JPH0193062A - Manufacture of separator for fuel cell - Google Patents

Manufacture of separator for fuel cell

Info

Publication number
JPH0193062A
JPH0193062A JP62248506A JP24850687A JPH0193062A JP H0193062 A JPH0193062 A JP H0193062A JP 62248506 A JP62248506 A JP 62248506A JP 24850687 A JP24850687 A JP 24850687A JP H0193062 A JPH0193062 A JP H0193062A
Authority
JP
Japan
Prior art keywords
nickel
separator
stainless steel
rolling
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62248506A
Other languages
Japanese (ja)
Other versions
JPH0626127B2 (en
Inventor
Minoru Koga
実 古賀
Minoru Hotta
実 堀田
Tetsuya Hirata
哲也 平田
Shogo Inoue
井上 章吾
Seiichi Takeda
誠一 竹田
Horyu Kato
加藤 方隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KINZOKU KOGYO KK
IHI Corp
Nippon Metal Industry Co Ltd
Original Assignee
NIPPON KINZOKU KOGYO KK
IHI Corp
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KINZOKU KOGYO KK, IHI Corp, Nippon Metal Industry Co Ltd filed Critical NIPPON KINZOKU KOGYO KK
Priority to JP62248506A priority Critical patent/JPH0626127B2/en
Publication of JPH0193062A publication Critical patent/JPH0193062A/en
Publication of JPH0626127B2 publication Critical patent/JPH0626127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To decrease deformation in a working process and to reduce cost by forming a separator with a nickel-stainless steel clad material, having a specified clading ratio, in which pure nickel or high nickel steel is formed to fuel gas side and chromium-nickel stainless steel is faced to oxidizing gas side. CONSTITUTION:A separator 5 is made of nickel stainless steel clad material having low nickel ratio, and its nickel side 5a is faced to an anode 7 and the stainless steel side 5b is faced to a cathode 10. The separator 5 is formed by the explosion bonding or welding of a nickel plate and a stainless steel plate and by rolling them to form a thin clad plate and by pressing. Although deformation arises by the difference of rolling property of each material, by limiting the clading ratio of nickel to stainless steel to 0.2-20%, deformation in rolling is decreased. The yield of the clad material is increased and in addition, cost is reduced by thinning the nickel plate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融炭酸塩型の燃料電池に係り、特に燃料電池
本体を積層する燃料電池用セパレータの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molten carbonate fuel cell, and particularly to a method for manufacturing a fuel cell separator in which fuel cell bodies are laminated.

[従来の技術] 燃料電池の原理は、水の電気分解の逆の反応であり、燃
料中の水素と空気中の酸素とを化学的に反応させて、電
気と水とを同時に取り出すものである。
[Prior art] The principle of a fuel cell is the reverse reaction of water electrolysis, in which hydrogen in the fuel and oxygen in the air are chemically reacted to generate electricity and water at the same time. .

これを第2図により説明すると、燃料電池本体1は水素
などの燃料ガスを反応させる多孔質のアノード電極(燃
料極)2と、酸化ガスを反応させるカソード電&(空気
極)3と、この画電極2゜3間に介在する炭酸塩からな
る電解質4とからなっており、図示のようにアノード電
fi2へ水素を含む燃料ガスが供給され、他方カソード
電極3へ酸素と炭酸ガスを含む酸化ガスが供給されるこ
とになり各電極2,3内で図示のように反応し炭酸イオ
ン(CO3−2)を媒介に水素と酸素が反応して発電が
行なわれる。
To explain this with reference to FIG. 2, the fuel cell body 1 includes a porous anode electrode (fuel electrode) 2 that reacts with fuel gas such as hydrogen, a cathode electrode (air electrode) 3 that reacts with oxidizing gas, and a porous anode electrode (fuel electrode) 2 that reacts with fuel gas such as hydrogen; It consists of an electrolyte 4 made of carbonate interposed between the picture electrodes 2 and 3, and as shown in the figure, fuel gas containing hydrogen is supplied to the anode electrode fi2, while oxidation gas containing oxygen and carbon dioxide is supplied to the cathode electrode 3. Gas is supplied, and a reaction occurs within each electrode 2, 3 as shown in the figure, hydrogen and oxygen react via carbonate ions (CO3-2) to generate electricity.

この燃料電池本体1は、セパレータにて多数多段に積層
され高出力が得られるうになっている。
This fuel cell main body 1 is stacked in multiple stages using separators to obtain high output.

セパレータは積層する一方の電池本体1のアノード電極
2へ燃料ガスを供給する流路と、他方の電池本体1のカ
ソード電極3側に酸化ガスを供給する流路が形成され、
電池本体1をセパレータを介して積層することで、各層
で燃料ガスと酸化ガスの流路を形成するようになってい
る。
The separator is formed with a flow path for supplying fuel gas to the anode electrode 2 of one of the stacked battery bodies 1 and a flow passage for supplying oxidizing gas to the cathode electrode 3 side of the other battery body 1,
By stacking the battery bodies 1 with separators in between, flow paths for fuel gas and oxidizing gas are formed in each layer.

[発明が解決しようとする問題点] ところで、溶融炭酸塩型燃料電池は600℃以上の高温
雰囲気下で水と酸素とを反応させて発電を行なうため、
セパレータは高温腐食環境下にある。
[Problems to be Solved by the Invention] By the way, since a molten carbonate fuel cell generates electricity by reacting water and oxygen in a high-temperature atmosphere of 600°C or higher,
Separators are exposed to high-temperature corrosive environments.

すなわち、片面が還元雰囲気下(燃料ガス)にあり、他
面が酸化雰囲気下(酸化ガス)にあり、セパレータは高
温雰囲気下でその両面から酸化と還元作用を受けること
となり、現在この両環境下に耐え、かつコストの安い単
一金属は見出されていない、セパレータは積層により、
その上下の電池を接続すべく集電機能を有し電子伝導性
が要求されるため金属で形成するのがよいが、上述のよ
うに両環境に耐え得る金属は見出されていない、現在ま
での腐食基礎試験から燃料ガス側はニッケル、酸化ガス
側はステンレス鋼又はアロイ800などの材料が有望で
ある。
In other words, one side is in a reducing atmosphere (fuel gas) and the other side is in an oxidizing atmosphere (oxidizing gas), and the separator is exposed to oxidizing and reducing effects from both sides in a high-temperature atmosphere. No single metal has been found that can withstand this and is low in cost.Separators are made by laminating layers.
In order to connect the batteries above and below, it has a current collecting function and requires electronic conductivity, so it is best to form it with metal, but as mentioned above, no metal has been found that can withstand both environments. Based on basic corrosion tests, materials such as nickel for the fuel gas side and stainless steel or Alloy 800 for the oxidizing gas side are promising.

そこで、旧メツキによるメツキ板にてセパレータを構成
することが検討されているが、剥雛現象及びクラックが
入りやすく燃料電池の燃料側にッケルメッキ側)では充
分な耐食性を示さない問題がある。
Therefore, it has been considered to construct the separator with a plating plate made of old plating, but there is a problem in that it is prone to peeling and cracking and does not exhibit sufficient corrosion resistance on the fuel side of the fuel cell (the side on which the nickel plating is applied).

本発明は上記事情を考慮してなされたもので、高温雰囲
気下で燃料ガスと酸化ガスの流路を形成すると共に、そ
の耐食性が良好な燃料電池用セパレータの製造方法を提
供することを目的とする。
The present invention was made in consideration of the above circumstances, and an object of the present invention is to provide a method for manufacturing a fuel cell separator that forms flow paths for fuel gas and oxidizing gas in a high-temperature atmosphere and has good corrosion resistance. do.

[問題点を解決するための手段] 本発明は上記の目的を達成するために、燃料電池を積層
すべくアノード電極とカソード電極間に介設し、アノー
ド側に燃料ガスを、カソード側に酸化ガスの流路を形成
する燃料電池用セパレータの製造方法において、該セパ
レータの燃料ガス側を純ニッケル又は高ニッケル鋼、酸
化ガス側をクロムニッケル鋼からなるクラッド材で該セ
パレータのクラッド比(Ni[厚/全板厚)が0.2〜
20%に形成させた後、プレス加工により流路を形成さ
せるものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides fuel cells that are stacked between an anode electrode and a cathode electrode, and a fuel gas is provided on the anode side and oxidized on the cathode side. In a method for manufacturing a fuel cell separator that forms a gas flow path, the fuel gas side of the separator is made of pure nickel or high nickel steel, and the oxidizing gas side is made of chromium nickel steel, and the cladding ratio of the separator (Ni[ thickness/total plate thickness) is 0.2~
20%, and then a flow path is formed by press working.

[作 用] 上記の構成によれば、N1はアノード側では熱力学的に
安定であり、かつ旧/SUSクラッド鋼のためプレス加
工時の変形が少なく、かつコストも低減できる。
[Function] According to the above configuration, N1 is thermodynamically stable on the anode side, and since it is old/SUS clad steel, there is little deformation during press working, and costs can be reduced.

[実施例] 以下本発明の燃料電池用セパレータの製造方法の好適一
実施例を添付図面に基づいて説明、する。
[Example] A preferred example of the method for manufacturing a fuel cell separator of the present invention will be described below with reference to the accompanying drawings.

先ず、第2図により溶融炭酸塩型燃料電池を説明する。First, a molten carbonate fuel cell will be explained with reference to FIG.

第2図は分解組立図を示し、図において、5は後述する
本発明のセパレータで、その上下にウェットシールフレ
ーム6a、6bが重合される。この上部の燃料ガス側ウ
ェットシールフレーム6a内には多孔質板からなるアノ
ード電極7がそのセパレータ5に重ねられると共に、そ
の上部に炭酸塩からなる電解質タイル8が重合される。
FIG. 2 shows an exploded view, and in the figure, 5 is a separator of the present invention which will be described later, and wet seal frames 6a and 6b are superposed above and below the separator. In this upper fuel gas side wet seal frame 6a, an anode electrode 7 made of a porous plate is stacked on the separator 5, and an electrolyte tile 8 made of carbonate is polymerized on top of the anode electrode 7.

′&た下部の酸化ガス側ウェットシールフレーム6b内
には、パンチ板9を介して多孔質板からなるカソード電
極10が重ねられると共に電解質タイル8が重ねられる
。またこの下方の電解質タイル8の下方にはアノード電
極7が重ねられ、また上方の電解質タイル8の上方には
カソード電極10が重ねられ、以後同様に順次重ねられ
、第1図に示したように積層される。
A cathode electrode 10 made of a porous plate is stacked with a punch plate 9 in between, and an electrolyte tile 8 is stacked in the wet seal frame 6b on the oxidizing gas side in the lower part. Further, an anode electrode 7 is stacked below the lower electrolyte tile 8, and a cathode electrode 10 is stacked above the upper electrolyte tile 8. Laminated.

セパレータ5は、その上部に図示の実線で示した燃料ガ
ス流路11と、下部に図示の点線で示した酸化ガス流路
12とを形成すべくコルゲート状の溝部13を有する。
The separator 5 has a corrugated groove 13 to form a fuel gas flow path 11 shown in solid lines in the upper part and an oxidant gas flow path 12 shown in dotted lines in the lower part.

また、上下のウェットシールフレーム6a、6bは、断
面コ字状の枠で形成され外周がセパレータ5にシーム溶
接又はレーザー溶接工はカシメなどにより接合されると
共に、夫々セパレータ5の各流路11,12に燃料ガス
と酸化ガスとを給排する孔13a、13bを有する。ま
た電解質タイル8、ウェットシールフレーム6a、6b
及びセパレータ5の四隅には燃料カスと酸化ガスの給排
のための孔14が形成される。
The upper and lower wet seal frames 6a and 6b are formed with a U-shaped cross section, and their outer peripheries are joined to the separator 5 by seam welding or caulking by laser welding, and the flow paths 11 of the separator 5, 12 has holes 13a and 13b for supplying and discharging fuel gas and oxidizing gas. Also, electrolyte tiles 8, wet seal frames 6a, 6b
Holes 14 are formed at the four corners of the separator 5 for supplying and discharging fuel scum and oxidizing gas.

さて、セパレータ5は、低Ni比率のクラッドNi/S
O3材が使用され、第1図に示すように1側5aがアノ
ード電極7側に、またSUS側5bがカソ−ド電極10
側に位置するように設けられる。
Now, the separator 5 is a clad Ni/S with a low Ni ratio.
O3 material is used, and as shown in FIG. 1, the first side 5a is the anode electrode 7 side, and the SUS side 5b is the cathode electrode 10
It is located on the side.

このセパレータ5は1板とSUS板とを、爆着又は溶接
により厚いスラブを作り、これを順次圧延をくり返し、
薄板クラッド材とし、これをプレス加工して図示の形状
に形成するものである。
This separator 5 is made by making a thick slab by explosion bonding or welding one plate and an SUS plate, and then rolling this one after another.
This is a thin plate clad material that is pressed into the shape shown in the figure.

この場合、Ni及びSUS材の圧延特性の相違により変
形を生じ、Ni/SUSクラッド材の薄板にしたときの
歩留りが低下する。そして、Ni/SυSクラッド材の
クラッド比を0.2〜20%にすることにより圧延時の
変形が少なくなり、旧/SUS材のクラッド鋼歩留りが
向上できると共に、Niの厚さが薄くなるためNi/S
OSクラッド材のコストダウンを計ることができる。
In this case, deformation occurs due to the difference in rolling characteristics between the Ni and SUS materials, and the yield when forming a thin plate of Ni/SUS clad material decreases. By setting the clad ratio of the Ni/SυS clad material to 0.2 to 20%, deformation during rolling is reduced, the yield of clad steel of the old/SUS material can be improved, and the Ni thickness is reduced. Ni/S
It is possible to reduce the cost of OS cladding materials.

これをさらに説明する。This will be explained further.

SUSのN1の片面クラッド鋼を製造するに当っては、
その製造の難易性、経済性はクラッド鋼の全厚さに対す
るNiの厚さ比率が大いに関係する。その理由は2つあ
る。すなわち、 ■ SUSとNiとは熱膨張係数が異なるために、クラ
ッド鋼製造過程に於ける加熱および冷却時に、この熱膨
張差で変形を起しやすい。このため、熱間圧延において
はロールの噛み込みが往々にしてむずかしくなり、圧延
の成功率は低下する。
When manufacturing SUS N1 single-sided clad steel,
The difficulty and economical efficiency of its production are largely related to the thickness ratio of Ni to the total thickness of the clad steel. There are two reasons for this. That is, (1) SUS and Ni have different coefficients of thermal expansion, and this difference in thermal expansion tends to cause deformation during heating and cooling during the manufacturing process of clad steel. For this reason, during hot rolling, it is often difficult for the rolls to bite, and the success rate of rolling decreases.

また、熱処理時に反りにより加熱炉の炉壁や天井と接触
する等のトラブルを発生しゃすい。
Further, during heat treatment, warping may easily cause troubles such as contact with the furnace wall or ceiling of the heating furnace.

■ SuSとNiとは熱間および冷間圧延において変形
抵抗に大きな差があり、Niの方が延びやすい。
■ There is a large difference in deformation resistance between SuS and Ni during hot and cold rolling, with Ni being easier to stretch.

このなめ、圧延による反り、曲りを起しゃすく、熱間圧
延においてはミスロールになる確率が高い。まな冷間圧
延においては、圧延形状の悪化による圧延の継続の不能
、そして圧延が可能であっても焼鈍酸洗ラインにおける
通板が不可能になることがある。
This licking, warpage and bending due to rolling are likely to occur, and there is a high probability of misrolling during hot rolling. In cold rolling, it may become impossible to continue rolling due to deterioration of the rolled shape, and even if rolling is possible, it may become impossible to pass the sheet through the annealing and pickling line.

これらの対策として、全厚さに対するN1の厚さ比率を
小さくすることが有効である。すなわちN1の厚さ比率
をある範囲内に納めれば、熱膨張係数、塑性変形いずれ
もSuSの影響が支配的になりsUs単独の挙動に近く
なる。
As a countermeasure against these problems, it is effective to reduce the thickness ratio of N1 to the total thickness. That is, if the thickness ratio of N1 is kept within a certain range, the influence of SuS becomes dominant on both the thermal expansion coefficient and plastic deformation, and the behavior becomes close to that of sUs alone.

第3図はNiの厚さ比率と焼鈍時の反り高さの関係を示
す、この場合、N i/5US304クラッド鋼として
、板幅1m、板厚0.41m1、加工度80%とし、焼
鈍時の炉内設定温度を1150℃とし、夫々クラッド比
を変えた場合の反り高さの変化を示しな。
Figure 3 shows the relationship between the Ni thickness ratio and the warpage height during annealing. The temperature in the furnace is set at 1150°C, and the change in warpage height is shown when the cladding ratio is changed.

第3図から判るように、クラッド比が大きくなるほど反
り高さも大きくなり、クラッド比約30%以上となると
ライン焼鈍炉の天井にぶつかるようになる。
As can be seen from FIG. 3, as the cladding ratio increases, the warpage height also increases, and when the cladding ratio exceeds about 30%, it hits the ceiling of the line annealing furnace.

第4図は冷間圧延時の圧延率に対する反りの曲率半径の
関係を示し、夫々クラッド比(5,18,30゜40%
ンを変えて求めたものである。この場合、圧延前の素材
全厚さ4.0nn 、圧延ロール径50m1で行なった
。この第4図から判るように圧延率が高くなると曲率も
大きくなり、特にクラッド比が高いほど、その傾向が高
くなる。第4図は実験的な値であるが、実際の製造現場
での圧延では反りが大きくなると圧延ができなくなり、
これらのデータより、SUS材と同程度の難易度で製造
可能なりラッド比は10%程度までであり、20%を超
えると工程数が増加し、製造の困難度も急激に大きくな
る。
Figure 4 shows the relationship between the radius of curvature of warpage and the rolling ratio during cold rolling.
This was obtained by changing the In this case, the total thickness of the material before rolling was 4.0 nn, and the rolling roll diameter was 50 ml. As can be seen from FIG. 4, as the rolling rate increases, the curvature also increases, and in particular, the higher the cladding ratio, the higher this tendency becomes. Figure 4 shows experimental values, but in actual rolling at manufacturing sites, if the warpage becomes large, rolling becomes impossible.
From these data, it is possible to manufacture it with the same degree of difficulty as SUS material, and the rad ratio is up to about 10%, and when it exceeds 20%, the number of steps increases and the difficulty of manufacturing increases rapidly.

Niの厚さ比率の下限は製造上は特別に明確な限界はな
いが、比率が余りに小さいとNiの酸化ロスや製造過程
における庇の除去工程で下地である鋼の露出が起る可能
性が生じ、クラッドの品質上、不安定なものとなる。こ
のため、2+nm以下の厚さの板に対し、Ni厚さを全
厚さの0.2%以上とすることが必要である。
There is no specific lower limit for the Ni thickness ratio in terms of manufacturing, but if the ratio is too small, there is a possibility that Ni oxidation loss or the underlying steel may be exposed during the eaves removal process in the manufacturing process. This results in unstable cladding quality. Therefore, for a plate having a thickness of 2+ nm or less, it is necessary to make the Ni thickness 0.2% or more of the total thickness.

以上により、Niの厚さの比率の範囲をクラッド鋼全厚
さの0.2〜20%とする。
As described above, the range of the Ni thickness ratio is set to 0.2 to 20% of the total thickness of the clad steel.

このクラッド材0.2〜20%のNi/SUSクラッド
材をセパレータ5の材料として用いることで、上述のよ
うに圧延に支障がなくなると共にセパレータ5のプレス
加工時のプレス加工変形が少なくなり、平面度のよいセ
パレータ5とすることができる。
By using this 0.2 to 20% Ni/SUS cladding material as the material for the separator 5, there is no problem with rolling as described above, and press deformation during press working of the separator 5 is reduced, resulting in a flat surface. The separator 5 can be made with good quality.

また反りの小さなりラヅド材はプレス加工時の金型への
セットが容易に行なえる。
Also, the radiused material with small warpage can be easily set into the mold during press processing.

このセパレータ5はNi/SOSクラッド材を用いる例
で説明したが、使用するSUSとしては、311330
4L、31133161,5US310S 等を用イル
。また、5O3)池lNC0LLOY825或いは耐熱
鋼でらよく、要は低N1なニッケルクロム鋼であればい
かなるものでもよい。
This separator 5 was explained using an example using Ni/SOS clad material, but the SUS used is 311330.
4L, 31133161, 5US310S etc. are used. In addition, it may be made of 5O3) INC0LLOY825 or heat-resistant steel, in short, any nickel-chromium steel with low N1 may be used.

また、N i lllは純ニッケルの他ニッケル含有率
の高いものであれば使用できる。
In addition to pure nickel, any material having a high nickel content can be used as Nill.

また、旧/SOSクラッド材を圧延する例で説明し、そ
の場合のクラッド比を0.2〜20%とする例で説明し
たが、Ni側とSUS側を予めセパレータ形状に形成す
ると共に、これを直接接合するように形成してもよい。
In addition, the explanation was given using an example in which old/SOS cladding material is rolled, and the cladding ratio in that case is set to 0.2 to 20%. They may be formed so as to be directly joined.

なお、ウェブI・シールフレーム6a、6bはプレス加
工により成形されるが、その材質としてアロイ800又
はSuS材等が有望である。また、電解質タイル8との
接触部は溶融炭酸塩で濡れるため、表面にアルミナイジ
ング処理などの耐食コーティングを施す。さらに、カソ
ード電極10はNi多孔質で形成するが酸化ガス及び炭
酸塩により半導体化するが、厚すぎると電気抵抗が大き
くなるなめ、薄くする必要がある。従ってR械的強度が
必要な場合には、図示のパンチ板9にて補強するが、必
ずしも、このパンチ板9を設ける必要はない。また、ア
ノード電極7は1多孔質であり炭酸塩の貯蔵機能を有す
るため板厚は厚い方がよい。
Note that the web I/seal frames 6a, 6b are formed by press working, and alloy 800 or SuS material is a promising material. Furthermore, since the contact portion with the electrolyte tile 8 will be wetted with molten carbonate, the surface is coated with a corrosion-resistant coating such as aluminizing treatment. Further, the cathode electrode 10 is formed of porous Ni, which becomes a semiconductor with oxidizing gas and carbonate, but if it is too thick, the electrical resistance increases, so it needs to be made thin. Therefore, when R mechanical strength is required, it is reinforced with the illustrated punch plate 9, but it is not necessarily necessary to provide this punch plate 9. Further, since the anode electrode 7 is porous and has a carbonate storage function, it is better to have a thicker plate.

この場合、充分な機械的強度を有するのでパンチ板材等
による補強は不要である。さらに上下のウェットシール
フレーム6a、6b内に画電極7゜10及び電解質タイ
ル8をセットすることで電極周辺部の溶融炭酸塩の漏洩
やタイルにクラックが入るこ左を防止できる。
In this case, it has sufficient mechanical strength, so reinforcement with punched plates or the like is not necessary. Further, by setting the picture electrode 7.10 and the electrolyte tile 8 in the upper and lower wet seal frames 6a and 6b, leakage of molten carbonate around the electrodes and cracks in the tiles can be prevented.

[発明の効果] 以上説明してきたことから明らかなように、本発明によ
れば次のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1)  セパレータを純ニッケル(或いは高ニッケル
)とオーステナイト系クロムニッケル鋼からなるクラッ
ド材にて形成し、このニッケル側をアノード電極側にオ
ーステナイト系クロムニッケル鋼側をカソード電極側に
位置させることで、高温雰囲気下で燃料ガス及び酸化ガ
スに接しても良好な耐食性を有するものとするこ とができる。
(1) The separator is made of a cladding material made of pure nickel (or high nickel) and austenitic chromium-nickel steel, and the nickel side is placed on the anode electrode side and the austenitic chromium-nickel steel side is placed on the cathode electrode side. , it can have good corrosion resistance even when exposed to fuel gas and oxidizing gas in a high-temperature atmosphere.

(2)  セパレータをクラッド材とすることでN1側
の剥離やクラックなどが生じない。
(2) By using a clad material as the separator, peeling and cracking on the N1 side will not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセパレータを用いた燃料電池の要部断
面図、第2図は第1図の分解組立図、第3図は本発明に
おいてクラッド比に対する反りの関係を示す図、第4図
は本発明において冷間圧延時の圧延率に対する曲率の関
係を示す図、第5図は溶融炭酸塩型燃料電池の原理を示
す図である。 図中、5はセパレータ、5aはNi側、5bはSUS側
、7はアノード電極、8は電解質タイル、10はカソー
ド電極である。 特許出願人  石川島播磨重工業株式会社日本金属工業
株式会社 代理人弁理士  絹   谷   信  雄第2図 Ni/全厚クラッド比(%) 第3図 圧延率
FIG. 1 is a sectional view of essential parts of a fuel cell using the separator of the present invention, FIG. 2 is an exploded view of FIG. 1, FIG. 3 is a diagram showing the relationship between warpage and cladding ratio in the present invention, and FIG. The figure is a diagram showing the relationship between curvature and rolling rate during cold rolling in the present invention, and FIG. 5 is a diagram showing the principle of a molten carbonate fuel cell. In the figure, 5 is a separator, 5a is a Ni side, 5b is a SUS side, 7 is an anode electrode, 8 is an electrolyte tile, and 10 is a cathode electrode. Patent Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Japan Metal Industry Co., Ltd. Representative Patent Attorney: Nobuo Kinutani Figure 2: Ni/total thickness cladding ratio (%) Figure 3: Rolling ratio

Claims (1)

【特許請求の範囲】 燃料電池を積層すべくアノード電極とカソ ード電極間に介設し、アノード側に燃料ガスを、カソー
ド側に酸化ガスの流路を形成する燃料電池用セパレータ
の製造方法において、該セパレータの燃料ガス側を純ニ
ッケル又は高ニッケル鋼、酸化ガス側をクロムニッケル
鋼からなるクラッド材で該セパレータのクラッド比(N
i板厚/全板厚)が0.2〜20%に形成させた後、プ
レス加工により流路を形成させることを特徴とする燃料
電池用セパレータの製造方法。
[Claims] A method for manufacturing a fuel cell separator, which is interposed between an anode electrode and a cathode electrode in order to stack fuel cells, and forms a flow path for fuel gas on the anode side and oxidant gas on the cathode side, The separator's cladding ratio (N
1. A method for producing a fuel cell separator, which comprises forming a separator to a ratio (i plate thickness/total plate thickness) of 0.2 to 20%, and then forming a flow path by press working.
JP62248506A 1987-10-01 1987-10-01 Method for manufacturing fuel cell separator Expired - Fee Related JPH0626127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248506A JPH0626127B2 (en) 1987-10-01 1987-10-01 Method for manufacturing fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248506A JPH0626127B2 (en) 1987-10-01 1987-10-01 Method for manufacturing fuel cell separator

Publications (2)

Publication Number Publication Date
JPH0193062A true JPH0193062A (en) 1989-04-12
JPH0626127B2 JPH0626127B2 (en) 1994-04-06

Family

ID=17179193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248506A Expired - Fee Related JPH0626127B2 (en) 1987-10-01 1987-10-01 Method for manufacturing fuel cell separator

Country Status (1)

Country Link
JP (1) JPH0626127B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374057A (en) * 1989-05-03 1991-03-28 Inst Of Gas Technol Fuel cell stack which acts as manifold completely at the inside
US5077148A (en) * 1989-05-03 1991-12-31 Institute Of Gas Technology Fully internal manifolded and internal reformed fuel cell stack
WO1992002057A1 (en) * 1990-07-24 1992-02-06 Kabushiki Kaisha Toshiba Separator and its manufacturing method
GR900100646A (en) * 1990-04-10 1992-07-30 Inst Gas Technology Fully internal manifolded fuel cell stuck
WO2003100900A1 (en) * 2002-05-21 2003-12-04 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
KR100445793B1 (en) * 2001-09-28 2004-08-30 김용수 Fire extinguishing system
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975575A (en) * 1982-10-22 1984-04-28 Hitachi Ltd Molten carbonate type fuel cell
JPS60107267A (en) * 1983-10-18 1985-06-12 インステイチユート・オブ・ガス・テクノロジー Wet seal of high temperature fuel battery and method of suppressing corrosion thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975575A (en) * 1982-10-22 1984-04-28 Hitachi Ltd Molten carbonate type fuel cell
JPS60107267A (en) * 1983-10-18 1985-06-12 インステイチユート・オブ・ガス・テクノロジー Wet seal of high temperature fuel battery and method of suppressing corrosion thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045413A (en) * 1989-05-03 1991-09-03 Institute Of Gas Technology Fully internal mainfolded fuel cell stack
US5077148A (en) * 1989-05-03 1991-12-31 Institute Of Gas Technology Fully internal manifolded and internal reformed fuel cell stack
JPH0374057A (en) * 1989-05-03 1991-03-28 Inst Of Gas Technol Fuel cell stack which acts as manifold completely at the inside
GR900100646A (en) * 1990-04-10 1992-07-30 Inst Gas Technology Fully internal manifolded fuel cell stuck
WO1992002057A1 (en) * 1990-07-24 1992-02-06 Kabushiki Kaisha Toshiba Separator and its manufacturing method
US5378247A (en) * 1990-07-24 1995-01-03 Kabushiki Kaisha Toshiba Separators and method of manufacturing the same
KR100445793B1 (en) * 2001-09-28 2004-08-30 김용수 Fire extinguishing system
WO2003100900A1 (en) * 2002-05-21 2003-12-04 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
GB2405029A (en) * 2002-05-21 2005-02-16 Idatech Llc Bipolar plate assembly fuel cell stacks and fuel cell systems incorporating the same
US6858341B2 (en) 2002-05-21 2005-02-22 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
GB2405029B (en) * 2002-05-21 2005-11-16 Idatech Llc Bipolar plate assembly fuel cell stacks and fuel cell systems incorporating the same
US7147677B2 (en) 2002-05-21 2006-12-12 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
US7341799B2 (en) 2002-08-09 2008-03-11 Toyota Shatai Kabushiki Kaisha Separator from a fuel cell having first and second portions of different materials

Also Published As

Publication number Publication date
JPH0626127B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US5902692A (en) Battery with planar high temperature fuel cells
US20140030632A1 (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
US7985512B2 (en) Bipolar separator plate for use in a fuel cell assembly and for preventing poisoning of reforming catalyst
US5811202A (en) Hybrid molten carbonate fuel cell with unique sealing
JPH0193062A (en) Manufacture of separator for fuel cell
Jian et al. Oxidation behavior of superalloys in oxidizing and reducing environments
JP4889910B2 (en) Low temperature fuel cell separator and method for producing the same
CA2446817C (en) Laminated structure of flat plate type solid oxide fuel cell
US5558948A (en) Fuel cell anode and fuel cell
US6953636B2 (en) Press separator for fuel cell made of stainless steel press formed in contiguous corrugations
JP5217755B2 (en) Stainless steel for fuel cell separator and fuel cell separator
JP2002075408A (en) Separator for fuel cell
JP5108986B2 (en) Fuel cell separator
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JP2003249237A (en) Manufacturing method of metal separator for fuel cell
US20100330389A1 (en) Skin pass for cladding thin metal sheets
JPH0315158A (en) Separator for fuel cell
KR102571306B1 (en) Metallic Separator gasket for fuel cell using Multimaterial
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JPS6151769A (en) Manufacture of molten carbonate fuel cell
KR100394777B1 (en) Surface treatment of molten carbonate fuel cell separator
JPH01246766A (en) Cooling plate for fuel cell
JPH08273681A (en) Manufacture of separator of solid electrolyte fuel cell
KR100318206B1 (en) A heat treatment method for separator of molten carbonate fuel cell
JP2002216787A (en) Aluminum-tin clad rolling method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees