JPH0192720A - Liquid crystal optical shutter - Google Patents

Liquid crystal optical shutter

Info

Publication number
JPH0192720A
JPH0192720A JP25002187A JP25002187A JPH0192720A JP H0192720 A JPH0192720 A JP H0192720A JP 25002187 A JP25002187 A JP 25002187A JP 25002187 A JP25002187 A JP 25002187A JP H0192720 A JPH0192720 A JP H0192720A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
electrode
cell
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25002187A
Other languages
Japanese (ja)
Other versions
JPH0740095B2 (en
Inventor
Shigeo Sugihara
杉原 茂雄
Shinichi Shiwa
志和 新一
Yuji Oba
有二 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25002187A priority Critical patent/JPH0740095B2/en
Publication of JPH0192720A publication Critical patent/JPH0192720A/en
Publication of JPH0740095B2 publication Critical patent/JPH0740095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To execute a diaphragm operation by one kind of signal by constituting the titled shutter so that the ratio R1/R0 of a resistance R0 of a liquid crystal, and a surface resistance R1 of at least one of two pieces of opposed transparent conductive substrates becomes larger than '1'. CONSTITUTION:A liquid crystal cell 1 is prepared by using transparent electrodes 9, 10 whose surface resistance is the same as or larger than a resistance of a liquid crystal, and when a voltage is applied between two pieces of transparent electrodes 9, 10, a potential difference distribution is generated in the surface of the liquid crystal cell 1, therefore, a light transmission part and a light cutting-off part corresponding thereto are formed in a cell window. Also, by varying an applied voltage, a ratio of the light transmission part and the light cutting-off part is varied, therefore, a numerical aperture can be controlled freely. Moreover, by a shape of metallic electrodes 5-8 formed on the transparent electrodes 9, 10, the light transmission part of an arbitrary shape can be formed. In such a way, a diaphragm operation can be executed by one kind of voltage signal.

Description

【発明の詳細な説明】 (1)発明の属する技術分野 本発明は、液晶セルの動作により、光透過面積の変調が
可能な光シャッタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to an optical shutter whose light transmission area can be modulated by the operation of a liquid crystal cell.

(2)従来の技術とその問題点 従来、液晶は文字や画像の表示装置に用いられるととも
に、光の透過を制御する光シャッタとして使用されてき
た。このうち、光の透過を制御する光シャッタとして用
いる場合は、光が透過するかまたは透過しないかの2値
として使うことが一般的であった。これに対して我々は
、透明電極の両側に金属電極を持つ液晶セル牽作り、同
一透明基板上の金属電極に電位勾配を設けることによっ
て、液晶セルに光透過部と光不透過部を作らせ(以下こ
れを絞り動作という)、前記電位勾配を制御することに
より、光透過部と光不透過部の割合を任意に変化させ得
ることを見出した(特願昭617181912号)。し
かしながら、この方法によって絞り動作を行わせるため
には、液晶セルに少なくとも2種類の電圧信号を送る必
要があり、またそのため配線数も多くなるという欠点が
あった。
(2) Conventional techniques and their problems Conventionally, liquid crystals have been used in display devices for characters and images, and have also been used as optical shutters to control the transmission of light. Among these, when used as an optical shutter for controlling light transmission, it has generally been used as a binary value: either light is transmitted or not. In response to this, we created a liquid crystal cell with metal electrodes on both sides of a transparent electrode, and created a light-transmitting part and a light-opaque part in the liquid crystal cell by creating a potential gradient in the metal electrodes on the same transparent substrate. (hereinafter referred to as aperture operation), it has been found that by controlling the potential gradient, the ratio of light-transmitting areas to light-opaque areas can be changed arbitrarily (Japanese Patent Application No. 617181912). However, in order to perform the aperture operation using this method, it is necessary to send at least two types of voltage signals to the liquid crystal cell, which also has the disadvantage of requiring a large number of wiring lines.

(3)発明の目的 本発明は、これらの欠点を解決するため、1種類の信号
で絞り動作を行わせるように液晶セルを改良した液晶光
シャッタを提供するものである。
(3) Object of the Invention In order to solve these drawbacks, the present invention provides a liquid crystal optical shutter in which the liquid crystal cell is improved so that the aperture operation is performed using one type of signal.

(4)発明の構成および作用 以下図面により本発明の詳細な説明する。(4) Structure and operation of the invention The present invention will be explained in detail below with reference to the drawings.

第1図は本発明に係る液晶セルの分解状態の例を示す斜
視図であり、1は液晶セル、2は一方の透明基板(以下
これを下板と言う)、3は他方の透明基板(以下これを
上板とう言う)、4はスペーサ、5,6は前記下板2の
金属電極、7.8は前記上板3の金属電極、9,10は
透明電極である。
FIG. 1 is a perspective view showing an example of the disassembled state of the liquid crystal cell according to the present invention, in which 1 is the liquid crystal cell, 2 is one transparent substrate (hereinafter referred to as the lower plate), and 3 is the other transparent substrate ( 4 is a spacer, 5 and 6 are metal electrodes of the lower plate 2, 7.8 are metal electrodes of the upper plate 3, and 9 and 10 are transparent electrodes.

ここで、上板2の上またはおよび下板3の下には偏光板
が必要となる場合があるが、ここでは図が繁雑になるた
め省略しである。これらの上板2とスペーサ4と下板3
とを互いに密着し、スペーサ4により生じた上板と下板
の間隙に液晶を入れたものが液晶セルlである。これに
より液%+ルには電極5.6.7.8で囲まれた四角形
の光透過部a bcdが形成される(以下これをセル窓
と言う)。
Here, a polarizing plate may be required above the upper plate 2 or below the lower plate 3, but it is omitted here because it would complicate the drawing. These upper plate 2, spacer 4 and lower plate 3
A liquid crystal cell 1 is one in which the upper and lower plates are brought into close contact with each other and a liquid crystal is inserted into the gap between the upper and lower plates created by the spacer 4. As a result, a rectangular light transmitting part a bcd surrounded by the electrodes 5,6,7,8 is formed in the liquid (hereinafter this will be referred to as a cell window).

ここで透明電極9,10には酸化インジウムまたは酸化
すず系透明導電膜からなる電極(通常ITO膜電極また
はネサ膜電極と呼ばれる)を用い、金属電極5〜8には
アルミニウムまたはクロムを蒸着した金属電極を用いた
が、これらはいずれも本例に限定される必要はなく、金
属電極としては透明電極より抵抗が小さく、光を遮断す
るものであれば何であってもよい。
Here, the transparent electrodes 9 and 10 are electrodes made of indium oxide or tin oxide transparent conductive film (usually called ITO film electrodes or NESA film electrodes), and the metal electrodes 5 to 8 are metals on which aluminum or chromium is vapor-deposited. Although electrodes were used, these are not necessarily limited to this example, and any metal electrode may be used as long as it has lower resistance than a transparent electrode and blocks light.

次にこの液晶セル1の基本動作を図面により説明する。Next, the basic operation of this liquid crystal cell 1 will be explained with reference to the drawings.

まず従来の絞り動作方法を説明する。第1図の下板2上
の金属電極5,6の内側の境界を各々a、bとする。電
極5に正の電圧を印加し、電極6に負の電圧を印加する
と、電極5から電極6に向かって電流が透明電極9中を
流れる。このとき透明電極9が抵抗体として作用するた
め、透明電極9には電極端aから電極端すに向かってほ
ぼ直線的に降下する電圧分布が形成される。この様子を
示したのが第2図(1)であり、図中の実線■が電極端
a、b間に形成された電圧分布である。
First, a conventional aperture operation method will be explained. The inner boundaries of the metal electrodes 5 and 6 on the lower plate 2 in FIG. 1 are designated as a and b, respectively. When a positive voltage is applied to the electrode 5 and a negative voltage is applied to the electrode 6, a current flows through the transparent electrode 9 from the electrode 5 toward the electrode 6. At this time, since the transparent electrode 9 acts as a resistor, a voltage distribution is formed in the transparent electrode 9 that drops almost linearly from the electrode end a toward the electrode end. This situation is shown in FIG. 2 (1), where the solid line ▪ represents the voltage distribution formed between the electrode ends a and b.

一方、上板3の電極7と8を接地すると、透明電極10
の電圧は全面に亘って0■であるから、図中■のような
電圧分布が形成される。従って、2枚の透明電極9と1
0の間には■と■の電圧差分の電位差が生じ、これがこ
れらの透明電極9.10に挟まれた液晶に印加されるこ
とになる。ところで−般に、液晶には動作閾値■いなる
ものが存在し、液晶にかかる電圧の絶対値が閾値■い以
下であれば液晶は動作せず、電圧の絶対値が閾値■い以
上になれば液晶が動作するという性質を有してl、する
On the other hand, when electrodes 7 and 8 of the upper plate 3 are grounded, the transparent electrode 10
Since the voltage is 0.2 over the entire surface, a voltage distribution as shown in the figure is formed. Therefore, the two transparent electrodes 9 and 1
0, a potential difference equal to the voltage difference between ■ and ■ is generated, and this is applied to the liquid crystal sandwiched between these transparent electrodes 9 and 10. By the way, in general, liquid crystals have something called an operating threshold. If the absolute value of the voltage applied to the liquid crystal is less than the threshold, the liquid crystal will not operate, and the absolute value of the voltage will not exceed the threshold. For example, liquid crystals have the property of operating.

従って、第2図(1)において、2枚の透明電極間の電
位差が点線で示した液晶の動作閾値■いを越える領域4
2において液晶は動作するが、動作閾値Vlを越えない
領域41においては液晶は動作しない。
Therefore, in FIG. 2 (1), the area 4 where the potential difference between the two transparent electrodes exceeds the liquid crystal operating threshold indicated by the dotted line.
2, the liquid crystal operates, but the liquid crystal does not operate in the region 41 where the operating threshold Vl is not exceeded.

−例として液晶セル1をツイストネマチックセルとし、
2枚の偏光板をクロスニコル状態にすれば、領域41は
光透過状態となり、領域42は光遮断状態となる。この
状態を液晶セル1の上面から見ると第2図(2)のよう
になり、セルの両側に光遮断領域42ができ、中央部領
域41のみが光透過状態になる。
-As an example, liquid crystal cell 1 is a twisted nematic cell,
When the two polarizing plates are placed in a crossed nicol state, the region 41 becomes a light transmitting state and the region 42 becomes a light blocking state. When this state is viewed from the top of the liquid crystal cell 1, it becomes as shown in FIG. 2 (2), with light blocking regions 42 being formed on both sides of the cell, and only the central region 41 being in a light transmitting state.

以上が従来の液晶セルの絞り動作方法についての説明で
ある。
The above is an explanation of the conventional aperture operation method of a liquid crystal cell.

本発明による液晶光シャッタは、前記と同等の絞り動作
を、電極5,6間に電位差を設けることなく、単に2枚
の透明電極9,10間に電位差を設けることによって実
現できる機能を有するものである。以下、これについて
動作原理を詳細に説明する。
The liquid crystal optical shutter according to the present invention has the function of realizing the same aperture operation as described above by simply providing a potential difference between the two transparent electrodes 9 and 10 without providing a potential difference between the electrodes 5 and 6. It is. Hereinafter, the principle of operation will be explained in detail.

第1図において、2枚の透明電極9.10のうち少なく
とも一方に液晶の抵抗(R,とする)と同等またはそれ
以上の表面抵抗(R+とする)を持つものを使用する。
In FIG. 1, at least one of the two transparent electrodes 9 and 10 has a surface resistance (referred to as R+) equal to or greater than the resistance (referred to as R) of the liquid crystal.

例えば、下板2の透明電極9に液晶の抵抗の10倍の表
面抵抗を持つ透明電極を使用し、上板3の透明電極10
には液晶の抵抗の1/10以下の表面抵抗を持つ透明電
極を使用した。下板2の電極5に電圧v0を印加し、電
極6を開放とし、上板3の電極7,8を接地した。この
とき、液晶セル端子a、b間には第3図(1)に示すよ
うな電圧分布■が形成された。上板電極は接地されてい
るので、電圧分布■そのものが液晶にかかる電圧となり
、従って、第2図(1)と同様の原理でこの電圧が液晶
の動作閾値Vいを越える領域42において液晶が動作し
、動作閾値Vいを越えない領域41においては液晶は動
作しない。その結果偏光板をクロスニコル状態にしたと
きの液晶セルは第2図(2)に示すような光透過分布を
示す。ここで領域41は光透過領域、領域42は光遮断
領域を示すことは前記と同様である。ここに述べたよう
な方法により第3図(1)に示すような電圧分布■が生
じる原因は、液晶セルの電極5,6間の透明電極抵抗(
R1)が、液晶の抵抗(Ro)に比べて10倍の大きさ
を持つことによる。即ち、この液晶セルにおいては、端
子5から離れるに従い、下板2の透明電極9から接地さ
れた上板3の透明電極10へ流れる電流が、透明電極9
の面内を流れる電流に比べて大きくなるために、■のよ
うな電圧降下が必然的に生じるのである。
For example, the transparent electrode 9 on the lower plate 2 is a transparent electrode with a surface resistance 10 times that of the liquid crystal, and the transparent electrode 10 on the upper plate 3 is
A transparent electrode with a surface resistance less than 1/10 of the resistance of liquid crystal was used. A voltage v0 was applied to the electrode 5 of the lower plate 2, the electrode 6 was opened, and the electrodes 7 and 8 of the upper plate 3 were grounded. At this time, a voltage distribution ■ as shown in FIG. 3(1) was formed between the liquid crystal cell terminals a and b. Since the upper plate electrode is grounded, the voltage distribution itself becomes the voltage applied to the liquid crystal, and therefore, based on the same principle as in Fig. 2 (1), the liquid crystal is activated in the region 42 where this voltage exceeds the operating threshold V of the liquid crystal. The liquid crystal does not operate in a region 41 in which it operates and does not exceed the operating threshold value V. As a result, when the polarizing plates are placed in a crossed nicol state, the liquid crystal cell exhibits a light transmission distribution as shown in FIG. 2 (2). Here, the region 41 is a light transmitting region, and the region 42 is a light blocking region, as described above. The reason why the voltage distribution shown in FIG. 3 (1) occurs by the method described here is due to the transparent electrode resistance (
This is because R1) is 10 times larger than the resistance (Ro) of the liquid crystal. That is, in this liquid crystal cell, the current flowing from the transparent electrode 9 of the lower plate 2 to the transparent electrode 10 of the grounded upper plate 3 increases as the distance from the terminal 5 increases.
Since the current is larger than that flowing in the plane of , a voltage drop as shown in .

第1図の電極5,6に電圧v0を印加し、電極7.8を
接地した場合は、同様の原理に基づいて、第3図(3)
のような電圧分布■が生じる。この場合においても同様
に、液晶にかかる電圧が、液晶の動作閾値■いを越える
領域42においてのみ液晶が動作し、第3図(4)のよ
うな光透過分布を示す。
When voltage v0 is applied to electrodes 5 and 6 in Fig. 1 and electrode 7.8 is grounded, based on the same principle, Fig. 3 (3)
A voltage distribution ■ occurs as shown below. In this case as well, the liquid crystal operates only in the region 42 in which the voltage applied to the liquid crystal exceeds the operating threshold value 1 of the liquid crystal, and exhibits a light transmission distribution as shown in FIG. 3(4).

次に、2枚の透明電極9,10として、ともに液晶の1
0倍の表面抵抗を持つ透明電極を用いた場合の液晶セル
の絞り動作について説明する。電極5゜6に電圧v0を
印加し、電圧7,8を接地すると、第3図(5)に示す
ような電圧分布が生じる。この図で■は透明電極9の電
極端a、b間に生じる電圧分布であり、■は透明電極1
0の電極端c、d間に生じる電圧分布である。ここで、
電極端a、b間のセル位置は横軸に、電極端c、d間の
セル位置を右縦軸にとっである。この液晶セルにおいて
、液晶にかかる電圧は■と■の差であり、その電位差分
布はセル中点を中心とする同心円状になり、動作闇値を
越える領域はセル中央を中心とする円の外側の領域とな
る。−その結果、゛光透、過分布は、第3図(6)に示
すような形となり、円形の絞り状態が形成される。
Next, as two transparent electrodes 9 and 10, both of them are made of liquid crystal.
The aperture operation of a liquid crystal cell when a transparent electrode with a surface resistance of 0 times is used will be explained. When voltage v0 is applied to electrode 5.6 and voltages 7 and 8 are grounded, a voltage distribution as shown in FIG. 3(5) is generated. In this figure, ■ is the voltage distribution generated between the electrode ends a and b of the transparent electrode 9, and ■ is the voltage distribution generated between the electrode ends a and b of the transparent electrode 9, and
This is the voltage distribution that occurs between electrode ends c and d at zero. here,
The cell position between electrode ends a and b is taken on the horizontal axis, and the cell position between electrode ends c and d is taken on the right vertical axis. In this liquid crystal cell, the voltage applied to the liquid crystal is the difference between ■ and ■, and the potential difference distribution is concentric circles centered at the cell center, and the area exceeding the operating dark value is outside the circle centered at the cell center. This is the area of - As a result, the light transmission and overdistribution take a shape as shown in FIG. 3 (6), and a circular aperture state is formed.

次に、透明電極9として液晶抵抗の10倍の表面抵抗を
持つ透明電極を用い、透明電極10として液晶抵抗と等
しい表面抵抗を持つ透明電極を用いて液晶セルを作製し
た。電極5,6に電圧v0を印加し、電極7.8を接地
すると、第3図(7)に示すような電圧分布■、■が形
成された。電圧分布■。
Next, a liquid crystal cell was fabricated using a transparent electrode having a surface resistance 10 times the liquid crystal resistance as the transparent electrode 9 and a transparent electrode having a surface resistance equal to the liquid crystal resistance as the transparent electrode 10. When a voltage v0 was applied to the electrodes 5 and 6 and the electrodes 7 and 8 were grounded, voltage distributions ■ and ■ as shown in FIG. 3 (7) were formed. Voltage distribution■.

■の差に相当する電圧が液晶にかかるため、その電位差
分布はセル中点を軸中心とする楕円形になることがわか
り、その結果、第3図(8)に示すような光透過分布が
形成された。
Since a voltage corresponding to the difference of Been formed.

次に、透明電極9として液晶抵抗と等しい表面抵抗を持
つ透明電極を用い、透明電極10として液晶抵抗の10
倍の表面抵抗を持つ透明電極を用いて液晶セルを作製し
た。電極5,6に電圧■。を印加し、電極7.8を接地
すると、第3図(8)に示すような電圧分布■5■が形
成された。この場合も第3図(7)と同様に楕円形の電
位差分布が液晶にかかり、光透過分布は第3図00)に
示すようになり、絞りの形は(8)と同じで、長袖と短
軸の方向が逆転した楕円形になった。
Next, a transparent electrode having a surface resistance equal to the liquid crystal resistance is used as the transparent electrode 9, and a transparent electrode having a surface resistance equal to the liquid crystal resistance is used as the transparent electrode 10.
A liquid crystal cell was fabricated using a transparent electrode with twice the surface resistance. Voltage ■ on electrodes 5 and 6. was applied and the electrode 7.8 was grounded, a voltage distribution ``5'' as shown in FIG. 3(8) was formed. In this case as well, an elliptical potential difference distribution is applied to the liquid crystal as in Figure 3 (7), the light transmission distribution is as shown in Figure 3 (00), and the shape of the aperture is the same as in (8). It now has an elliptical shape with the direction of the minor axis reversed.

なお第3図(5)、 (7)、 (9)の電圧分布を示
した液晶セルで、端子5.6を接地し、端子7,8に電
圧v0を印加した場合も同様の電位差分布が生じ、それ
ぞれ(6)、 (8)、 GO)と同一の光透過分布を
示すことが判明した。
Furthermore, in a liquid crystal cell that shows the voltage distributions shown in Figure 3 (5), (7), and (9), when terminals 5 and 6 are grounded and voltage v0 is applied to terminals 7 and 8, a similar potential difference distribution will occur. (6), (8), and GO), respectively.

以上の絞り動作において、実効的に電圧■。を変えると
液晶セル内に生じる電圧分布が変化し、その結果、液晶
の動作闇値を越える境界が移動し、絞りの大きさすなわ
ち開口率が変化した。
In the above aperture operation, the effective voltage ■. Changing , the voltage distribution generated within the liquid crystal cell changed, and as a result, the boundary beyond the operating darkness value of the liquid crystal moved, and the size of the aperture, that is, the aperture ratio, changed.

次に本発明に係る液晶セルの液晶の抵抗と透明電極の表
面抵抗の関係について説明する。第1図において、上板
3の透明電極10の表面抵抗は液晶の抵抗に比べて十分
小さいとする。2枚の透明電極9.IOで挟まれた液晶
の抵抗をRo(Ω)とし、下板2の透明電極9の電極5
.6間の抵抗をR。
Next, the relationship between the resistance of the liquid crystal and the surface resistance of the transparent electrode in the liquid crystal cell according to the present invention will be explained. In FIG. 1, it is assumed that the surface resistance of the transparent electrode 10 of the upper plate 3 is sufficiently smaller than the resistance of the liquid crystal. Two transparent electrodes9. Let the resistance of the liquid crystal sandwiched by IO be Ro (Ω), and the electrode 5 of the transparent electrode 9 on the lower plate 2
.. The resistance between 6 and 6 is R.

(Ω)とすると、液晶セルの電極5.6間に形成さp。(Ω), p is formed between the electrodes 5 and 6 of the liquid crystal cell.

第4図はその一例を示したものである。電極間抵抗RI
と液晶の抵抗R0が等しい場合、すなわち、K=1のと
き、液晶セルの電極端a、b間には第4図(1)のよう
な電圧分布■が形成された。またに=10の場合は(2
)のような電圧分布■が形成され、K=50の場合は(
3)のような電圧分布■が形成された。これかられかる
ようにKの値が太き(なるに従って、セル中央の電圧降
下の程度が大きくなる。この電圧分布曲線■が液晶の動
作闇値VLhを越える領域のみにおいて液晶が動作する
ので、絞り動作を行わせるためには、電圧分布曲線が闇
値電圧■いと交叉する必要がある。液晶の動作閾値■い
は液晶によって決まってしまうので、電圧分布曲線が液
晶の動作闇値と交叉するためには、適当なKの値を持つ
液晶セルを作製し、また、不透明電極に印加する電圧■
。を適当な範囲に設定する必要がある。第4図の結果か
られかるように適当な絞り動作を行わせるためにはKの
値はO2lより大きい必要がある。
FIG. 4 shows an example. Interelectrode resistance RI
When the resistance R0 of the liquid crystal and the resistance R0 of the liquid crystal were equal, that is, when K=1, a voltage distribution (2) as shown in FIG. 4(1) was formed between the electrode ends a and b of the liquid crystal cell. Also, if = 10, (2
) is formed, and when K=50, (
A voltage distribution ■ as shown in 3) was formed. As we will see, as the value of K increases, the degree of voltage drop at the center of the cell increases.The liquid crystal operates only in the region where this voltage distribution curve ■ exceeds the operating dark value VLh of the liquid crystal, so the aperture In order to operate, the voltage distribution curve must intersect with the dark value voltage.The operating threshold of the liquid crystal is determined by the liquid crystal, so the voltage distribution curve must intersect with the operating dark value of the liquid crystal. To do this, we prepared a liquid crystal cell with an appropriate value of K, and also set the voltage to be applied to the opaque electrode.
. needs to be set within an appropriate range. As can be seen from the results in FIG. 4, the value of K needs to be larger than O2l in order to perform an appropriate aperture operation.

すなわち、Kの値が0.1より小さいと、電圧降下がほ
とんど起こらないため、■。の値をどのように設定して
も、液晶の動作閾値■いと交叉しないため絞り動作が起
こらない。また、Kの値に上限はないが、Kが無限に大
きくなった場合、電圧分布■は大きく下に凸の曲線とな
り、セル中央部にかかる電圧が極めて小さくなるため、
電極に印加する電圧v0を相当大きくしなければ液晶が
動作しなくなる。従って、■。が現実的な値の範囲で、
電圧分布曲線■が液晶の動作闇値と交叉し、その交叉点
が■。を変化させることにより、電極間a、bの間ので
きるだけ広い範囲を移動するためには、K=1〜100
0であることが望ましい。これをさらに詳しく説明する
と、Kが1より小さい場合は、印加電圧■。が動作閾値
■いより少し大きいだけでよく、比較的小さな印加電圧
で絞り動作が起こるが、■。を僅か変化することによっ
て絞りの大きさ、すなわち開口率が大きく変化するため
、開口率を精度よく変化させようとするときの印加電圧
の許容範囲、すなわち動作マージンが小さ(、またKが
1000より大きいと、前記の通り、■。が相当大きく
ないと、液晶セル全面に亘る絞り動作が起こらず現実的
でない。
In other words, if the value of K is less than 0.1, almost no voltage drop occurs, and therefore, ■. No matter how the value of is set, the aperture operation will not occur because it does not intersect with the liquid crystal operation threshold value ■. Furthermore, although there is no upper limit to the value of K, if K becomes infinitely large, the voltage distribution ■ will become a curve convex downward, and the voltage applied to the center of the cell will become extremely small.
The liquid crystal will not operate unless the voltage v0 applied to the electrodes is made considerably large. Therefore, ■. is within a realistic value range,
The voltage distribution curve ■ intersects the operating darkness value of the liquid crystal, and the intersection point is ■. In order to move as wide a range as possible between electrodes a and b by changing K = 1 to 100.
It is desirable that it be 0. To explain this in more detail, if K is less than 1, the applied voltage ■. It only needs to be slightly larger than the operation threshold ■, and the aperture operation will occur with a relatively small applied voltage. The size of the diaphragm, that is, the aperture ratio, changes greatly by slightly changing the aperture ratio. Therefore, when trying to accurately change the aperture ratio, the allowable range of the applied voltage, that is, the operating margin is small (and K is less than 1000). If it is large, as described above, unless (1) is considerably large, the aperture operation will not occur over the entire surface of the liquid crystal cell, which is impractical.

以上述べたように、適当な表面抵抗を持つ透明電極を用
いて液晶セルを作製すれば、2枚の透明電極間に電圧を
印加するだけで絞り動作が起こり、開口率も任意に変化
できることがわかった。
As mentioned above, if a liquid crystal cell is fabricated using transparent electrodes with appropriate surface resistance, aperture operation can occur simply by applying a voltage between two transparent electrodes, and the aperture ratio can also be changed arbitrarily. Understood.

次に本発明による原理に基づいて種々の形の絞り動作を
行わせることができることを、第5図に基づいて説明す
る。第5図は液晶セルの一方の透明電極上に作製した金
属電極のパターンと、金属電極にある電圧を印加したと
きの絞りの形を示したものである。ここで、一方の透明
電極の表面抵抗が液晶の抵抗に比べて大きい場合、他方
の透明電極の表面抵抗は小さくてもよく、この場合は他
方の透明電極上の金属電極は特に必要としない。
Next, it will be explained with reference to FIG. 5 that various types of aperture operations can be performed based on the principle of the present invention. FIG. 5 shows a pattern of metal electrodes formed on one transparent electrode of a liquid crystal cell and the shape of the aperture when a certain voltage is applied to the metal electrodes. Here, when the surface resistance of one transparent electrode is larger than the resistance of the liquid crystal, the surface resistance of the other transparent electrode may be small, and in this case, a metal electrode on the other transparent electrode is not particularly required.

図中、5は金属電極を示し、41はセル窓中の光透過部
、42はセル窓中の光遮断部を示す。
In the figure, 5 indicates a metal electrode, 41 indicates a light transmitting part in the cell window, and 42 indicates a light blocking part in the cell window.

第5図(1)は四角形のセル窓の一辺が不透明電極5と
接する液晶セルである。金属電極5に成る電圧を印加す
ると、前記第3図(1)と同様の動作が起こり、偏光板
をクロスニコル状態にしたとき、金属電極側から帯状の
光遮断部42が形成された。
FIG. 5(1) shows a liquid crystal cell in which one side of a rectangular cell window is in contact with an opaque electrode 5. In FIG. When a voltage corresponding to the metal electrode 5 was applied, an operation similar to that shown in FIG. 3(1) occurred, and when the polarizing plate was placed in a crossed nicol state, a band-shaped light blocking portion 42 was formed from the metal electrode side.

第5図(2)はセル窓の対向する二辺が金属電極5と接
する液晶セルである。金属電極5に成る電圧を印加する
と、第3図(3)と同様の動作が起こり、二つの金属電
極側から帯状の光遮断部42が形成され、電圧を印加し
ない時に比べて光透過部410面積が小さくなった。第
5図(3)は二つのセル窓に接する金属電極を一つの電
極で形成した液晶セルであり、第5図(2)のように独
立した金属電極を形成しなくても、全く同じ絞り動作が
起こることを示したものである。
FIG. 5(2) shows a liquid crystal cell in which two opposing sides of the cell window are in contact with metal electrodes 5. When a voltage that forms the metal electrode 5 is applied, an operation similar to that shown in FIG. 3 (3) occurs, and a band-shaped light blocking portion 42 is formed from the two metal electrode sides, and the light transmitting portion 410 is smaller than when no voltage is applied. The area has become smaller. Figure 5 (3) shows a liquid crystal cell in which the metal electrodes in contact with the two cell windows are formed with a single electrode. It shows that an action occurs.

第5図(4)はセル窓の三辺が金属電極5に接する液晶
セルである。この場合も同様に電圧を印加すると三方の
金属電極側から光遮断部42が形成された。
FIG. 5(4) shows a liquid crystal cell in which three sides of the cell window are in contact with metal electrodes 5. In this case as well, when a voltage was applied in the same manner, light blocking portions 42 were formed from the three metal electrode sides.

第5図(5)はセル窓の全周囲が金属電極5に接する液
晶セルである。この場合はセル窓の中点を中心とする円
形の光透過部41が形成された。
FIG. 5(5) shows a liquid crystal cell in which the entire periphery of the cell window is in contact with the metal electrode 5. In this case, a circular light transmitting portion 41 centered at the midpoint of the cell window was formed.

qのようにセル窓上金属電極のパターンにより、液晶セ
ルの窓に種々の形の絞りが形成されることがわかった。
It was found that various shapes of apertures were formed in the window of the liquid crystal cell, as shown in q, depending on the pattern of the metal electrode on the cell window.

また、これらはいずれも金属電極5に印加する実効電圧
の大きさを変えることにより、開口率が変化した。
Further, in all of these, the aperture ratio was changed by changing the magnitude of the effective voltage applied to the metal electrode 5.

第5図に示した液晶セルはセル窓の形がいずれも正方形
の場合であるが、絞り動作を行うためには必ずしもセル
窓は正方形である必要はなく、長方形や三角形、五角形
あるいは円形など、どんな形のセル窓であってもよいこ
とは容易に推察でき、またこの場合、金属電極の形と数
によって、あらゆる形の絞り動作ができることも明白で
ある。
The liquid crystal cell shown in Fig. 5 has a square cell window, but in order to perform an aperture operation, the cell window does not necessarily have to be square; it can be rectangular, triangular, pentagonal, circular, etc. It is easy to infer that the cell window can be of any shape, and it is also clear that in this case, depending on the shape and number of metal electrodes, any type of aperture action can be achieved.

また、本発明に係る絞り動作をこれまでツイストネマチ
ック液晶セルを例にとって説明してきたが、液晶セルの
タイプはこれに限定されず、すべてのタイプの液晶セル
において、本発明は実現可能である。すなわち、液晶セ
ルとして、ツイストネマチックセル、スーパーツイスト
ネマチックセル、電界制御複屈折型セル、コレステリッ
クセル。
Further, although the aperture operation according to the present invention has been explained using a twisted nematic liquid crystal cell as an example, the type of liquid crystal cell is not limited to this, and the present invention can be realized in all types of liquid crystal cells. That is, the liquid crystal cells include twisted nematic cells, super twisted nematic cells, electric field controlled birefringence cells, and cholesteric cells.

プレオクロイックセル(ゲストホスト型セル)。Pleochroic cells (guest-hosted cells).

動的散乱型セル、強誘電性液晶セル等すべてのタイプの
液晶セルが本発明の対象になる。また、これらのセルに
使用する液晶材料にも制約は認められず、ネマチック液
晶、2周波駆動用ネマチック液晶、コレステリック液晶
9強誘電性液晶など、電界または電流によって動作する
液晶はすべて使用できる。
All types of liquid crystal cells such as dynamic scattering cells and ferroelectric liquid crystal cells are applicable to the present invention. Further, there are no restrictions on the liquid crystal material used for these cells, and any liquid crystal that operates by electric field or current can be used, such as nematic liquid crystal, nematic liquid crystal for two-frequency drive, cholesteric liquid crystal, and ferroelectric liquid crystal.

本発明に係る液晶セルを用いて絞り動作を行わせるため
に、金属電極に印加する電圧信号は直流であっても交流
であってもよく、また片極性信号であっても両極性信号
であってもよい。さらに、これまで述べてきた液晶セル
の絞り動作は、印加する信号波形によって定常的に行わ
せることもでき、また、必要な時間だけ瞬間的に行わせ
ることも可能である。
In order to perform an aperture operation using the liquid crystal cell according to the present invention, the voltage signal applied to the metal electrode may be a direct current or an alternating current, and may be a unipolar signal or a bipolar signal. You can. Furthermore, the aperture operation of the liquid crystal cell described so far can be performed constantly depending on the applied signal waveform, or can be performed instantaneously for a necessary period of time.

以下に本発明の内容をより明瞭にするため、以下具体例
を用いて説明する。
In order to make the content of the present invention clearer, the present invention will be explained below using specific examples.

〔実施例1〕 第1図に示した液晶セルのうら、下板2として、表面抵
抗108Ω/口のネサガラスを用い、上板3として、表
面抵抗30Ω/口のITOガラスを用いてツイストネマ
チック型液晶セルを作製した。セル寸法は、下板2、上
板3とも一辺が20mmの正方形であり、セル窓寸法は
、電極端子間距離ab、cdがいずれも10mになるよ
うにした。金属電極5〜8はアルミニウムの蒸着法によ
り形成した。スペーサ厚みは6μであり、ここにP型ネ
マチック液晶を注入したところ、2枚の透明電極9.1
0間の直流抵抗は2X10’Ωであった。このようにし
て作った液晶セルを2枚の偏光板で挟み、それぞれの偏
光軸が液晶の配向方向と一致するようにし、液晶セルの
一方から白色光を照射して、セル窓の光透過状態を観察
した。下板電極5に+6vの直流電圧を加え、上板電極
7.8を接地したところ、無印加時は、全面光透過状態
であったセル窓に、第6図に示すような光遮断部42が
形成された。上板電極7,8を接地したまま、下板電極
5に印加する電圧を変化させたところ、光遮断部の面積
が変化した。セル窓全面積に対する光透過部面積の百分
率を開口率と定義すると、開口率は印加電圧によって第
7図のように変化した。
[Example 1] Behind the liquid crystal cell shown in FIG. 1, Nesa glass with a surface resistance of 108 Ω/hole was used as the lower plate 2, and ITO glass with a surface resistance of 30 Ω/hole was used as the upper plate 3 to form a twisted nematic type. A liquid crystal cell was created. The cell dimensions were such that both the lower plate 2 and the upper plate 3 were squares with sides of 20 mm, and the cell window dimensions were such that the distances ab and cd between electrode terminals were both 10 m. Metal electrodes 5 to 8 were formed by an aluminum vapor deposition method. The spacer thickness is 6μ, and when P-type nematic liquid crystal is injected into it, two transparent electrodes 9.1
The DC resistance between 0 and 0 was 2×10′Ω. The liquid crystal cell made in this way is sandwiched between two polarizing plates so that each polarization axis matches the orientation direction of the liquid crystal, and white light is irradiated from one side of the liquid crystal cell to change the light transmission state of the cell window. observed. When a DC voltage of +6V was applied to the lower plate electrode 5 and the upper plate electrode 7.8 was grounded, a light blocking portion 42 as shown in FIG. was formed. When the voltage applied to the lower plate electrode 5 was changed while the upper plate electrodes 7 and 8 were grounded, the area of the light blocking portion was changed. When the aperture ratio is defined as the percentage of the area of the light transmitting portion to the total area of the cell window, the aperture ratio varied as shown in FIG. 7 depending on the applied voltage.

〔実施例2〕 ゛実施例1で作製したものと同じ液晶セルを用い、下板
電極5,6に+4vの直流電圧を加え、上板電極7.8
を接地したところ、無印加時は全面光透過状態であった
セル窓に、第8図に示すような光遮断部42が形成され
た。上板電極7.8を接地したまま下板電極5に印加す
る電圧を変化させたところ、光遮断部の面積が変化した
。開口率は印加電圧によって第9図のように変化した。
[Example 2] ゛Using the same liquid crystal cell as that produced in Example 1, +4V DC voltage was applied to the lower plate electrodes 5 and 6, and the upper plate electrodes 7 and 8
When the cell window was grounded, a light blocking portion 42 as shown in FIG. 8 was formed in the cell window, which was completely transparent when no voltage was applied. When the voltage applied to the lower plate electrode 5 was changed while the upper plate electrode 7.8 was grounded, the area of the light blocking portion was changed. The aperture ratio varied as shown in FIG. 9 depending on the applied voltage.

〔実施例3〕 液晶セルの下板2として、表面抵抗2×10″lΩ/口
のネサガラスを用い、上板3として表面抵抗30Ω/口
のITOガラスを用いてゲストホスト型液晶セルを作製
した。セル寸法は実施例1と同一にし、下板2の透明電
極上に第5図(5)に示すような金属電極5をアルミニ
ウムの蒸着法により形成した。スペーサ厚みは10μ麿
であり、ここに2色性色素を含むP型ネマチック液晶を
注入したところ、2枚の透明電極間のインピーダンスは
6.2X10’Ωで弗った。偏向板1枚をその偏光軸が
液晶の配向方向と一致するように液晶セルの外側に配置
し、偏光板側から白色光を照射してセル窓を観察したと
ころ、電圧無印加時にはセル窓は光遮断状態となった。
[Example 3] A guest-host type liquid crystal cell was fabricated using Nesa glass with a surface resistance of 2 x 10''lΩ/hole as the lower plate 2 of the liquid crystal cell, and ITO glass with a surface resistance of 30Ω/hole as the upper plate 3. The cell dimensions were the same as in Example 1, and a metal electrode 5 as shown in FIG. 5 (5) was formed on the transparent electrode of the lower plate 2 by aluminum vapor deposition. When a P-type nematic liquid crystal containing a dichroic dye was injected into the liquid crystal, the impedance between the two transparent electrodes was 6.2×10'Ω. When the cell window was observed by placing it outside the liquid crystal cell and irradiating white light from the polarizing plate side, the cell window was in a light-blocking state when no voltage was applied.

下板の金属電極に、周波数IKIIz、電圧12Vの両
極性信号を印加し、上板の電極を接地したところ、第1
0図に示すような光透過部4Iが形成された。金属電極
に印加する電圧振幅またはデュ−ティを変化させたとこ
ろ光透過部の面積が変化した。
When a bipolar signal with a frequency of IKIIz and a voltage of 12V was applied to the metal electrode on the lower plate, and the electrode on the upper plate was grounded, the first
A light transmitting portion 4I as shown in FIG. 0 was formed. When the voltage amplitude or duty applied to the metal electrode was changed, the area of the light transmitting portion was changed.

また前記とは逆に上板電極に信号電圧を印加し、下板の
金属電極を接地しても全く同じ現象が見られた。
Further, in contrast to the above, the exact same phenomenon was observed when a signal voltage was applied to the upper plate electrode and the lower plate metal electrode was grounded.

〔実施例4〕 液晶セルの下板2として、表面抵抗5X10bΩ/口の
ネサガラスを用い、上板3として表面抵抗30Ω/口の
ITOガラスを用いてツイストネマチック液晶セルを作
製した。セル寸法は実施例1と同一にし、下板2の透明
電極上に第5図(5)に示すような金属電極5をアルミ
ニウム蒸着法により形成した。スペーサ厚みは5μ墓で
あり、ここに、2周波駆動用ネマチック液晶を注入した
ところ、2枚の透明電極間のインピーダンスはIKII
zにおいて4X106Ω、 150KIIzにおいて2
X10’Ωであった。上板電極を接地し、下板電極5に
周波数1にIlz。
[Example 4] A twisted nematic liquid crystal cell was manufactured by using Nesa glass with a surface resistance of 5×10 bΩ/hole as the lower plate 2 of the liquid crystal cell, and using ITO glass with a surface resistance of 30Ω/hole as the upper plate 3 of the liquid crystal cell. The cell dimensions were the same as in Example 1, and a metal electrode 5 as shown in FIG. 5(5) was formed on the transparent electrode of the lower plate 2 by aluminum vapor deposition. The spacer thickness is 5μ, and when a nematic liquid crystal for two-frequency drive is injected into it, the impedance between the two transparent electrodes is IKII.
4X106Ω at z, 2 at 150KIIz
It was 10'Ω. The upper plate electrode is grounded, and the frequency 1 is applied to the lower plate electrode 5.

振幅8■の交流電圧を印加したところ、無印加時は全面
光透過状態であったセル窓に、第11図に示すような光
遮断部42が形成された。次に下板電極に同じ電圧を印
加したまま、上板電極に周波数150KHz、  振幅
6■の交流電圧を印加したところ、第12図に示すよう
な、ドーナツ状の光遮断部42が形成された。この実施
例において、IKIIZまたは150Kllzの電圧振
幅を変化させると、第11図および第12図の開口率が
変化した。
When an alternating current voltage with an amplitude of 8 cm was applied, a light blocking portion 42 as shown in FIG. 11 was formed in the cell window, which was completely transparent when no voltage was applied. Next, while applying the same voltage to the lower plate electrode, an alternating current voltage with a frequency of 150 KHz and an amplitude of 6 mm was applied to the upper plate electrode, and a donut-shaped light blocking portion 42 was formed as shown in Fig. 12. . In this example, when the voltage amplitude of IKIIZ or 150Kllz was changed, the aperture ratios in FIGS. 11 and 12 were changed.

〔実施例5〕 液晶セルの下板2として、表面抵抗1.2X105Ω/
口のネサガラスを用い、上板3として、表面抵抗30Ω
/口のITOガラスを用いて強誘電性液晶セルを作製し
た。セル寸法は実施例1と同一にし、下板2の透明電極
上に第5図(4)に示すような金属電極5をアルミニウ
ム蒸着法により形成した。
[Example 5] As the lower plate 2 of the liquid crystal cell, the surface resistance was 1.2×105Ω/
Using Nesa glass for the mouth, the surface resistance is 30Ω as the upper plate 3.
A ferroelectric liquid crystal cell was fabricated using ITO glass. The cell dimensions were the same as in Example 1, and a metal electrode 5 as shown in FIG. 5(4) was formed on the transparent electrode of the lower plate 2 by aluminum vapor deposition.

′スペーサ厚みは2.2nであり、ここに室温強誘電性
液晶を注入したところ、2枚の透明電極間のインピーダ
ンスはIKIIzにおいて6X10’Ωであった。
'The spacer thickness was 2.2n, and when room temperature ferroelectric liquid crystal was injected into it, the impedance between the two transparent electrodes was 6×10'Ω at IKIIz.

2枚の偏光板の偏光軸を直交させ、一方の偏光板の偏光
軸を液晶のディレクタの方向と一致させるようにして、
液晶セルを2枚の偏光板で挟んだところ、セル窓は全面
光遮断状態になった。上板電極を接地し、下板電極5に
電圧+20V、パルス幅1msの矩形波信号を印加した
ところ、第13図に示すような光透過部41が形成され
、この状態は次に何らかの信号を印加しない限り保存さ
れた。次に下板電極に電圧−20v、パルス幅1 、5
msの矩形波信号を印加したところ、第13図に示した
光透過部41が消失し、セル窓は全面光遮断状態になっ
た。
The polarization axes of the two polarizing plates are orthogonal, and the polarization axis of one polarizing plate is aligned with the direction of the liquid crystal director.
When a liquid crystal cell was sandwiched between two polarizing plates, the entire cell window was completely light-blocked. When the upper plate electrode is grounded and a rectangular wave signal with a voltage of +20V and a pulse width of 1 ms is applied to the lower plate electrode 5, a light transmitting part 41 as shown in FIG. Saved unless applied. Next, apply a voltage of -20V to the lower plate electrode, and apply a pulse width of 1, 5.
When a rectangular wave signal of ms was applied, the light transmitting portion 41 shown in FIG. 13 disappeared, and the cell window became completely light-blocked.

また、この実施例において、下板電極に印加する矩形波
信号の電圧またはパルス幅を変化させると光透過部41
の面積が変化した。さらに、またこの実施例において、
液晶セルと2枚の偏光板のなす相対角度を45°ずらす
と、光透過部と光遮断部が逆転して、同じ挙動を示した
In addition, in this embodiment, when the voltage or pulse width of the rectangular wave signal applied to the lower plate electrode is changed, the light transmitting portion 41
The area of has changed. Furthermore, also in this example,
When the relative angle between the liquid crystal cell and the two polarizing plates was shifted by 45 degrees, the light transmitting part and the light blocking part were reversed and the same behavior was exhibited.

〔実施例6〕 第1図に示した液晶セルのうち、下板2として、表面抵
抗lXl0’Ω/口のネサガラスを用い、上板3として
、表面抵抗9X10’Ω/口のネサガラスを用いてツイ
ストネマチック型液晶セルを作製した。セル寸法は実施
例1と同一にし、スペーサ厚みを9μとして、ここにP
型ネマチック液晶を注入したところ、2枚の透明電極間
のインピーダンスはIKIIZにおいて2X10’Ωで
あった。上板電極を接地し、下板電極に周波数I KH
z 、電圧5■の交流信号を印加したところ、無印加時
は全面光透過状態であったセル窓に、第14図に示すよ
うな光遮断部42が形成された。上板電極を接地したま
ま、下板電極に印加する電圧を変化させたところ、開口
率が変化した。
[Example 6] Among the liquid crystal cells shown in FIG. 1, Nesa glass with a surface resistance of lXl0'Ω/hole was used as the lower plate 2, and Nesa glass with a surface resistance of 9×10'Ω/inch was used as the upper plate 3. A twisted nematic liquid crystal cell was fabricated. The cell dimensions are the same as in Example 1, the spacer thickness is 9μ, and P
When a type nematic liquid crystal was injected, the impedance between the two transparent electrodes was 2×10'Ω in IKIIZ. The upper plate electrode is grounded and the lower plate electrode is connected to the frequency I KH.
When an alternating current signal of z and voltage of 5 .mu. When the voltage applied to the lower plate electrode was changed while the upper plate electrode was grounded, the aperture ratio changed.

〔実施例7〜12) 液晶セルの下板2として、表面抵抗4X10’Ω/口の
ネサガラスを用い、上板3として表面抵抗30Ω/口の
ITOガラスを用いてツイストネマチック型液晶セルを
形成した。セル寸法は実施例1と同一にし、下板2の透
明電極上に、第15図(1)〜(6)に示すような金属
電極5をアルミニウム蒸着法により形成した。スペーサ
厚みは9μ鵞であり、ここにP型ネマチック液晶を注入
したところ、2枚の透明電極間のインピーダンスはlに
llzにおいて、8X10’Ωであった。上板電極を接
地し、下板電極11にIOVの交流電圧を印加したとこ
ろ、無印加時は全面光透過状態であったセル窓に第15
図(1)〜(6)に示すような光遮断部42が形成され
た。上板電極を接地したまま、下板電極5に印加する電
圧振幅またはデユーティ比を変化させたところ開口率が
変化した。
[Examples 7 to 12] A twisted nematic type liquid crystal cell was formed by using Nesa glass with a surface resistance of 4 x 10'Ω/hole as the lower plate 2 of the liquid crystal cell, and using ITO glass with a surface resistance of 30Ω/hole as the upper plate 3. . The cell dimensions were the same as in Example 1, and metal electrodes 5 as shown in FIGS. 15(1) to 15(6) were formed on the transparent electrode of the lower plate 2 by aluminum vapor deposition. The spacer thickness was 9 μm, and when a P-type nematic liquid crystal was injected into the spacer, the impedance between the two transparent electrodes was 8×10′Ω in l and lz. When the upper plate electrode was grounded and an AC voltage of IOV was applied to the lower plate electrode 11, the 15th
Light blocking portions 42 as shown in FIGS. (1) to (6) were formed. When the voltage amplitude or duty ratio applied to the lower plate electrode 5 was changed while the upper plate electrode was grounded, the aperture ratio was changed.

(5)発明の詳細 な説明したように、本発明により、表面抵抗が液晶の抵
抗と同じまたはそれ以上の表面抵抗の透明電極を用いて
液晶セルを作製し、2枚の透明電極間に電圧を印加する
と、液晶セル面内に電位差分布が生じるため、セル窓に
それに応じた光透過部と光遮断部が形成された。また印
加する電圧を変化することにより光透過部と光遮断部の
割合が変化するので、開口率を自由にコントロールする
ことができた。さらにまた透明電極上に形成する金属電
極の形状によって、任意の形の光透過部を作ることがで
きた。上記の作用により、本発明に係る液晶セルは、面
積変調機能を有する液晶光シャッタとして、液晶デイス
プレィ、液晶プリンター用ヘッドその他に応用すること
ができる。また、これらの動作を行わせるために必要な
信号配線は、2枚の透明電極に対し、それぞれ1本で済
むので、セル構造が簡単であるほか、液晶セルの高密度
マトリックス化およびアレイ化が容易であるという利点
がある。
(5) As described in detail, according to the present invention, a liquid crystal cell is manufactured using transparent electrodes having a surface resistance equal to or higher than that of the liquid crystal, and a voltage is applied between the two transparent electrodes. When applied, a potential difference distribution occurred within the surface of the liquid crystal cell, so a corresponding light transmitting part and a light blocking part were formed in the cell window. Furthermore, by changing the applied voltage, the ratio of the light-transmitting part to the light-blocking part can be changed, so the aperture ratio can be freely controlled. Furthermore, by changing the shape of the metal electrode formed on the transparent electrode, it was possible to create a light transmitting part of any shape. Due to the above effects, the liquid crystal cell according to the present invention can be applied as a liquid crystal light shutter having an area modulation function to liquid crystal displays, liquid crystal printer heads, and the like. In addition, the signal wiring required to perform these operations is one for each of the two transparent electrodes, which not only simplifies the cell structure but also facilitates the formation of high-density matrices and arrays of liquid crystal cells. It has the advantage of being easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る液晶セルの分解状態を示す斜視
図、第2図は絞り動作の起こる原理を示す図、第3図は
液晶セル内の電圧分布とそのとき形成される絞り状態を
示す図、第4図は透明電極と液晶の抵抗比と液晶セルに
形成される電圧分布の関係を示す図、第5図は金属電極
の形状とセル窓に形成される絞り状態を示す図、第6図
、第8図、第10図、第11図、第12図、第13図及
び第14図は本実施例でセル窓に形成される絞り状態を
示す図、第7図及び第9図はそれぞれ第6図及び第8図
の開口率と印加する電圧との関係を示す図、第15図は
本実施例として金属電極の形状とセル窓に形成させる絞
り状態を示す図である。 1・・・液晶セル、 2・・・下板、 3・・・上板、
4・・・スペーサ、 5.6.7.8・・・金属電極、
9.10・・・透明電極、 41・・・光透過部、42
・・・光遮断部。 特許出願人  日本電信電話株式会社
Fig. 1 is a perspective view showing the disassembled state of the liquid crystal cell according to the present invention, Fig. 2 is a diagram showing the principle of the aperture operation, and Fig. 3 is a diagram showing the voltage distribution within the liquid crystal cell and the aperture state formed at that time. Figure 4 is a diagram showing the relationship between the resistance ratio of the transparent electrode and liquid crystal and the voltage distribution formed in the liquid crystal cell, and Figure 5 is a diagram showing the shape of the metal electrode and the aperture state formed in the cell window. 6, 8, 10, 11, 12, 13, and 14 are diagrams showing the aperture states formed in the cell window in this embodiment, and FIGS. The figures are diagrams showing the relationship between the aperture ratio and the applied voltage in FIGS. 6 and 8, respectively, and FIG. 15 is a diagram showing the shape of the metal electrode and the aperture state formed in the cell window in this embodiment. 1...Liquid crystal cell, 2...Lower plate, 3...Upper plate,
4... Spacer, 5.6.7.8... Metal electrode,
9.10...Transparent electrode, 41...Light transmission part, 42
...Light blocking section. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 金属電極を有する二枚の透明導電基板で液晶を挟み、前
記二枚の透明導電基板の間に印加する電圧の変化により
光の透過面積を変化させる液晶光シャッタにおいて、前
記液晶の抵抗R_0と前記二枚の対向する透明導電基板
のうち少なくとも一方の表面抵抗R_1との比R_1/
R_0が1より大きいように構成されていることを特徴
とする液晶光シャッタ。
In a liquid crystal light shutter in which a liquid crystal is sandwiched between two transparent conductive substrates having metal electrodes and a light transmission area is changed by changing the voltage applied between the two transparent conductive substrates, the resistance R_0 of the liquid crystal and the The ratio R_1/to the surface resistance R_1 of at least one of the two opposing transparent conductive substrates
A liquid crystal optical shutter characterized in that R_0 is configured to be larger than 1.
JP25002187A 1987-10-05 1987-10-05 Liquid crystal optical shutter Expired - Fee Related JPH0740095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25002187A JPH0740095B2 (en) 1987-10-05 1987-10-05 Liquid crystal optical shutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25002187A JPH0740095B2 (en) 1987-10-05 1987-10-05 Liquid crystal optical shutter

Publications (2)

Publication Number Publication Date
JPH0192720A true JPH0192720A (en) 1989-04-12
JPH0740095B2 JPH0740095B2 (en) 1995-05-01

Family

ID=17201666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25002187A Expired - Fee Related JPH0740095B2 (en) 1987-10-05 1987-10-05 Liquid crystal optical shutter

Country Status (1)

Country Link
JP (1) JPH0740095B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024679A (en) * 2003-06-30 2005-01-27 Asahi Glass Co Ltd Optical deflector and optical scanner
JP2005024678A (en) * 2003-06-30 2005-01-27 Asahi Glass Co Ltd Polarization control element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024679A (en) * 2003-06-30 2005-01-27 Asahi Glass Co Ltd Optical deflector and optical scanner
JP2005024678A (en) * 2003-06-30 2005-01-27 Asahi Glass Co Ltd Polarization control element

Also Published As

Publication number Publication date
JPH0740095B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US3731986A (en) Display devices utilizing liquid crystal light modulation
US8780308B2 (en) Pixel structure and display panel
JP3294689B2 (en) Liquid crystal display
US20210286206A1 (en) Viewing angle switchable liquid crystal display device and viewing angle switching method
CN109324449B (en) Liquid crystal display device and driving method thereof
KR102329979B1 (en) Liquid Crystal Display
JP5423603B2 (en) Suspended particle device and driving method thereof
CN111552103A (en) Display device with switchable one-way visual angle and control method
JPH06250159A (en) Liquid crystal display device
CN112987350A (en) Display panel with switchable wide and narrow viewing angles and display device
US5155476A (en) Liquid crystal display device
CN106125441B (en) Low-driving-voltage blue-phase liquid crystal display in narrow viewing angle mode
JPH04131893A (en) Liquid crystal display device
JPH0192720A (en) Liquid crystal optical shutter
CN114675441A (en) Display panel with switchable wide and narrow viewing angles and regions, driving method and display device
KR20070000551A (en) Display, dribing method thereof and fabricating method thereof
KR20010065169A (en) Liquid crystal display device
CN115023644A (en) Display panel with switchable wide and narrow viewing angles, driving method and display device
CN115128855B (en) Display panel with switchable wide and narrow viewing angles, driving method and display device
JPS6338921A (en) Driving method for liquid crystal cell
KR20050065822A (en) Liquid crystal display and driving method thereof
CN220105673U (en) Touch substrate and display device
CN219574554U (en) Suspended particle dimming film with partition dimming function and dimming glass
CN114415401B (en) Display panel with switchable wide and narrow viewing angles, driving method and display device
CN219758605U (en) Multifunctional display panel and multifunctional display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees