be measured onto the conductor layer. 1. A method for measuring dissolved substances, the method comprising measuring a change in gate voltage or a change in drain current corresponding to the capacitance at the interface between a conductor layer and a liquid to be measured.
(2)電気パルスが定電流矩形波パルス又は定電荷パル
スであることを特徴とする特許請求の範囲第1項記載の
溶存物質の測定方法。
(2) The method for measuring dissolved substances according to claim 1, wherein the electric pulse is a constant current rectangular wave pulse or a constant charge pulse.
(3)作用電極の電位を予め所定の値に設定することを
特徴とする特許請求の範囲第1項記載の溶存物質の測定
方法。
(3) The method for measuring a dissolved substance according to claim 1, characterized in that the potential of the working electrode is set to a predetermined value in advance.
JP16161286A 1986-07-09 1986-07-09 Measurement of dissolved substance Pending JPS6318256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16161286A JPS6318256A (en) 1986-07-09 1986-07-09 Measurement of dissolved substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16161286A JPS6318256A (en) 1986-07-09 1986-07-09 Measurement of dissolved substance

Publications (1)

Publication Number Publication Date
JPS6318256A true JPS6318256A (en) 1988-01-26

Family

ID=15738473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16161286A Pending JPS6318256A (en) 1986-07-09 1986-07-09 Measurement of dissolved substance

Country Status (1)

Country Link
JP (1) JPS6318256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG117459A1 (en) * 1999-02-05 2005-12-29 Samsung Electronics Co Ltd Color image processing method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG117459A1 (en) * 1999-02-05 2005-12-29 Samsung Electronics Co Ltd Color image processing method and apparatus thereof

Similar Documents

Publication Publication Date Title
Lange et al. Chemiresistors based on conducting polymers: A review on measurement techniques
EP0779979B1 (en) Odour sensor
WO2016157117A1 (en) Nanoelectronic sensor pixel
US20030073071A1 (en) Solid state sensing system and method for measuring the binding or hybridization of biomolecules
Poghossian et al. Detecting both physical and (bio‐) chemical parameters by means of ISFET devices
US9217722B2 (en) Multi-electrode chemiresistor
Ali et al. Sensitive cyclodextrin–polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection
JP3094190B2 (en) Chemical measuring device
Dionne Characterization of drug iontophoresis with a fast microassay technique
Sairi et al. Chronoamperometric response at nanoscale liquid–liquid interface arrays
Bousse et al. Combined measurement of surface potential and zeta potential at insulator/electrolyte interfaces
JP2007263914A (en) Measuring apparatus and analyzing element
US20070072286A1 (en) Label-free detection of biomolecules
RU2564516C2 (en) Capacitance measurement method and its application
JP4918237B2 (en) Biological quantification method
Yusof et al. Electrical characteristics of biomodified electrodes using nonfaradaic electrochemical impedance spectroscopy
Schasfoort et al. Influence of an immunological precipitate on DC and AC behaviour of an ISFET
Schöning et al. A novel silicon-based sensor array with capacitive EIS structures
Najafi et al. Capacitive chemical sensor for thiopental assay based on electropolymerized molecularly imprinted polymer
JPS6318256A (en) Measurement of dissolved substance
TWI418783B (en) A method for detecting the concentration of an analyte in a solution and an anesthetic sensor
Oprea et al. Ammonia detection mechanism with polyacrylic acid sensitive layers: Field effect transduction
US20210318264A1 (en) Biosensor using fet element and extended gate, and operating method thereof
Mlika et al. Cu2+-ISFET type microsensors based on thermally evaporated p-tert-butylcalix [9 and 11] arene thin films
Grattarola et al. Computer simulations of the responses of passive and active integrated microbiosensors to cell activity