JPH0192232A - Complex structure of thermoplastic resin - Google Patents

Complex structure of thermoplastic resin

Info

Publication number
JPH0192232A
JPH0192232A JP62248036A JP24803687A JPH0192232A JP H0192232 A JPH0192232 A JP H0192232A JP 62248036 A JP62248036 A JP 62248036A JP 24803687 A JP24803687 A JP 24803687A JP H0192232 A JPH0192232 A JP H0192232A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fibers
present
tape
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62248036A
Other languages
Japanese (ja)
Inventor
Yoshio Matsumoto
松本 嘉生
Keiichi Haraguchi
慶一 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62248036A priority Critical patent/JPH0192232A/en
Publication of JPH0192232A publication Critical patent/JPH0192232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a complex thermoplastic resin having excellent processing properties and physical properties, by interlacing a fibrous or tape-shaped thermoplastic resin with reinforcing fibers. CONSTITUTION:(A) A fibrous and/or tape-shaped thermoplastic resin (e.g., polyimide ether) is interlaced with (B) reinforcing fibers (e.g., preferably carbon fibers having >=150kg/mm<2> tensile strength and >=10t/mm<2> modulus in tension) to give a complex material. The blending ratio is preferably 30-70wt.% component A.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加工性と物性とに優れた熱可塑性樹脂複合構
造体である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is a thermoplastic resin composite structure with excellent processability and physical properties.

〔従来技術〕[Prior art]

長繊維強化成形材料におけるマトリックスとして、熱硬
化性樹脂及び熱可塑性樹脂が一般的に知られている。
Thermosetting resins and thermoplastic resins are generally known as matrices in long fiber reinforced molding materials.

従来、熱硬化性樹脂が多用されてきたが、成形品の耐衝
撃性が劣るため、耐衝撃性に優れた熱可塑性樹脂がマト
リックスとして、注目されつつある(特開昭58−29
651号公報、特開昭60−72707号公報)。
Conventionally, thermosetting resins have been widely used, but because the impact resistance of molded products is poor, thermoplastic resins with excellent impact resistance are attracting attention as matrix materials (Japanese Patent Laid-Open No. 58-29
651, JP-A-60-72707).

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

上記熱可塑性樹脂をマトリックスとする長繊維強化成形
材料は、強化繊維束中に熱可塑性樹脂が含浸し、かつ強
化繊維に熱可塑性樹脂が強固融着した固い剛体となって
いる。
The long fiber-reinforced molding material having the thermoplastic resin as a matrix is a hard, rigid body in which the reinforcing fiber bundles are impregnated with the thermoplastic resin, and the thermoplastic resin is firmly fused to the reinforcing fibers.

かかる長繊維強化熱可塑性樹脂成形材料は、実用上、数
々の欠点を持っている。
Such long fiber reinforced thermoplastic resin molding materials have a number of practical drawbacks.

例えば、上記成形材料が薄いシート状成形材料であり、
これ等を数枚重ね合わせて所望の形状に賦形する場合、
成形材料を予熱し、マトリックスである熱可塑性樹脂の
軟化温度以上において賦形し、重ね合わせねばならず、
常温で賦形可能な場合に比較して、複雑な設備と工程を
必要とする。
For example, the molding material is a thin sheet-like molding material,
When stacking several sheets of these to form the desired shape,
The molding material must be preheated, shaped at a temperature higher than the softening temperature of the thermoplastic resin that is the matrix, and then stacked.
Compared to cases where molding is possible at room temperature, complex equipment and processes are required.

また、上記成形材料が、細長いロープ状成形材料の場合
、かかるロープが剛性を有するため、コンパクトな荷姿
にできず、貯蔵、運搬が困難となる。
Further, when the molding material is a long and narrow rope-shaped molding material, the rope has rigidity, so it cannot be packaged in a compact form, making storage and transportation difficult.

また、かかるロープ状成形材料を、フィラメント・ワイ
ンディング法によって賦形する場合も、マトリックスで
ある熱可塑性樹脂の軟化温度以上の予熱が必要となる。
Also, when such a rope-shaped molding material is shaped by the filament winding method, it is necessary to preheat the material to a temperature higher than the softening temperature of the thermoplastic resin that is the matrix.

更に、予熱時にマトリックスである樹脂が熱劣化したり
、成形品中にボイドを生゛じ易い。
Furthermore, during preheating, the matrix resin tends to deteriorate due to heat, and voids tend to occur in the molded product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上記欠点を解決するために、種種検討し
た結果、本発明をなすに到った。
The present inventors conducted various studies to solve the above-mentioned drawbacks, and as a result, they arrived at the present invention.

即ち、本発明は繊維状および/またはテープ状の熱可塑
性樹脂と、強化繊維とを交絡させてなることを特徴とす
る熱可塑性樹脂複合構造体である。
That is, the present invention is a thermoplastic resin composite structure characterized by intertwining a fibrous and/or tape-shaped thermoplastic resin with reinforcing fibers.

本発明に用いる繊維状および/またはテープ状の熱可塑
性樹脂としては、公知の熱可塑性樹脂から選ばれた1種
または2種以上であり、例えば、ポリエチレン、ポリプ
ロピレン等のポリオレフィン、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート等のポリエステル、
ナイロン−4゜6、ナイロン6.6、ナイロン−12等
のポリアミド、ポリアセタール、ポリフェニレンエーテ
ル、ポリカーボネート、ポリフェニレンスルフィド、ポ
リアミドイミド、ポリイミドエーテル、ポリエーテルケ
トン、ポリエーテルエーテルケトン、ポリサルフオン、
ポリエーテルケトンオン、これらの共重合樹脂及びこれ
らのブレンド樹脂である。
The fibrous and/or tape-shaped thermoplastic resin used in the present invention is one or more selected from known thermoplastic resins, such as polyolefins such as polyethylene and polypropylene, polyethylene terephthalate, and polybutylene. Polyester such as terephthalate,
Polyamides such as nylon-4゜6, nylon 6.6, nylon-12, polyacetals, polyphenylene ethers, polycarbonates, polyphenylene sulfides, polyamideimides, polyimide ethers, polyether ketones, polyether ether ketones, polysulfones,
polyetherketone, copolymer resins thereof, and blend resins thereof.

これ等の熱可塑性樹脂は、繊維状および/またはテープ
状であり、繊維状としては、マルチフィラメント及びモ
ノフィラメントの形態を用いることができる。
These thermoplastic resins are in the form of fibers and/or tapes, and the fibers can be in the form of multifilaments or monofilaments.

テープとしては、テープ状に押出て成形したもの、フィ
ルムをスプリットしたものを用いることができる。
As the tape, a tape formed by extrusion or a film split can be used.

これ等の繊維またはテープは、未延伸もしくは延伸状態
で用いることができる。
These fibers or tapes can be used in an unstretched or stretched state.

本発明に用いる強化繊維としては、公知の強化繊維から
選ばれた1種もしくは2種以上を用いることができる。
As the reinforcing fiber used in the present invention, one or more kinds selected from known reinforcing fibers can be used.

例えば、ガラス繊維、炭素繊維、セラミック繊維等の無
機繊維;芳香族ポリアミド繊維、ポリベンツチタゾール
繊維、ポリベンツオキサゾール繊維等の有機繊維;金属
繊維、これ等繊維類を金属コートした繊維等である。
For example, inorganic fibers such as glass fibers, carbon fibers, and ceramic fibers; organic fibers such as aromatic polyamide fibers, polybentz titazole fibers, and polybenzoxazole fibers; metal fibers, and fibers coated with metals. .

本発明に用いる強化繊維は連続した長繊維であるが、短
繊維を併用することもできる。
The reinforcing fibers used in the present invention are continuous long fibers, but short fibers can also be used in combination.

引張り強度が150 kg/ n+”以上、引張り弾性
率が10 ton/1m”以上の強化繊維が優れた物性
の複合構造体が得られので好ましい。
Reinforcing fibers with a tensile strength of 150 kg/n+'' or more and a tensile modulus of 10 ton/1 m'' or more are preferred because they yield a composite structure with excellent physical properties.

本発明の繊維状および/またはテープ状の熱可塑性樹脂
と強化繊維との交絡は、これ等本発明の二成分が、本発
明の複合構造体中に夫々に配向・配列・分散することに
よって、これ等二成分が相互に均一もしくは不均一に交
差しておればよい。
The intertwining of the fibrous and/or tape-shaped thermoplastic resin of the present invention and the reinforcing fibers is achieved by orienting, arranging, and dispersing these two components of the present invention in the composite structure of the present invention, respectively. It is sufficient that these two components intersect with each other uniformly or non-uniformly.

また、これ等二成分を予め合糸して使用しても、合糸せ
ずに使用してもよい。
In addition, these two components may be used by being pre-paired, or may be used without being plied.

本発明の二成分を交絡させた複合構造体としては、例え
ば、これ等二成分を経糸および/または緯糸とする織物
、これ等二成分を用いた編物、不織布、ロープ状物、立
体織編物等が使用でき、本発明の複合構造体を用いた成
形品の使用口的に応じて選択し得る。
Examples of the composite structure in which two components of the present invention are intertwined include woven fabrics using these two components as warps and/or wefts, knitted fabrics using these two components, nonwoven fabrics, rope-like articles, three-dimensional woven and knitted fabrics, etc. can be used, and can be selected depending on the usage of the molded product using the composite structure of the present invention.

本発明の複合構造体中の繊維状および/またはテープ状
の熱可塑性樹脂の比率は20〜90重量%、特に30〜
70!ti?%が、本発明の複合構造体の加工性、物性
を良好に保つために望ましい。
The proportion of the fibrous and/or tape-shaped thermoplastic resin in the composite structure of the present invention is 20 to 90% by weight, especially 30 to 90% by weight.
70! Ti? % is desirable in order to maintain good processability and physical properties of the composite structure of the present invention.

また、本発明において、繊維状および/またはテープ状
の熱可塑性樹脂としては、延伸倍率が低い繊維を用いる
ことが、本発明の複合構造体の加工性、物性を良好に保
つために望ましい。通常、延伸倍率は、5倍以下が望ま
しい。
Furthermore, in the present invention, it is desirable to use fibers with a low draw ratio as the fibrous and/or tape-like thermoplastic resin in order to maintain good processability and physical properties of the composite structure of the present invention. Usually, the stretching ratio is preferably 5 times or less.

更に、繊維状および/またはテープ状の熱可塑性樹脂が
、軟化温度(荷重18.6kg/ cniO熱変形温度
)が200°C以上の樹脂、特にポリエーテルイミドで
あり、強化繊維が炭素繊維である場合、加工性、物性に
おける従来技術(剛体状の長繊維強化熱可塑性樹脂成形
材料)に対する本発明複合構造体の優れた特徴が、その
理由は明らかでないが、特に顕著に発現する。
Furthermore, the fibrous and/or tape-shaped thermoplastic resin is a resin having a softening temperature (load 18.6 kg/cniO heat distortion temperature) of 200°C or higher, particularly polyetherimide, and the reinforcing fiber is carbon fiber. In this case, the superior characteristics of the composite structure of the present invention over the conventional technology (rigid long fiber-reinforced thermoplastic resin molding material) in terms of processability and physical properties are particularly noticeable, although the reason for this is not clear.

本発明の複合構造体は、目的に応じて、シート状、ロー
プ状として用いることができる。
The composite structure of the present invention can be used in the form of a sheet or rope depending on the purpose.

本発明の複合構造体は、予め所望の形に賦形し、重ね合
わせが必要ならば、糸とめ、または接着剤を少量用い、
部分的に仮止めして重ね合わせた後、熱可塑性樹脂の融
点以上に加熱し、ホットプレス成形、オートクレーブ成
形等を行うことによって、成型品を得ることができる。
The composite structure of the present invention is formed into a desired shape in advance, and if overlapping is necessary, using a thread or a small amount of adhesive,
A molded product can be obtained by partially temporarily fixing and overlapping, heating to a temperature higher than the melting point of the thermoplastic resin, and performing hot press molding, autoclave molding, or the like.

〔発明の効果〕〔Effect of the invention〕

本発明の複合構造体は、強化繊維と熱可塑性樹脂が融着
しているため、剛体化しておらず室温でドレープ性を有
し、賦形が容易にできる。
Since the reinforcing fibers and the thermoplastic resin are fused together, the composite structure of the present invention is not rigid, has drapability at room temperature, and can be easily shaped.

また、成形材料の賦形のための予熱のための予熱工程が
不要であり、加工速度が速く、かつ賦形のための予熱設
備を必要としない。
Furthermore, there is no need for a preheating step for preheating the molding material for shaping, the processing speed is fast, and no preheating equipment for shaping is required.

さらに、繊維強化熱硬化性樹脂成形材料に比較して、本
発明の複合構造体は、耐衝撃性に優れ、条件によっては
、従来の剛体化した繊維強化熱可塑性樹脂成形材料より
も優れた耐衝撃性を示す。
Furthermore, compared to fiber-reinforced thermosetting resin molding materials, the composite structure of the present invention has excellent impact resistance, and depending on conditions, it has better impact resistance than conventional rigid fiber-reinforced thermoplastic resin molding materials. Shows impact resistance.

〔実施例〕〔Example〕

以下、実施例により本発明を詳述する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 ポリエーテルイミド(ゼネラル・エレクトリック社製、
商品名;ウルテム1000)を延伸倍率3倍で溶融紡糸
し、200テツクスのマルチ・フィラメントを得た。
Example 1 Polyetherimide (manufactured by General Electric Company,
(trade name: Ultem 1000) was melt-spun at a draw ratio of 3 times to obtain a multi-filament of 200 tex.

このマルチ・フィラメントと400テツクスの炭素繊維
(旭日本カーボン・ファイバー社製、商品名;ハイカー
ボロン)を合糸したものを用いて製織し、炭素繊維含有
率67%の平織物を得た。
This multi-filament and 400 tex carbon fiber (manufactured by Asahi Nippon Carbon Fiber Co., Ltd., trade name: Hi-Carboron) were woven together to obtain a plain woven fabric with a carbon fiber content of 67%.

襠鉢を逆さに伏せた形状の金型上に、上記平織物を6枚
重ね、各平織の間を、接着剤(チハ・ガイギー社製、商
品名; AY105/AY953U)を、少量用いて、
部分接着した。
Layer 6 sheets of the plain woven fabric on top of a mold shaped like an upside-down mortar pot, and use a small amount of adhesive (manufactured by Chiha Geigy Co., Ltd., product name: AY105/AY953U) between each plain woven fabric.
Partially glued.

これをアルミニウム箔製のバキューム・バッグに封入し
、バッグ内を真空密封した後、350°Cで、オート・
クレープ成形した。
After enclosing this in an aluminum foil vacuum bag and vacuum-sealing the inside of the bag, auto-incubate at 350°C.
Crepe molded.

播鉢型の成形品の平面部に落i!衝撃(レオメトリック
社製落錘衝撃機を使用)を加えた。衝撃エネルギー5 
kg−mでは殆ど層間剥離を生じなかった。
Dropped onto the flat surface of a pot-shaped molded product! A shock was applied (using a falling weight impact machine manufactured by Rheometric). Impact energy 5
kg-m, almost no delamination occurred.

比較例1 400テツクスの炭素繊維(ハイカーボロン)を用いた
平織物(但し、炭素繊維の目付は、実施例1の平織物中
の炭素繊維の目付と同じとした)にポリエーテル・イミ
ド(ウルテム1000)のN−メチルピロリドン溶液を
含浸させ、N−メチルピロリドンを蒸発させることによ
って、炭素繊維強化ポリエーテル・イミド成形材料を得
た。成形材料中の炭素繊維含有率は67%に調整した。
Comparative Example 1 A plain woven fabric using 400 tex carbon fiber (Hicarboron) (however, the basis weight of the carbon fiber was the same as that of the carbon fiber in the plain woven fabric of Example 1) was coated with polyether imide (Ultem). A carbon fiber-reinforced polyether imide molding material was obtained by impregnating a solution of N-methylpyrrolidone (1000) and evaporating the N-methylpyrrolidone. The carbon fiber content in the molding material was adjusted to 67%.

これを、実施例1と同じ金型上に6枚重ね合わせようと
したが常温では、金型に沿って賦形できなかった。
An attempt was made to stack six sheets of this material on the same mold as in Example 1, but it was not possible to shape it along the mold at room temperature.

金型を300℃に加熱し、250℃に予熱した上記成形
材料を、金型上に手早く5枚重ね合わせた後、アルミニ
ウム・バッグに封入し、バッグ内を真空密封にした後、
350℃でオート・クレープ成形した。
After heating the mold to 300 ° C. and quickly stacking 5 sheets of the above molding material preheated to 250 ° C. on the mold, enclosing it in an aluminum bag and vacuum-sealing the inside of the bag,
Autocrepe molding was performed at 350°C.

播鉢型の成形品の平面部を実施例】と同様に落錘衝撃を
加えたところ、全面的に層間剥離を生じた。
When a falling weight impact was applied to the flat part of the pot-shaped molded product in the same manner as in Example], delamination occurred over the entire surface.

予熱時に、もしくは、高温での重ね合わせ時に、成形材
料平面の熱劣化、あるいは、真空で除けないボイドの成
形が原因と推定される。
The cause is presumed to be thermal deterioration of the plane of the molding material during preheating or stacking at high temperatures, or molding of voids that cannot be removed by vacuum.

特許出願人   旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 繊維状および/またはテープ状の熱可塑性樹脂と強化繊
維とを交絡させてなることを特徴とする熱可塑性樹脂複
合構造体
A thermoplastic resin composite structure characterized by being formed by intertwining a fibrous and/or tape-shaped thermoplastic resin with reinforcing fibers.
JP62248036A 1987-10-02 1987-10-02 Complex structure of thermoplastic resin Pending JPH0192232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248036A JPH0192232A (en) 1987-10-02 1987-10-02 Complex structure of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248036A JPH0192232A (en) 1987-10-02 1987-10-02 Complex structure of thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH0192232A true JPH0192232A (en) 1989-04-11

Family

ID=17172242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248036A Pending JPH0192232A (en) 1987-10-02 1987-10-02 Complex structure of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH0192232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585062A (en) * 1993-12-29 1996-12-17 Toho Rayon Co., Ltd. Process for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
WO2019230729A1 (en) * 2018-05-31 2019-12-05 リンテック株式会社 Method for producing carbon resin composite material and composite structure for production of carbon resin composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585062A (en) * 1993-12-29 1996-12-17 Toho Rayon Co., Ltd. Process for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
US5840347A (en) * 1993-12-29 1998-11-24 Toho Rayon Co., Ltd. Apparatus for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
WO2019230729A1 (en) * 2018-05-31 2019-12-05 リンテック株式会社 Method for producing carbon resin composite material and composite structure for production of carbon resin composite material
CN112203819A (en) * 2018-05-31 2021-01-08 琳得科株式会社 Method for producing carbon resin composite material and composite structure for producing carbon resin composite material
JPWO2019230729A1 (en) * 2018-05-31 2021-08-19 リンテック株式会社 Method for manufacturing carbon resin composite material, and composite structure for manufacturing carbon resin composite material

Similar Documents

Publication Publication Date Title
US5230956A (en) Polyamide-imide sized fibers
US5085928A (en) Fiber reinforced composites comprising uni-directional fiber layers and aramid spunlaced fabric layers
AU694564B2 (en) Foiled UD-prepreg and PWB laminate prepared therefrom
US5014755A (en) Textile structure with binding weave for multiple layers of non-interlaced fit filaments
EP0175484A2 (en) Sized fibres
US20200346441A1 (en) Fiber-reinforced resin forming material
JPH0346010B2 (en)
EP0417827A1 (en) Fabric of thermoplastic fibre and continuous reinforcing fibre
RU2105093C1 (en) Fiber-reinforced porous sheet, method of manufacturing thereof, and composition manufactured from it
WO1989005229A1 (en) Multi-directional, light-weight, high-strength interlaced material and method of making the material
US4923752A (en) Sizing for carbon fiber
JP7384197B2 (en) Fiber-reinforced resin material, roll, molded product, and method for producing fiber-reinforced resin material
JP6629751B2 (en) Fiber-reinforced composite laminate and articles made therefrom
JPH0192232A (en) Complex structure of thermoplastic resin
CN113811439A (en) Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
US4880584A (en) Fiber reinforced thermoplastic resin matrix composites
JPS6387228A (en) Manufacture of composite body
KR20200093536A (en) Fiber reinforced thermoplastic resin molding material
JPH0691817A (en) Composite sheet like article and production thereof
JPH10278184A (en) Continuous fiber reinforced thermoplastic resin laminate and its production
JPS6395915A (en) Manufacture of composite material
JP2720489B2 (en) Precursors for thermoplastic composites
JP2926736B2 (en) Multi-layer thermoplastic composite molding
US11686020B2 (en) Reinforcement fabric, protection board, and method for manufacturing the protection board
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body