JPH01770A - Compound semiconductor integrated circuit - Google Patents

Compound semiconductor integrated circuit

Info

Publication number
JPH01770A
JPH01770A JP62-64015A JP6401587A JPH01770A JP H01770 A JPH01770 A JP H01770A JP 6401587 A JP6401587 A JP 6401587A JP H01770 A JPH01770 A JP H01770A
Authority
JP
Japan
Prior art keywords
compound semiconductor
substrate
integrated circuit
gaas
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-64015A
Other languages
Japanese (ja)
Other versions
JPS64770A (en
Inventor
金森 幹夫
Original Assignee
工業技術院長
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP62-64015A priority Critical patent/JPH01770A/en
Publication of JPS64770A publication Critical patent/JPS64770A/en
Publication of JPH01770A publication Critical patent/JPH01770A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化合物半導体を基板として用いた集積回路に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated circuit using a compound semiconductor as a substrate.

(従来の技術) 現在、集積回路は主にシリコン(Si)を基板として作
られているが、例えばGaAsはSiよりも電子移動度
が大きく、また、半絶縁性基板を作ることが可能である
ため、GaAsを集積回路基板として用いれば、Siを
基板として用いるよりも高速動作を実現できる。GaA
sを基板として用いたGaAs集積回路の基本素子とし
ては、GaAsショットキ障壁接合ゲート型電界効果ト
ランジスタ(以後GaAs MESFETと記す)が多
く用いられている。また、基本回路構成としては、DC
FL(Direct Coupled FET Log
ic)、BEL(Buffured FET Logi
c) 、5CFL(Source CoupledFE
T Logic)などがあるが1.このうちDCFLお
よび5CFLでは、しきい値電圧の異なったFETを同
一基板上に形成する必要がある。
(Prior art) Currently, integrated circuits are mainly made using silicon (Si) as a substrate, but GaAs, for example, has higher electron mobility than Si, and it is also possible to make semi-insulating substrates. Therefore, if GaAs is used as an integrated circuit substrate, higher speed operation can be achieved than if Si is used as a substrate. GaA
GaAs Schottky barrier junction gate field effect transistors (hereinafter referred to as GaAs MESFETs) are often used as basic elements of GaAs integrated circuits using S as a substrate. In addition, the basic circuit configuration is DC
FL (Direct Coupled FET Log
ic), BEL (Buffered FET Logi)
c) , 5CFL (Source CoupledFE
T Logic) etc. 1. Among these, DCFL and 5CFL require FETs with different threshold voltages to be formed on the same substrate.

(発明が解決しようとする問題点) 従来、しきい値電圧の異なるFETを同一基板上に形成
するためにはキャリア密度あるいは厚さの異なるGaA
s結晶層を動作領域とするFETを同一基板上に形成し
ていた。しかし、このような方法ではn型GaAs結晶
層を形成するための工程が複数回必要であり、工程が煩
雑であるという欠点があった。
(Problems to be Solved by the Invention) Conventionally, in order to form FETs with different threshold voltages on the same substrate, GaAs with different carrier densities or thicknesses have been used.
FETs whose operating region is the s-crystal layer were formed on the same substrate. However, such a method requires a plurality of steps to form the n-type GaAs crystal layer, and has the disadvantage that the steps are complicated.

本発明の目的は、製造工程を簡略化したしきい値電圧の
異なるFETを含むGaAs集積回路を提供するもので
ある。
An object of the present invention is to provide a GaAs integrated circuit including FETs with different threshold voltages, which simplifies the manufacturing process.

(問題点を解決するための手段) 本発明の集積回路は化合物半導体基板の面方位(100
)面上に形成された同一種類の動作層を有するショット
キ障壁、接合ゲート型電界効果トランジスタのゲート電
極を制御すべきしきい値電圧の大きさに応じて各々異な
る方位に配置し、該トランジスタを有する化合物半導体
基板の裏面に応力を有する絶縁膜あるいは金属膜が設け
られていることを特徴とする。化合物半導体集積回路で
構成される。
(Means for Solving the Problems) The integrated circuit of the present invention has a surface orientation (100
), the gate electrodes of junction gate field effect transistors having the same type of active layer formed on the surface are arranged in different directions depending on the magnitude of the threshold voltage to be controlled, and the transistors are It is characterized in that an insulating film or a metal film having stress is provided on the back surface of the compound semiconductor substrate. Consists of compound semiconductor integrated circuits.

(作用) 本発明は基板の裏面に応力を有する金属膜を被着して基
板を曲げた場合、GaAs MESFETのしきい値電
圧VTが基板の曲率またはそり量に比例して変化し、そ
の変化の方向がMESFETの方位によって異なるとい
う発見に基づいたものである。第2図に短冊状に切断し
たGaAs基板上に形成された異なる方位を有するFE
TのvTと基板のそり量の関係を示したもので、第3図
はこの2種類のFETの方位と結晶エッチの関係を示し
ている。図中31は面方位(100)ノ基板面、32は
[01月方位)FET、33は[011]方位のFET
である。第2図よりそりを加えた場合[011]と[0
1月の方位によってVTの変化が逆方向に移行し、異な
るVTを有することがわかる。
(Function) The present invention provides that when a metal film having stress is applied to the back surface of the substrate and the substrate is bent, the threshold voltage VT of the GaAs MESFET changes in proportion to the curvature or amount of warpage of the substrate. This is based on the discovery that the direction of the MESFET differs depending on the orientation of the MESFET. Figure 2 shows FEs with different orientations formed on a GaAs substrate cut into strips.
It shows the relationship between vT of T and the amount of warpage of the substrate, and FIG. 3 shows the relationship between the orientation and crystal etch of these two types of FETs. In the figure, 31 is the (100) substrate surface, 32 is the [01 orientation) FET, and 33 is the [011] orientation FET.
It is. From Figure 2, when warpage is added, [011] and [0
It can be seen that the change in VT shifts in the opposite direction depending on the orientation in January, and has different VT.

GaAsのようにせん亜鉛鉱構造では結晶に歪みが加え
られると分極が誘起され、その分極により電荷が発生す
ることが知られている。そして、その電荷は結晶方位に
よって異なるため、本実験のように方位依存性が現われ
たものと考えられる。
It is known that in a zincite structure such as GaAs, polarization is induced when strain is applied to the crystal, and electric charges are generated due to the polarization. Since the charge differs depending on the crystal orientation, it is thought that orientation dependence appeared as in this experiment.

(実施例) 次に、本発明の一実施例について図面を参照して説明す
る。
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

先ず、第1図(a)に示すようにGaAsの半絶縁性基
板5の表面にSiイオンを50KeV、2.5刈012
cm−2の条件でイオン注入し、さらにAs圧雰囲気中
で800’Cl2O分間のアニールを行い、GaAs動
作層3を形成する。
First, as shown in FIG. 1(a), Si ions were applied to the surface of a GaAs semi-insulating substrate 5 at 50 KeV and 2.5 volts.
Ion implantation is performed under the condition of cm-2, and further annealing is performed for 800'Cl2O minutes in an As pressure atmosphere to form a GaAs active layer 3.

次に、第1図(b)に示すように、動作層3を覆うよう
に半絶縁性基板5上に、タングステンシリサイド(WS
i)をスパッタ法を用いて0.5pmの膜厚に堆積した
後、通常のホトリソグラフィ法と四フッ化炭素を用いた
ドライエツチング法とによってWSiの膜を所定の形に
パターニングし、ショットキゲート1を形成する。
Next, as shown in FIG. 1(b), tungsten silicide (WS) is placed on the semi-insulating substrate 5 so as to cover the active layer 3.
After depositing i) to a film thickness of 0.5 pm using a sputtering method, the WSi film was patterned into a predetermined shape by ordinary photolithography and dry etching using carbon tetrafluoride, and a Schottky gate was formed. Form 1.

続いて第1図(c)に示すように、ショットキゲート1
をマスクにして、Siイオンを150KeV。
Next, as shown in FIG. 1(c), Schottky gate 1
Using a mask, Si ions were heated at 150 KeV.

5X1013cm−3の条件でイオン注入し、更にAs
圧雰囲気中で750°Cl2O分のアニールを行いn中
層4a、4bを形成する。
Ion implantation was performed under the conditions of 5X1013cm-3, and As
Annealing for 750° Cl2O is performed in a pressure atmosphere to form n intermediate layers 4a and 4b.

続いて、第1図(d)に示すように、AuGe−Niの
金属層からなるソース電極2a及びドレイン電極2bを
形成する。
Subsequently, as shown in FIG. 1(d), a source electrode 2a and a drain electrode 2b made of a metal layer of AuGe-Ni are formed.

最後にこのGaAs基板の裏面に2 X 1010dy
n/cm”の膜応力を有するW膜6をスパッタ法で4p
m全面堆積し、[011]FETよりエンハンスメント
型FET、[011]、FETよりデプレッション型F
ETを製作した。
Finally, 2 x 1010dy on the back side of this GaAs substrate.
A 4p W film 6 having a film stress of "n/cm" is formed by sputtering.
Deposited on the entire surface, enhancement type FET than [011] FET, depletion type F than [011] FET
I made ET.

以上の実施例では[011]方位と[011]方位の2
つの直交した方向にFETを作成したが、任意の方向で
作成することができる。この場合、第2図に示した基板
のそり量としきい値電圧の関係も変化するので、所望の
異なるしきい値電圧のFETが容易に作成できる。
In the above embodiment, the two directions are [011] and [011].
Although FETs were fabricated in two orthogonal directions, they can be fabricated in any direction. In this case, since the relationship between the amount of substrate warpage and the threshold voltage shown in FIG. 2 also changes, FETs with different desired threshold voltages can be easily created.

(発明の効果) 以上説明したように、本発明によれば、しきい値電圧の
異なるFETを含む集積回路を、1種類の動作層を有す
るFETで形成することができるため、製作工程を大幅
に簡素化できる効果がある。
(Effects of the Invention) As explained above, according to the present invention, an integrated circuit including FETs with different threshold voltages can be formed using FETs having one type of active layer, so the manufacturing process can be significantly reduced. This has the effect of simplifying the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2は本発
明の一実施例を説明するための1しきい値電圧の変化と
基板のそり量の関係を示した図、第3図は本発明の基礎
となる実験結果を説明するための模式%式% 図中、 1・・・ショットキゲート、2a・・・ソース電極、2
b・・・ドレイン電極、3・・・動作層、4a、4b・
・・n型層、5・・・半絶縁性基板、6・・・W膜、3
1・・・面方位(100)の基板面、32・・・[01
1]方位のFET、33・・・[011]方位のFET
である。
Figures 1 (a) to (d) are cross-sectional views of a semiconductor chip shown in order of steps to explain an embodiment of the present invention, and Figure 2 is a threshold value for explaining an embodiment of the present invention. FIG. 3 is a diagram showing the relationship between voltage changes and the amount of warpage of the substrate, and is a schematic % formula for explaining the experimental results that form the basis of the present invention. In the figure, 1... Schottky gate, 2a... Source electrode, 2
b...Drain electrode, 3...Active layer, 4a, 4b.
... n-type layer, 5 ... semi-insulating substrate, 6 ... W film, 3
1...Substrate surface with plane orientation (100), 32...[01
1] FET in the direction, 33...FET in the [011] direction
It is.

Claims (1)

【特許請求の範囲】[Claims]  化合物半導体基板の面方位(100)面上に形成され
た同一種類動作層を有するショットキ障壁接合ゲート型
電界効果トランジスタのゲート電極を、制御すべきしき
い値電圧の大きさに応じて各々異なる方位に配置し、該
トランジスタを有する化合物半導体基板の裏面に応力を
有する絶縁膜あるいは金属膜が設けられていることを特
徴とする化合物半導体集積回路。
The gate electrodes of Schottky barrier junction gate field effect transistors having the same type of active layer formed on the (100) plane of a compound semiconductor substrate are arranged in different orientations depending on the magnitude of the threshold voltage to be controlled. 1. A compound semiconductor integrated circuit, characterized in that an insulating film or a metal film having stress is provided on the back surface of a compound semiconductor substrate having the transistor.
JP62-64015A 1987-03-20 Compound semiconductor integrated circuit Pending JPH01770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-64015A JPH01770A (en) 1987-03-20 Compound semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62-64015A JPH01770A (en) 1987-03-20 Compound semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS64770A JPS64770A (en) 1989-01-05
JPH01770A true JPH01770A (en) 1989-01-05

Family

ID=

Similar Documents

Publication Publication Date Title
US4377030A (en) Metallization of selectively implanted AIII -BV compound semiconductors
US4454524A (en) Device having implantation for controlling gate parasitic action
EP0305975B1 (en) Compound semiconductor mesfet
JP2562840B2 (en) Field effect transistor
JP2550013B2 (en) Field effect transistor
JPS63248136A (en) Semiconductor device
JPH01770A (en) Compound semiconductor integrated circuit
KR19990044143A (en) Gate oxide field reduction in the CMOS off state
JP2679077B2 (en) Semiconductor device and manufacturing method thereof
JP3432043B2 (en) Method for manufacturing semiconductor device
JPS6378574A (en) Manufacture of semiconductor device
JPH0329326A (en) Junction field-effect transistor
JP3090451B2 (en) Semiconductor device
JPS594083A (en) Manufacture of semiconductor device
EP0121997B1 (en) Schottky gate field effect transistor and method for producing it
JPS6057980A (en) Manufacture of semiconductor device
JP2504110B2 (en) Semiconductor device
JP2663480B2 (en) Method for manufacturing semiconductor device
JPH028454B2 (en)
JPS63281470A (en) Semiconductor device
JPS59181669A (en) Mos type semiconductor device
JPH0439773B2 (en)
JPS63281473A (en) Field-effect semiconductor device and manufacture thereof
JPH02250334A (en) Semiconductor device and its manufacture
JPS6213079A (en) Semiconductor integrated circuit device