JPH0157617B2 - - Google Patents

Info

Publication number
JPH0157617B2
JPH0157617B2 JP57013893A JP1389382A JPH0157617B2 JP H0157617 B2 JPH0157617 B2 JP H0157617B2 JP 57013893 A JP57013893 A JP 57013893A JP 1389382 A JP1389382 A JP 1389382A JP H0157617 B2 JPH0157617 B2 JP H0157617B2
Authority
JP
Japan
Prior art keywords
ammonium
mercury vapor
activated carbon
gas
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57013893A
Other languages
Japanese (ja)
Other versions
JPS58131132A (en
Inventor
Hiroshi Nishino
Norio Aibe
Katsuya Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP57013893A priority Critical patent/JPS58131132A/en
Publication of JPS58131132A publication Critical patent/JPS58131132A/en
Publication of JPH0157617B2 publication Critical patent/JPH0157617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガス中の水銀蒸気吸着剤に関する。
電解水素ガス、天然ガス、焼却炉排ガス、水銀を
取扱う工場の排ガス中には、水銀蒸気が含まれて
いることが多い。すなわち、電解水素は医薬品、
食品、その他の製品を製造するプロセスに使用さ
れ、微量の水銀蒸気が触媒を被毒したり製品に混
入したりするので問題となることがある。天然ガ
ス中の水銀蒸気は、ガスの液化プロセスにおける
アルミニウム製の熱交換器などを腐食し、大きな
事故の原因となる。また焼却炉排ガスおよび水銀
蒸気を取扱う工場の排ガス中の水銀蒸気は、大気
汚染上または作業環境上、問題となる。 したがつてこれらガス中の水銀蒸気は、何らの
処理によつて除去しなければならない。これま
で、ガス中の水銀を除去する方法として、薬液洗
浄法、活性炭やイオン交換樹脂などの吸着剤を使
用する乾式吸着法などが知られているが、前者の
薬液洗浄法は、水銀蒸気の除去効率が不充分でか
つ廃液を生じるなどの欠点がある。後者の乾式吸
着法では、水銀蒸気の吸着容量が小さく充分満足
し得るものではない。 本発明者らは、このような点に鑑み種研究した
結果、チオシアン酸アンモニウム、チオ硫酸アン
モニウム、硫化アンモニウム、スルフアミン酸ア
ンモニウムを担持した活性炭は、ガス中の水銀蒸
気を効率よく吸着し、かつその吸着容量が著しく
大きいことを見出し、本発明を完成した。 すなわち、本発明は、活性炭にチオシアン酸ア
ンモニウム、チオ硫酸アンモニウム、硫化アンモ
ニウム、スルフアミン酸アンモニウム(以下アン
モニウム塩という)の少なくとも一つを担持して
なる水銀蒸気吸着剤である。 本発明において使用される活性炭は木炭、コー
クス、ヤシガラ、樹脂などを原料として公知方法
により製造されたもので、その比表面積が200〜
2000m2/gのものであれば、いかなるものでもよ
い。 活性炭に対するアンモニウム塩の担持量は、活
性炭1g当り5〜800mg、好ましくは10〜550mgで
ある。 活性炭にアンモニウム塩を担持するには、たと
えば、アンモニウム塩を水に溶解し、これを活性
炭に含浸または散布し、必要に応じて乾燥する方
法などが挙げられる。 本発明の水銀蒸気吸着剤はアンモニウム塩の他
さらに不揮発性酸を担持していてもよく、不揮発
性酸を担持せしめることにより、吸着剤の水銀吸
着能力を高めることができる。ここにいう不揮発
性酸は、100℃における蒸気圧が50mmHg以下の
酸をいい、たとえば硫酸、リン酸、シユウ酸、ク
エン酸などがあげられる。不揮発性酸の担持量
は、活性炭1g当り5〜500mg、好ましくは10〜
400mgである。不揮発性酸を担持せしめる方法は、
アンモニウム塩の活性炭への担持方法と同様にし
て行なわれ、アンモニウム塩と不揮発性酸の活性
炭に担持せしめる順序は、いずれでもよい。たと
えば、アンモニウム塩と不揮発性酸を含有する水
溶液を活性炭に含浸または散布する方法、アンモ
ニウム塩を担持した後、不揮発性酸を担持する方
法、または、不揮発性酸を担持した後アンモニウ
ム塩を担持する方法などがあげられる。 本発明の水銀蒸気吸着剤を用いてガス中の水銀
蒸気を除去するには、水銀蒸気を含有するガスと
本発明の吸着剤とを接触させればよい。接触温度
は、150℃以下、好ましくは−10〜120℃で、接触
圧力は50Kg/cm2以下、好ましくは0.1〜35Kg/cm2
で、接触時間は25℃1Kg/cm2換算で1/10〜30秒、
好ましくは1/5〜20秒である。また、本吸着剤と
水銀蒸気含有ガスとの接触は、たとえば固定層、
移動層、流動層などを用いて行なうことができ
る。 以下に実施例を示して本発明をより具体的に説
明する。 実施例 1 BET比表面積1150m2/gの4〜6mesh粒状活
性炭を16〜24meshに破砕整粒した。この活性炭
AにNH4SCN、(NH42S2O3、(NH42Sおよび
NH4OSO2NH2を溶解した水溶液を均一に散布
し、NH4SCN、(NH42S2O3、(NH42S、およ
びNH4OSO2NH2をそれぞれ100mg/g担持し、
110℃で乾燥した(吸着剤B〜E)。 なお対照としてこれらアンモニウム塩の代りナ
トリウム塩を前記と同様にそれぞれ100mg/g担
持し、110℃で乾燥した(吸着剤b〜e)。また活
性炭Aにイオウを溶解した二硫化炭素溶液を散布
し、120℃で乾燥してイオウ100mg/g担持活性炭
(吸着剤f)を調整した。 このようにして得られた吸着剤A〜Eおよびb
〜fの各6mlを1.6cmφのガラス製カラムに充填
して、水銀蒸気9mg/m3含有の30℃ガス(N2
84.8vol%、O2−14.5vol%、H2O−0.7vol%)を線流
速40cm/secで流通し、水銀蒸気の破過吸着テス
トを行なつた。結果は第1表のとおりである。
The present invention relates to mercury vapor adsorbents in gases.
Mercury vapor is often contained in electrolyzed hydrogen gas, natural gas, incinerator exhaust gas, and exhaust gas from factories that handle mercury. In other words, electrolytic hydrogen is used for pharmaceuticals,
It is used in the process of manufacturing food and other products, and trace amounts of mercury vapor can cause problems as it can poison catalysts or mix into products. Mercury vapor in natural gas corrodes aluminum heat exchangers during the gas liquefaction process, causing major accidents. Furthermore, mercury vapor in incinerator exhaust gas and exhaust gas from factories that handle mercury vapor poses problems in terms of air pollution and the working environment. Therefore, mercury vapor in these gases must be removed by some kind of treatment. Until now, known methods for removing mercury from gas include chemical cleaning methods and dry adsorption methods using adsorbents such as activated carbon and ion exchange resins. There are disadvantages such as insufficient removal efficiency and generation of waste liquid. The latter dry adsorption method has a small adsorption capacity for mercury vapor and is not fully satisfactory. In view of these points, the present inventors conducted research and found that activated carbon supporting ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate efficiently adsorbs mercury vapor in gas and has a high adsorption capacity. They discovered that the capacity was significantly large and completed the present invention. That is, the present invention is a mercury vapor adsorbent comprising activated carbon supporting at least one of ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate (hereinafter referred to as ammonium salt). The activated carbon used in the present invention is produced by a known method using charcoal, coke, coconut shell, resin, etc. as raw materials, and has a specific surface area of 200 to 200.
Any material may be used as long as it has an area of 2000m 2 /g. The amount of ammonium salt supported on activated carbon is 5 to 800 mg, preferably 10 to 550 mg per gram of activated carbon. In order to support the ammonium salt on the activated carbon, for example, a method of dissolving the ammonium salt in water, impregnating or spraying the ammonium salt on the activated carbon, and drying as necessary can be mentioned. The mercury vapor adsorbent of the present invention may carry a nonvolatile acid in addition to the ammonium salt, and by supporting the nonvolatile acid, the mercury adsorption ability of the adsorbent can be increased. The non-volatile acid referred to herein refers to an acid with a vapor pressure of 50 mmHg or less at 100°C, such as sulfuric acid, phosphoric acid, oxalic acid, and citric acid. The amount of nonvolatile acid supported is 5 to 500 mg, preferably 10 to 500 mg per gram of activated carbon.
It is 400mg. The method for supporting non-volatile acids is as follows:
This is carried out in the same manner as the method for supporting ammonium salts on activated carbon, and the order in which ammonium salts and nonvolatile acids are supported on activated carbon may be arbitrary. For example, a method of impregnating or spraying activated carbon with an aqueous solution containing an ammonium salt and a non-volatile acid, a method of supporting an ammonium salt and then supporting a non-volatile acid, or a method of supporting a non-volatile acid and then supporting an ammonium salt. Examples include methods. In order to remove mercury vapor from a gas using the mercury vapor adsorbent of the present invention, it is sufficient to bring the gas containing mercury vapor into contact with the adsorbent of the present invention. The contact temperature is 150°C or less, preferably -10 to 120°C, and the contact pressure is 50Kg/ cm2 or less, preferably 0.1 to 35Kg/ cm2.
The contact time is 1/10 to 30 seconds at 25°C in terms of 1 kg/ cm2 .
Preferably it is 1/5 to 20 seconds. In addition, the contact between the present adsorbent and the mercury vapor-containing gas can be carried out, for example, by using a fixed layer,
This can be carried out using a moving bed, fluidized bed, etc. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Example 1 Granular activated carbon of 4 to 6 mesh with a BET specific surface area of 1150 m 2 /g was crushed and sized to 16 to 24 mesh. NH 4 SCN, (NH 4 ) 2 S 2 O 3 , (NH 4 ) 2 S and
Spread an aqueous solution containing NH 4 OSO 2 NH 2 uniformly to support 100 mg/g of each of NH 4 SCN, (NH 4 ) 2 S 2 O 3 , (NH 4 ) 2 S, and NH 4 OSO 2 NH 2 death,
Dry at 110°C (adsorbents BE). As a control, 100 mg/g of each sodium salt was supported in place of these ammonium salts in the same manner as above and dried at 110°C (adsorbents b to e). Further, a carbon disulfide solution containing sulfur dissolved in activated carbon A was sprayed and dried at 120° C. to prepare activated carbon supporting 100 mg/g of sulfur (adsorbent f). Adsorbents A to E and b thus obtained
6 ml of each of ~
84.8 vol %, O 2 -14.5 vol %, H 2 O - 0.7 vol %) were passed at a linear flow rate of 40 cm/sec to conduct a breakthrough adsorption test for mercury vapor. The results are shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1の吸着剤B〜Eおよびb〜eにさらに
硫酸を100mg/g担持し、110℃で乾燥した(吸着
剤B1〜E1およびb1〜e1)。 このようにして得られた吸着剤A〜E、B1
E1、b〜eおよびb1〜e1の各6mlを1.6cmφのガ
ラス製カラムに充填して、水銀蒸気9mg/m3含有
の30℃の窒素ガスを線流速40cm/secで流通し、
水銀蒸気の破過吸着テストを行なつた。結果は第
2表の通りである。 実施例 3 実施例1の活性炭A(16〜24mesh)に
NH4SCNを5、10、50、100、200、400、500お
よび550mg/g担持し110℃で乾燥した。 このようにして得られた吸着剤の各6mlを1.5
cmφのガラス製カラムに充填して、水銀蒸気9
mg/m3の30℃のガス(N2−84.8vol%、O2−14.5vol
%、H2O−0.7vol%)を線流速40cm/secで300時
間流通した後、各吸着剤に吸着された水銀吸着量
を測定しその結果を第3表に示した。
[Table] Example 2 Adsorbents B to E and b to e of Example 1 were further loaded with 100 mg/g of sulfuric acid and dried at 110°C (adsorbents B 1 to E 1 and b 1 to e 1 ). The thus obtained adsorbents A to E, B 1 to
6 ml each of E 1 , b to e, and b 1 to e 1 was packed into a 1.6 cmφ glass column, and nitrogen gas at 30°C containing 9 mg/m 3 of mercury vapor was passed through at a linear flow rate of 40 cm/sec.
A breakthrough adsorption test for mercury vapor was conducted. The results are shown in Table 2. Example 3 Activated carbon A (16-24mesh) of Example 1
5, 10, 50, 100, 200, 400, 500 and 550 mg/g of NH 4 SCN were supported and dried at 110°C. 1.5 ml of each 6 ml of the adsorbent thus obtained
Packed into a cmφ glass column, mercury vapor 9
mg/m 3 of gas at 30 °C (N 2 −84.8 vol %, O 2 −14.5 vol
%, H 2 O-0.7 vol %) at a linear flow rate of 40 cm/sec for 300 hours, the amount of mercury adsorbed on each adsorbent was measured, and the results are shown in Table 3.

【表】【table】

【表】 実施例 4 実施例1の活性炭A(16〜24mesh)に
NH4SCNを125mg/g担持し、110℃で乾燥した。
これにさらに、硫酸、リン酸、シユウ酸、クエン
酸をそれぞれ50mg/g担持し、110℃で乾燥した。 このようにして調製された吸着剤の各6mlを
1.6cmφのガラス製カラムに充填し、水銀蒸気9
mg/m3含有の30℃窒素ガスを線流速40cm/secで
流通し、水銀蒸気の破過吸着テストを行なつた。
結果は、第4表の通りである。
[Table] Example 4 Activated carbon A (16-24mesh) of Example 1
125 mg/g of NH 4 SCN was supported and dried at 110°C.
Furthermore, 50 mg/g of each of sulfuric acid, phosphoric acid, oxalic acid, and citric acid were supported and dried at 110°C. Each 6 ml of the adsorbent thus prepared was
Packed into a 1.6 cmφ glass column, mercury vapor 9
A breakthrough adsorption test for mercury vapor was conducted by flowing nitrogen gas containing mg/m 3 at 30°C at a linear flow rate of 40 cm/sec.
The results are shown in Table 4.

【表】 実施例 5 実施例2の吸着剤B〜EおよびB1〜E1の各6
mlを1.6cmφのガラス製カラムに充填して、水銀
蒸気1mg/m3含有の30℃の水素ガスを線流速40
cm/secで流通し、水銀蒸気の破過吸着テストを
行なつた。その結果を第5表に示した。
[Table] Example 5 Each 6 of adsorbents B to E and B 1 to E 1 of Example 2
ml was packed into a 1.6 cmφ glass column, and hydrogen gas at 30°C containing 1 mg/ m3 of mercury vapor was applied at a linear flow rate of 40°C.
cm/sec, and a breakthrough adsorption test for mercury vapor was conducted. The results are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 活性炭にチオシアン酸アンモニウム、チオ硫
酸アンモニウム、硫化アンモニウム、スルフアミ
ン酸アンモニウムの少なくとも一つを担持してな
る水銀蒸気吸着剤。 2 チオシアン酸アンモニウム、チオ硫酸アンモ
ニウム、硫化アンモニウム、スルフアミン酸アン
モニウムの少なくとも一つと共に不揮発性酸を担
持してなる特許請求の範囲第1項記載の水銀蒸気
吸着剤。
[Scope of Claims] 1. A mercury vapor adsorbent comprising activated carbon supporting at least one of ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate. 2. The mercury vapor adsorbent according to claim 1, which carries a nonvolatile acid together with at least one of ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate.
JP57013893A 1982-01-29 1982-01-29 Adsorbent for mercury vapor Granted JPS58131132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013893A JPS58131132A (en) 1982-01-29 1982-01-29 Adsorbent for mercury vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013893A JPS58131132A (en) 1982-01-29 1982-01-29 Adsorbent for mercury vapor

Publications (2)

Publication Number Publication Date
JPS58131132A JPS58131132A (en) 1983-08-04
JPH0157617B2 true JPH0157617B2 (en) 1989-12-06

Family

ID=11845856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013893A Granted JPS58131132A (en) 1982-01-29 1982-01-29 Adsorbent for mercury vapor

Country Status (1)

Country Link
JP (1) JPS58131132A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012836A (en) * 2005-06-30 2007-01-18 Rohm Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP4491688B2 (en) * 2005-09-08 2010-06-30 日立造船株式会社 Production inhibitor and production inhibition method for chlorinated aromatic compounds
EP2611533A1 (en) * 2010-08-30 2013-07-10 Albemarle Corporation Improved sorbents for removing mercury from emissions produced during fuel combustion

Also Published As

Publication number Publication date
JPS58131132A (en) 1983-08-04

Similar Documents

Publication Publication Date Title
US4786483A (en) Process for removing hydrogen sulfide and mercury from gases
US4708853A (en) Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US3876393A (en) Method and article for removing mercury from gases contaminated therewith
US20050000357A1 (en) Method of removing mecury from exhaust gases
JPH0211300B2 (en)
JPH0424094B2 (en)
JPH0159010B2 (en)
JPH0521031B2 (en)
JPH0159009B2 (en)
JPH0157617B2 (en)
JP4913271B2 (en) Halogen gas treatment agent
CN108607530B (en) Desulfurizing agent, preparation method thereof and method for deeply removing sulfur dioxide
Sundaresan et al. Adsorption of nitrogen oxides from waste gas
JPS5820224A (en) Removal of mercury in gas
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
JPS5978915A (en) Manufacture of activated carbon supporting sulfur
JPH0475049B2 (en)
JPS5814363B2 (en) Activated carbon processing method
JPS6071039A (en) Noxious gas adsorbent
JPH0464734B2 (en)
JPS61101244A (en) Carbon dioxide adsorber
SU1161157A1 (en) Method of cleaning gases from mercury
JP3985291B2 (en) Method for removing mercury from flue gas
JPH0157618B2 (en)
JPS585698B2 (en) Basic gas remover