JPH0192318A - Manufacture of non-oriented magnetic steel sheet - Google Patents

Manufacture of non-oriented magnetic steel sheet

Info

Publication number
JPH0192318A
JPH0192318A JP24933387A JP24933387A JPH0192318A JP H0192318 A JPH0192318 A JP H0192318A JP 24933387 A JP24933387 A JP 24933387A JP 24933387 A JP24933387 A JP 24933387A JP H0192318 A JPH0192318 A JP H0192318A
Authority
JP
Japan
Prior art keywords
rolling
width direction
longitudinal
steel sheet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24933387A
Other languages
Japanese (ja)
Inventor
Taisei Nakayama
大成 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24933387A priority Critical patent/JPH0192318A/en
Publication of JPH0192318A publication Critical patent/JPH0192318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To reduce the magnetic anisotropy of a magnetic steel sheet and also to reduce the uneven rotation of rotary equipment by hot-rolling a slab in which respective contents of C(Si+Al), and Mn are specified and applying cold rolling after pickling also to a cross direction at a specific draft. CONSTITUTION:A slab having a composition consisting of <=0.05% C, <=3.5% (Si+Al), <=1.5% Mn, and the balance Fe with inevitable impurities is cast. This slab is hot-rolled and pickled. Successively, the resulting steel strip 1 is rolled by means of longitudinal rolling mills 2, 3 and then passed through a looper 4 and fed to a cross rolling mill 5, where the strip 1 is subjected to cross rolling by plural passes. Subsequently, the above strip 1 is finished to the desired thickness by means of a longitudinal rolling mill 7 on the downstream side. At this time, transverse-direction draft is regulated to >=30% and also the total of longitudinal-direction draft and transverse-direction draft is regulated to 70-95%. Finish rolling is applied after the above cold rolling. By this method, a non-oriented magnetic steel sheet suitable for iron core material for rotary equipment and reduced in in-plane anisotropy can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、回転機器の鉄芯材料に用いられる、市内異方
性の少ない無方向性電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a non-oriented electrical steel sheet with low internal anisotropy, which is used as a core material for rotating equipment.

[従来の技術] 電磁鋼板を回転機器の鉄芯材料に用いる場合には、無方
向性電磁鋼板においても磁気特性の市内異方性が問題と
なる場合があり、理想的には面内完全無方向性の磁気特
性を仔する材料が望まれている。
[Prior art] When using electromagnetic steel sheets as core materials for rotating equipment, internal anisotropy of magnetic properties may become a problem even in non-oriented electromagnetic steel sheets. Materials that exhibit non-directional magnetic properties are desired.

従来の電磁鋼板の製造方法では、調帯の長平方向にのみ
圧延を行っていたので、焼鈍後の磁気特性は圧延方向に
片寄った特性を何する電磁鋼板となっていた。従って、
回転機器の鉄芯材料を同一方向に積層すると回転ムラを
生じる原因となっていた。このため、特にに精度を要求
される回転機器ではこの回転ムラを防止するために、鉄
芯材料を1枚ずつ角度をずらせて積層して全体の磁気特
性の面内異方性(以下、磁気異方性と称する)を緩和さ
せていた。
In the conventional manufacturing method of electrical steel sheets, rolling was performed only in the longitudinal direction of the belt, resulting in electrical steel sheets whose magnetic properties after annealing were biased in the rolling direction. Therefore,
When the iron core materials of rotating equipment are stacked in the same direction, it causes uneven rotation. For this reason, in order to prevent rotational unevenness in rotating equipment that requires particularly high precision, iron core materials are laminated one by one at different angles to improve the in-plane anisotropy (hereinafter referred to as magnetic) of the overall magnetic properties. (referred to as anisotropy).

[発明が解決しようとする問題点] しかし、この方法では上述の角度をずらせて積層する工
程を余分に設ける必要があった。
[Problems to be Solved by the Invention] However, in this method, it was necessary to provide an extra step of stacking layers at different angles.

本発明は、このような工程を設けることなしに、回転ム
ラの生じない、磁気異方性の少ない無方向性電磁鋼板を
製造することを目的とする。
An object of the present invention is to manufacture a non-oriented electrical steel sheet that does not cause uneven rotation and has little magnetic anisotropy without providing such a process.

[問題点を解決するための手段] 本発明は、前記問題点を解決するための方法であり、C
≦0.05%、(Si+Al)53.5%、Mn≦1.
5%、残部Fe及び不可避不純物よりなる鋼片に、通常
の熱間圧延を行って熱延鋼帯として酸洗した後、鋼帯の
幅方向圧下率が30%以上でかつ、長手方向と幅方向の
合計圧下率が70〜95%の冷間圧延を行い、仕上焼鈍
することを特徴とする、無方向性電磁鋼板の製造方法で
ある。
[Means for solving the problems] The present invention is a method for solving the above problems, and includes C
≦0.05%, (Si+Al) 53.5%, Mn≦1.
5%, the balance being Fe and unavoidable impurities, is subjected to normal hot rolling and pickled to form a hot rolled steel strip, and the reduction ratio in the width direction of the steel strip is 30% or more, and in the longitudinal direction and the width. This is a method for producing a non-oriented electrical steel sheet, which is characterized by performing cold rolling with a total reduction ratio of 70 to 95% in the direction and final annealing.

また、c<o、oi%でかつ、(Si+Al)≧2.0
%の鋼片の場合は、酸洗の前または後にて600〜1,
100°Cの焼鈍を行うことが好ましい。
Also, c<o, oi% and (Si+Al)≧2.0
% steel billet, 600~1, before or after pickling.
It is preferable to perform annealing at 100°C.

さらに、Ca2.01%の鋼片の場合は、酸洗の…1ま
たは後にて600〜1.100°Cの脱炭焼鈍を行うこ
とか好ましい。
Furthermore, in the case of a steel slab containing 2.01% Ca, it is preferable to perform decarburization annealing at 600 to 1.100°C either after or after pickling.

〔作用] 本発明における鋼片の成分限定理由を以Fに述べる。[Effect] The reason for limiting the composition of the steel slab in the present invention will be described below.

Cは、電磁鋼板の磁気特性に対して何害であるため、0
.05%以下とする。
Since C has no effect on the magnetic properties of electromagnetic steel sheets, it is set to 0.
.. 0.5% or less.

SiとAQは固仔抵抗を高め、鉄損を低下させるのに有
効な元素であるが、Siは添加量が多くなると冷間圧延
性を悪化させ、またS 11A Qともに過度の添加は
材料コストを増大させるために、(Si+A(11)は
3.5%以下とする。
Si and AQ are elements that are effective in increasing solid resistance and reducing iron loss, but when Si is added in large amounts, cold rollability deteriorates, and excessive addition of both S11A and Q reduces material cost. In order to increase (Si+A(11)), it is set to 3.5% or less.

Mnも鉄損を低下させるのに有効な元素であるが、過度
の添加は効果がなく、材料コストを増大させるために、
1.5%以下とする。
Mn is also an effective element for reducing iron loss, but excessive addition is ineffective and increases material cost.
1.5% or less.

前記化学成分の鋼片を熱間圧延する際には、通常行われ
ている条件で熱間圧延をおこなう。
When hot rolling a steel billet having the above-mentioned chemical composition, the hot rolling is performed under commonly used conditions.

酸洗は、冷間圧延時にスケールが剥離してワークロール
に付着することによる表面疵の発生を防止するために必
要である。
Pickling is necessary to prevent surface flaws from occurring due to scale peeling off and adhering to the work roll during cold rolling.

鋼片の化学成分が、C<0.0f%でかつ、(Si+A
l)≧2.0%の場合は、冷圧後にリジングと称される
表面欠陥が生じやすい。このリジングを防止するには、
熱間圧延後に焼鈍を行うことが有効である。この場合の
焼鈍は連続焼鈍、箱焼鈍のいずれでもよ(、酸洗を行う
前、あるいは酸洗後のいずれでもよい。また、焼鈍の温
度条件は600〜i、ioo’cが好ましい。
The chemical composition of the steel slab is C<0.0f% and (Si+A
l) In the case of 2.0%, surface defects called ridging are likely to occur after cold pressing. To prevent this ridging,
It is effective to perform annealing after hot rolling. In this case, the annealing may be continuous annealing or box annealing (either before or after pickling. Also, the temperature conditions for annealing are preferably 600 to 1,000 io.

一方、鋼片の化学成分が、Ca2.01%の場合は、磁
気特性改房のために熱間圧延後に必要に応じて脱炭焼鈍
を行う場合がある。この場合の脱炭焼鈍も連続vl鈍、
箱焼鈍のいずれでもよく、酸洗を行う前、あるいは酸洗
後のいずれでもよい。
On the other hand, when the chemical composition of the steel slab is 2.01% Ca, decarburization annealing may be performed as necessary after hot rolling to improve the magnetic properties. In this case, decarburization annealing is also continuous vl annealing,
Box annealing may be used, either before or after pickling.

次に、本発明の最も重要な構成要件である、幅方向と長
手方向の冷間圧延について説明する。
Next, cold rolling in the width direction and longitudinal direction, which is the most important component of the present invention, will be explained.

従来の電磁鋼板は、熱間圧延および冷間圧延において鋼
帯の長手方向にのみ圧延されており、それにより結晶方
位の磁化容易軸が鋼帯長手方向に向いているため、磁束
密度は鋼帯長手方向に極端に大きな磁気異方性を有して
いる。この磁気異方性は鉄損値についても同様な傾向を
示す。
Conventional electrical steel sheets are rolled only in the longitudinal direction of the steel strip during hot rolling and cold rolling, and as a result, the axis of easy magnetization of the crystal orientation is oriented in the longitudinal direction of the steel strip, so the magnetic flux density is lower than that of the steel strip. It has extremely large magnetic anisotropy in the longitudinal direction. This magnetic anisotropy also shows a similar tendency for iron loss values.

本発明者らは、この磁気異方性を改善するためには、冷
間圧延を幅方向に行うことが有効であることを実験によ
り見いだした。すなわち、熱間圧延により鋼帯長手方向
にそろった結晶方位を、幅方向冷間圧延を行うことでラ
ンダムにすることにより、磁気異方性が改善されること
が判明した。
The present inventors have found through experiments that cold rolling in the width direction is effective in improving this magnetic anisotropy. That is, it has been found that the magnetic anisotropy is improved by making the crystal orientations, which are aligned in the longitudinal direction of the steel strip by hot rolling, random by performing width direction cold rolling.

この場合の幅方向冷間圧延の圧下率は30%以上でない
と磁気異方性の改善効果が充分に得られないため、下限
値を30%とした。
In this case, the lower limit value was set to 30% since a sufficient effect of improving the magnetic anisotropy cannot be obtained unless the rolling reduction ratio of the width direction cold rolling is 30% or more.

また、幅方向と長平方向の冷間圧延の圧下率の合計は7
0〜95%とした。その理由は、冷間圧延での圧下率が
70%未満では所望の磁気特性が得られず、また95%
を超えると圧延が困難となるためである。
In addition, the total reduction ratio of cold rolling in the width direction and lengthwise direction is 7
It was set as 0 to 95%. The reason for this is that if the reduction rate in cold rolling is less than 70%, the desired magnetic properties cannot be obtained;
This is because rolling becomes difficult if it exceeds this range.

なお、仕上げ焼鈍は特に条件を限定していないが、(7
00〜1050°C0X(30秒〜1分間)の灼熱を行
えばよい。
Note that the conditions for finish annealing are not particularly limited, but (7
Burning may be performed at 00 to 1050° C0X (30 seconds to 1 minute).

[実施例] 第1図に、本発明を実施するための冷間圧延機の概略構
成図をしめす。図中、1は鋼帯、2.3および7は長手
方向圧延機、5は幅方向圧延機、51は幅方向圧延機の
バックアップロール、52は同じく幅方向圧延機のワー
クロール、4と6は幅方向圧延機の入側と出側に設けら
れたルーパーである。
[Example] FIG. 1 shows a schematic configuration diagram of a cold rolling mill for carrying out the present invention. In the figure, 1 is a steel strip, 2.3 and 7 are longitudinal rolling mills, 5 is a transverse rolling mill, 51 is a backup roll of the transverse rolling mill, 52 is a work roll of the transverse rolling mill, 4 and 6 are loopers provided on the inlet and outlet sides of the widthwise rolling mill.

このような構成により、鋼帯1を幅方向と長平方向に圧
延する手順を説明する。
With such a configuration, a procedure for rolling the steel strip 1 in the width direction and the longitudinal direction will be explained.

まず、鋼帯1は長手方向圧延機2.3にて長手方向に圧
延された後、ルーパー4を通過して幅方向圧延機5によ
り、所定の圧下率で幅方向に圧延される。
First, the steel strip 1 is rolled in the longitudinal direction by a longitudinal rolling mill 2.3, and then passed through a looper 4 and rolled in the width direction by a widthwise rolling mill 5 at a predetermined rolling reduction ratio.

幅方向圧延機5は鋼帯1の1側端部より幅方向にハウジ
ングごと移動し、1パスの圧延を完了するとロールギャ
ップを開いて元の位置に戻り、鋼帯1はワークロール5
2との接触長さしだけ下流方向に移動し、次パスの幅方
向圧延を繰り返す。
The width direction rolling mill 5 moves along with the housing in the width direction from one side end of the steel strip 1, and when one pass of rolling is completed, the roll gap is opened and the steel strip 1 returns to its original position.
It moves downstream by the contact length with No. 2, and repeats the next pass of rolling in the width direction.

この時、鋼帯1に各バス間の急峻な板厚の段差が生じる
のを防ぐために、ワークロール52には第5図に示すよ
うに両端部にゆるやかな先細り形状を付与しておく。
At this time, in order to prevent the steel strip 1 from having steep thickness differences between the buses, the work roll 52 is provided with a gently tapered shape at both ends as shown in FIG.

この時の鋼帯1の圧延状態を第2図〜第5図に模式的゛
に示した。
The rolling state of the steel strip 1 at this time is schematically shown in FIGS. 2 to 5.

第2図は鋼帯1を幅方向圧延機5にて幅方向に圧延して
いる状態の斜視図である。第3図は鋼帯長手方向位置と
板厚の関係を示す図であり、ワークロール52と鋼帯1
との1バス毎の接触長さしにつき、板厚はhずつ段階的
に減少していくことを示している。第4図(a)〜(e
)は圧延中の鋼帯1を上から見た図であり、第4図(a
)で、■は幅方向圧延を1パス行った状態、第4図(b
)で、■は鋼帯長手方向に長さLだけ上流側に移動した
位置を圧延し、次いで下流側にしたけ移動して第4図(
a)の■で圧延された部分をさらに圧延するこのように
して、第4図(e)に示すように■〜[相]まで圧延を
繰り返すことにより所定の圧下率の幅方向圧延を行うこ
とができる。
FIG. 2 is a perspective view of the steel strip 1 being rolled in the width direction by the width direction rolling mill 5. FIG. 3 is a diagram showing the relationship between the longitudinal position of the steel strip and the plate thickness, and shows the relationship between the work roll 52 and the steel strip 1.
It is shown that the plate thickness decreases step by step by h for each contact length of each bus. Figures 4(a) to (e)
) is a top view of the steel strip 1 during rolling, and FIG.
), ■ is the state after one pass of rolling in the width direction, Figure 4 (b
), ■ is rolled at a position moved upstream by a length L in the longitudinal direction of the steel strip, and then moved downstream by the distance shown in Fig. 4 (
In this way, the part rolled in step 2 of a) is further rolled. As shown in FIG. Can be done.

こうして所定の複数パスを完了すると、再び次回の複数
パスの圧延を繰り返して順次、幅方向圧延を続ける。
When the predetermined multiple passes are completed in this way, the next multiple passes of rolling are repeated again to continue rolling in the width direction in sequence.

このようにして幅方向に圧延された鋼帯1は下流側の長
手方向圧延機7にてさらに長手方向に圧延されて所望の
板厚に仕上げられる。
The steel strip 1 rolled in the width direction in this manner is further rolled in the longitudinal direction in a longitudinal rolling mill 7 on the downstream side, and is finished to a desired thickness.

なお、ルーパ4.6の貯蔵長さは前述の複数パスの圧延
での鋼帯1の移動長さを確保できる値であればよい。
Note that the storage length of the looper 4.6 may be any value that can ensure the moving length of the steel strip 1 in the aforementioned multiple passes of rolling.

また、第1図の例では幅方向圧延機5は長手方向圧延機
2.3の下流側に設けた例を示したが、幅方向圧延機5
を最り流側、あるいは最下流側に設けてもよい。たたし
、長手方向の板厚精度を要求される場合には、なるべく
上流側に設けるのが好ましい。
Further, in the example shown in FIG. 1, the width direction rolling mill 5 is provided downstream of the longitudinal direction rolling mill 2.3, but the width direction rolling mill 5
may be provided on the most downstream side or on the most downstream side. However, if longitudinal plate thickness accuracy is required, it is preferable to provide it as far upstream as possible.

次に、厚: 230 m m 1−幅:500mm1長
さ:4000mmで第1表中、試料No’:A−Hに示
される化学成分の鋼片を加熱温度:1’250°C1仕
上げ温度:850°C,巻取温度: 650 ”Cの条
件で板厚:2.3mmまで熱間圧延し、同表中に示され
る条件にて板厚:0.5mmまで冷間圧延後、850°
C×30秒の仕上げ焼鈍を施した。そして、各試料につ
いて長手方向および幅方向の磁束密度B2aを測定した
結果を同表中に比較した。
Next, a steel piece having the chemical composition shown in Sample No': A-H in Table 1 with thickness: 230 mm 1 - width: 500 mm 1 length: 4000 mm was heated to a temperature of 1'250°C1 finishing temperature: After hot rolling to a plate thickness of 2.3 mm under the conditions of 850°C and coiling temperature: 650''C, cold rolling to a plate thickness of 0.5 mm under the conditions shown in the same table, and then rolling at 850°C.
Finish annealing was performed for C×30 seconds. The results of measuring the magnetic flux density B2a in the longitudinal direction and the width direction for each sample are compared in the same table.

(以下、余白) 試料A−Cは(Si+Al)が2.0%未溝であり、リ
ジング対策としての冷間圧延前焼鈍を施さずに長手方向
、および幅方向に圧下率を変化させて冷間圧延を行った
例である。幅方向の圧下率が0%と20%の比較例では
長手方向の磁束密度(BL)と幅方向の磁束密度(Be
 )の比(B。
(Hereafter, blank space) Samples A-C have 2.0% (Si + Al) without grooves, and are cooled by changing the rolling reduction in the longitudinal direction and width direction without performing annealing before cold rolling as a countermeasure against ridging. This is an example of inter-rolling. In comparative examples where the rolling reduction ratio in the width direction is 0% and 20%, the magnetic flux density in the longitudinal direction (BL) and the magnetic flux density in the width direction (Be
) ratio (B.

/B、’)が大きいが、幅方向の圧下率が30%以Eの
実施例1ではBL/BCが1に近づいており、磁気異方
性が改善されていることがわかる。
/B,') is large, but in Example 1 where the rolling reduction in the width direction is 30% or more, BL/BC approaches 1, indicating that the magnetic anisotropy is improved.

試料Bは、(Si+Al)が2.0%以上であり、リジ
ング対策としての冷間圧延前焼鈍を連続焼鈍にて110
0″CXa分間、および箱焼鈍にて950°CX10時
間の条件で実施した例、試料りは、同様にリジング対策
として750°CX5時間の脱炭箱焼鈍を行った例であ
り、いずれも幅方向の圧下率が30%以上の実施例では
、比較例に比べて磁気異方性が改善されている。
Sample B has (Si+Al) of 2.0% or more, and the annealing before cold rolling as a countermeasure against ridging was performed by continuous annealing at 110%.
The sample was subjected to decarburization box annealing at 750°C for 5 hours as a countermeasure against ridging. In the examples in which the rolling reduction ratio is 30% or more, the magnetic anisotropy is improved compared to the comparative examples.

第6図は第1表の試料Aについて同表中に示す条件にて
製造した後、磁束密度を長手方向および幅方向の様々な
角度について測定した結果を示すグラフである。図中、
A線は幅方向の圧下率が0%の場合の磁気異方性を示し
ており、同様にB線、E線、D線、E線はそれぞれ、幅
方向の圧下率が20%、30%、50%、80%の磁気
異方性を示している。
FIG. 6 is a graph showing the results of measuring the magnetic flux density at various angles in the longitudinal direction and the width direction after manufacturing Sample A in Table 1 under the conditions shown in the same table. In the figure,
The A line shows the magnetic anisotropy when the rolling reduction in the width direction is 0%, and similarly, the B line, E line, D line, and E line show the magnetic anisotropy when the rolling reduction in the width direction is 20% and 30%, respectively. , 50%, and 80% magnetic anisotropy.

この図からも明らかなように、幅方向の圧’F−1か3
0%以上になると磁気異方性が大幅に改善されているこ
とがわかる。
As is clear from this figure, the widthwise pressure 'F-1 or 3
It can be seen that when it becomes 0% or more, the magnetic anisotropy is significantly improved.

[発明の効果コ 本発明によれば、冷間圧延を幅方向にも行うことにより
、電磁鋼板の磁気異方性を大幅に改善することができ、
その結果きして回転機器の回転ムラをよりいっそう低減
することができる。
[Effects of the Invention] According to the present invention, by performing cold rolling also in the width direction, the magnetic anisotropy of the electrical steel sheet can be significantly improved.
As a result, uneven rotation of the rotating equipment can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における幅方向および長手方向の冷間圧
延機の装置構成を示す図、第2図〜第4図は幅方向の圧
延状聾を示す図、第S図は幅方向圧延機のワークロール
形状を示す図、第6図は磁束密度の面内異方性を示す図
である。 1:鋼帯、 2.3.7:長手方向圧延機、 4.6:ルーパー、 5:幅方向圧延機。 長手方向磁束密度BL(B25)
FIG. 1 is a diagram showing the equipment configuration of a cold rolling mill in the width direction and longitudinal direction in the present invention, FIGS. 2 to 4 are diagrams showing a rolled deaf in the width direction, and FIG. FIG. 6 is a diagram showing the in-plane anisotropy of magnetic flux density. 1: Steel strip, 2.3.7: Longitudinal rolling mill, 4.6: Looper, 5: Width rolling mill. Longitudinal magnetic flux density BL (B25)

Claims (3)

【特許請求の範囲】[Claims] (1)C≦0.05%、(Si+Al)≦3.5%、M
n≦1.5%、残部Fe及び不可避不純物よりなる鋼片
に、通常の熱間圧延を行って熱延鋼帯として酸洗した後
、鋼帯の幅方向圧下率が30%以上でかつ、長手方向と
幅方向の合計圧下率が70〜95%の冷間圧延を行い、
仕上焼鈍することを特徴とする、無方向性電磁鋼板の製
造方法。
(1) C≦0.05%, (Si+Al)≦3.5%, M
A steel billet consisting of n≦1.5%, the balance being Fe and unavoidable impurities is subjected to normal hot rolling and pickled as a hot-rolled steel strip, and the reduction ratio in the width direction of the steel strip is 30% or more, and Cold rolling is performed with a total reduction ratio of 70 to 95% in the longitudinal direction and width direction,
A method for manufacturing a non-oriented electrical steel sheet, which comprises final annealing.
(2)C<0.01%でかつ、(Si+Al)≧2.0
%の鋼片の場合は、酸洗の前または後にて600〜1,
100℃の焼鈍を行うことを特徴とする、特許請求の範
囲第1項に記載の無方向性電磁鋼板の製造方法。
(2) C<0.01% and (Si+Al)≧2.0
% steel billet, 600~1, before or after pickling.
The method for manufacturing a non-oriented electrical steel sheet according to claim 1, characterized in that annealing is performed at 100°C.
(3)C≧0.01%の鋼片の場合は、酸洗の前または
後にて600〜1,100℃の脱炭焼鈍を行うことを特
徴とする、特許請求の範囲第1項に記載の無方向性電磁
鋼板の製造方法。
(3) In the case of steel slabs with C≧0.01%, decarburization annealing is performed at 600 to 1,100°C before or after pickling, as set forth in claim 1. A method for manufacturing non-oriented electrical steel sheets.
JP24933387A 1987-10-01 1987-10-01 Manufacture of non-oriented magnetic steel sheet Pending JPH0192318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24933387A JPH0192318A (en) 1987-10-01 1987-10-01 Manufacture of non-oriented magnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24933387A JPH0192318A (en) 1987-10-01 1987-10-01 Manufacture of non-oriented magnetic steel sheet

Publications (1)

Publication Number Publication Date
JPH0192318A true JPH0192318A (en) 1989-04-11

Family

ID=17191452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24933387A Pending JPH0192318A (en) 1987-10-01 1987-10-01 Manufacture of non-oriented magnetic steel sheet

Country Status (1)

Country Link
JP (1) JPH0192318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180896A (en) * 2019-06-20 2019-08-30 辽宁科技大学 A kind of anisotropic precise machining device of reduction metal material and its method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180896A (en) * 2019-06-20 2019-08-30 辽宁科技大学 A kind of anisotropic precise machining device of reduction metal material and its method

Similar Documents

Publication Publication Date Title
WO2019151399A1 (en) Directional electrical steel sheet, wound transformer core using the same, and method for manufacturing wound core
JPS5850294B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetism
JPS597768B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0192318A (en) Manufacture of non-oriented magnetic steel sheet
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
KR100270392B1 (en) The manufacturing method for non oriented electric steelsheet with low hysterisis
JPS61119620A (en) Annealing method of silicon steel strip by vertical continuous annealing furnace
JPS5855211B2 (en) (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss
JPH0434614B2 (en)
EP0651061A1 (en) Process for producing grain-oriented electrical strips and magnetic cores produced therefrom
JPH02267223A (en) Primary recrystallization annealing method for grain-oriented electrical steel sheet
JP2000309858A (en) Silicon steel sheet and its manufacture
JPS61139007A (en) Oriented silicon steel sheet with low iron loss
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH02133523A (en) Production of non-oriented electrical steel having excellent magnetic characteristics
JPS613838A (en) Manufacture of electromagnetic steel sheet having small anisotropy
JPH04362128A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JPH07207343A (en) Production of semiprocessed grain nonoriented silicon steel sheet
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JPH1161358A (en) Electric steel sheet excellent in blanking and magnetic property in rolling direction and manufacture thereof
JP2000297326A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JPS61124525A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2516441B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent ridging resistance
JPH0784614B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties