JPS58131132A - Adsorbent for mercury vapor - Google Patents

Adsorbent for mercury vapor

Info

Publication number
JPS58131132A
JPS58131132A JP57013893A JP1389382A JPS58131132A JP S58131132 A JPS58131132 A JP S58131132A JP 57013893 A JP57013893 A JP 57013893A JP 1389382 A JP1389382 A JP 1389382A JP S58131132 A JPS58131132 A JP S58131132A
Authority
JP
Japan
Prior art keywords
mercury vapor
adsorbent
activated carbon
ammonium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57013893A
Other languages
Japanese (ja)
Other versions
JPH0157617B2 (en
Inventor
Hiroshi Nishino
西野 博
Norio Aibe
紀夫 相部
Katsuya Noguchi
野口 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP57013893A priority Critical patent/JPS58131132A/en
Publication of JPS58131132A publication Critical patent/JPS58131132A/en
Publication of JPH0157617B2 publication Critical patent/JPH0157617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To provide an adsorbent adsorbing mercury vapor in good efficiency and extremely high in adsorbing capacity of mercury, by supporting NH4SCN, (NH4)2S2O3, (NH4)2S, NH4OSO2NH2 by activated carbon. CONSTITUTION:A mercury vapor adsorbent is prepared by supporting one or more of NH4SCN, (NH4)2S2O3, (NH4)2S and NH4OSO2NH2 by activated carbon. By contacting this adsorbent with a gas containing mercury vapor, mercury vapor in the gas is adsorbed in good efficiency. This contact can be carried out, for example, by using a fixed layer, a moving layer or a fluidized layer.

Description

【発明の詳細な説明】 本発明は、ガス中の水銀蒸気吸着剤に関する。[Detailed description of the invention] The present invention relates to mercury vapor adsorbents in gases.

電解水素ガス、天然ガス、焼却炉排ガス、水銀を取扱う
工場の排ガス中には、水銀蒸気が含まれていることが多
い。すなわち、電解水素は医薬品。
Mercury vapor is often contained in electrolyzed hydrogen gas, natural gas, incinerator exhaust gas, and exhaust gas from factories that handle mercury. In other words, electrolytic hydrogen is a medicine.

食品、その他の製品を製造するプロセスに使用され、微
量の水銀蒸気が触媒を被毒したり製品に混入したりする
ので問題となることがある。天然ガス中の水銀蒸気は、
ガスの液化プロセスにおけるアルミニウム製の熱交換器
などを腐食し、大きな事故の原因となる。また焼却炉排
ガスおよび水銀蒸気を取扱う工場の排ガス中の水銀蒸気
は、大気汚染上または作業環境上、問題となる。
It is used in the process of manufacturing food and other products, and trace amounts of mercury vapor can cause problems as it can poison catalysts or mix into products. Mercury vapor in natural gas is
It corrodes aluminum heat exchangers in the gas liquefaction process, causing major accidents. Furthermore, mercury vapor in incinerator exhaust gas and exhaust gas from factories that handle mercury vapor poses problems in terms of air pollution and the working environment.

したがってこれらガス中の水銀蒸気は、何らの処理によ
って除去しなければガらない。これまで、ガス中の水銀
を除去する方法として、薬液洗浄法、活性炭やイオン交
換樹脂などの吸着剤を使用する乾式吸着法などが知られ
ているが、前者の薬液洗浄法は、水銀蒸気の除去効率が
不充分でかつ廃液を生じるなどの欠点がある。後者の乾
式吸着法では、水銀蒸気の吸着容量が小さく充分満足し
得るものではガい。
Therefore, mercury vapor in these gases cannot be removed unless some treatment is performed. Until now, known methods for removing mercury from gas include chemical cleaning methods and dry adsorption methods using adsorbents such as activated carbon and ion exchange resins. There are disadvantages such as insufficient removal efficiency and generation of waste liquid. The latter dry adsorption method has a small adsorption capacity for mercury vapor and is not fully satisfactory.

本発明者らは、このような点に鑑み種々研究した結果、
チオシアン酸アンセニウム、チオ硫酸アンモニウム、硫
化アンモニウム、スルファミン酸アンモニウムを担持し
た活性炭は、ガス中の水銀蒸気を効率よく吸着し、かつ
その吸着容量が著しく大きいことを見出し、本発明を完
成した。
As a result of various studies in view of these points, the present inventors found that
The present invention was completed based on the discovery that activated carbon supporting anthenium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate efficiently adsorbs mercury vapor in gas and has a significantly large adsorption capacity.

すなわち、本発明は、活性炭にチオシアン酸アンモニウ
ム、チオ硫酸アンモニウム、硫化アンモニウム、スルフ
ァミン酸アンモニウム([Fyアンモニウム塩いう)の
少なくとも一つを担持してなる水銀蒸気吸着剤である。
That is, the present invention is a mercury vapor adsorbent comprising activated carbon supporting at least one of ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate (referred to as [Fy ammonium salt).

本発明において使用される活性炭は、木炭、コークス、
ヤシガフ、樹脂などを原料として公知方法により製造さ
れたもので、その比表面積が200〜2000 m2/
/gのものであれば、いかなるものでもよい。
Activated carbon used in the present invention includes charcoal, coke,
Manufactured by known methods using coconut guff, resin, etc. as raw materials, and has a specific surface area of 200 to 2000 m2/
/g can be used.

活性炭に対するアンモニウム塩の担持量は、活性炭1g
当り5〜5ooq、好ましくは10〜550呼である。
The amount of ammonium salt supported on activated carbon is 1g of activated carbon.
5 to 5 ooq, preferably 10 to 550 ooq.

活性炭にアンモニウム塩を担持するには、たとえば、ア
ンモニウム塩を水に溶解し、これを活性炭に含浸または
散布し、必要に応じて乾燥する方法などが挙げられる。
In order to support the ammonium salt on the activated carbon, for example, a method of dissolving the ammonium salt in water, impregnating or spraying the ammonium salt on the activated carbon, and drying as necessary can be mentioned.

本発明の水銀吸着剤はアンモニウム塩の他さらに不揮発
性酸を担持していてもよく、不揮発性酸を担持せしめる
ことにより、吸着剤の水銀吸着能力を高めることができ
る。ここにいう不揮発性酸は、100℃における蒸気圧
が50 mmHg以下の酸をいい、たとえば硫酸、リン
酸、シュウ酸、クエン酸などがあげられる。不揮発性酸
の担持量は、活性炭1g肖り5〜500岬、好ましくは
10〜400〜である。不揮発性酸を担持せしめる方法
は、アンモニウム塩の活性炭への担持方法と同様にして
行なわれ、アンモニウム塩と不揮発性酸の活性炭に担持
せしめる順序は、いずれでもよい。
The mercury adsorbent of the present invention may carry a nonvolatile acid in addition to the ammonium salt, and by supporting the nonvolatile acid, the mercury adsorption ability of the adsorbent can be increased. The nonvolatile acid referred to herein refers to an acid having a vapor pressure of 50 mmHg or less at 100° C., such as sulfuric acid, phosphoric acid, oxalic acid, and citric acid. The amount of nonvolatile acid supported is 5 to 500, preferably 10 to 400, per gram of activated carbon. The method for supporting the non-volatile acid is carried out in the same manner as the method for supporting the ammonium salt on the activated carbon, and the order in which the ammonium salt and the non-volatile acid are supported on the activated carbon may be arbitrary.

たとえば、アンモニウム塩と不揮発性酸を含有する水溶
液を活性炭に含浸または散布する方法、アンモニウム塩
を担持した後、不揮発性酸を担持する方法、または不揮
発性酸を担持した後アンモニウム塩を担持する方法など
があげられる。
For example, a method of impregnating or spraying activated carbon with an aqueous solution containing an ammonium salt and a non-volatile acid, a method of supporting an ammonium salt and then a non-volatile acid, or a method of supporting a non-volatile acid and then an ammonium salt. etc.

本発明の水銀蒸気吸着剤を用いてガス中の水銀蒸気を除
去するには、水銀蒸気を含有するガスと本発明の吸着剤
とを接触させればよい。接触温度は、150℃以下、好
ましくは一10〜120℃で、接触圧力は50 kg/
cm2  以下、好ましくけ0、1〜35 kg/cm
2で、接触時間は25℃l kg/c+++2換算で1
710〜30秒、好ましくは115〜20秒である。ま
た、本吸着剤と水銀蒸気含有ガスとの接触は、たとえば
固定層、移動層、流動層などを用いて行なうことができ
る。
In order to remove mercury vapor from a gas using the mercury vapor adsorbent of the present invention, it is sufficient to bring the gas containing mercury vapor into contact with the adsorbent of the present invention. The contact temperature is 150°C or less, preferably -10 to 120°C, and the contact pressure is 50 kg/
cm2 or less, preferably 0.1 to 35 kg/cm
2, the contact time is 1 at 25℃l kg/c+++2.
It is 710 to 30 seconds, preferably 115 to 20 seconds. Further, the contact between the present adsorbent and the mercury vapor-containing gas can be carried out using, for example, a fixed bed, a moving bed, a fluidized bed, or the like.

以下に実施例を示して本発明をより具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例/ BET比表面積1150 m /gの4〜6 mesh
粒状活性炭を16〜24 meshに破砕整粒した。
Example/4 to 6 mesh with BET specific surface area of 1150 m/g
Granular activated carbon was crushed and sized into 16 to 24 mesh.

この活性炭AにNH4SCN、  (NH4)2s2o
3゜(NH4)23およびNH40S02NH2を溶解
した水溶液を均一に散布し、NH45,CN、  (?
[4)28203゜(NH4)28およびNH40S0
2NH2をそれぞれ100w1/g担持し、110℃で
乾燥した(吸着剤P〜E)。
In this activated carbon A, NH4SCN, (NH4)2s2o
An aqueous solution containing 3゜(NH4)23 and NH40S02NH2 was uniformly sprayed, and NH45, CN, (?
[4) 28203° (NH4)28 and NH40S0
100w1/g of 2NH2 was supported on each and dried at 110°C (adsorbents P to E).

なお対照としてこれらアンモニウム塩の代りナトリウム
塩を前記と同様にそれぞれ100111&/g担持し、
110℃で乾燥した(吸着剤b−e)。
As a control, 100111g of each sodium salt was supported in place of these ammonium salts in the same manner as above.
Dry at 110°C (adsorbent b-e).

1だ活性病人にイオウを溶解した二硫化炭素溶液を散布
し、120℃で乾燥してイオウ100’f、全担持活性
炭(吸着剤f)を調製した。
A solution of carbon disulfide in which sulfur was dissolved was sprayed on a single active patient and dried at 120°C to prepare activated carbon (adsorbent f) containing 100'f of sulfur.

とのようにして得られた吸着剤A〜Eおよびb〜fの各
6dを1.6C[llφのガラス製カラムに充填して、
水銀蒸気9 Q/m3含有の30℃のガス(N284.
8”1%+ 0214= 5v01%、 [1200,
7vO1%)を線流速40 cm/seCで流通し、水
銀蒸気の破過吸着テストを行なった。結果は第1表のと
おりである。
6d each of adsorbents A to E and b to f obtained as above were packed into a glass column of 1.6C [llφ,
Gas at 30°C containing 9 Q/m3 of mercury vapor (N284.
8”1%+0214=5v01%, [1200,
A breakthrough adsorption test for mercury vapor was conducted by flowing 7vO1%) at a linear flow rate of 40 cm/secC. The results are shown in Table 1.

実施例ユ 実施例/の吸着剤B−Eおよびb −eにさらに硫酸を
10011f/g担持し、110℃で乾燥した(吸着剤
B工〜E1およびb1〜e工)。
Example U The adsorbents B-E and b-e of Example/ were further loaded with 10011 f/g of sulfuric acid and dried at 110°C (adsorbents B-E1 and b1-e).

このようにして得られた吸着剤A〜E 、 B1〜E 
1 、 b ”−6およびb1〜j1の各611を1.
6cmφのガラス製カラムに充填して、水銀蒸気9wF
I/m3含有の30℃の窒素ガスを線流速40 cm/
sec  で流通し、水銀蒸気の破過吸着テストを行な
った。
Adsorbents A to E, B1 to E obtained in this way
1, b''-6, and each of b1 to j1 611 as 1.
Fill a 6cmφ glass column with 9wF of mercury vapor.
Nitrogen gas containing I/m3 at 30°C at a linear flow rate of 40 cm/
sec, and a mercury vapor breakthrough adsorption test was conducted.

結果は第2表の通りである。The results are shown in Table 2.

実施例3 実施例1の活性炭A (16〜24 mesh )にN
H4SCNを5.10,50,100,200,400
.500および550q/g担持し110℃で乾燥した
Example 3 Activated carbon A (16-24 mesh) of Example 1 was added with N.
H4SCN 5.10, 50, 100, 200, 400
.. 500 and 550 q/g were loaded and dried at 110°C.

このようにして得られた吸着剤の各61を1゜5cmφ
のガラス製カラムに充填して、水銀蒸気9q/m303
0℃のガス(N2−84.8v01%、o2−14、5
v01%、 H2O−0,’tvo1%) ヲ線流速4
0cm/seeで300時間流通した後、各吸着剤に吸
着された水銀吸着量を測定しその結果を第3表に示しだ
Each 61 pieces of the adsorbent thus obtained was divided into 1°5 cmφ
mercury vapor 9q/m303
0℃ gas (N2-84.8v01%, o2-14, 5
v01%, H2O-0, 'tvo1%) Line flow rate 4
After flowing at 0 cm/see for 300 hours, the amount of mercury adsorbed on each adsorbent was measured and the results are shown in Table 3.

第2表 第3表 実施例グ 実施例1の活性要人(16〜24me8h)にNH4S
CNを125q/g担持し、110℃で乾燥した。これ
にさらに、硫酸、リン酸、シュウ酸。
Table 2 Table 3 Example
CN was supported at 125q/g and dried at 110°C. In addition to this, sulfuric acid, phosphoric acid, and oxalic acid.

クエン酸をそれぞれ50W/g担持し、110’l:で
乾燥した。
50 W/g of citric acid was loaded on each sample and dried at 110'l:.

このようにして調製された吸着剤の各6dを1.6cm
φのガラス製カラムに充填し、水銀蒸気9q/m3含有
の30℃の窒素ガスを線流速40cm/secで流通し
、水銀蒸気の破過吸着テストを行なった。結果は、第4
表の通りである。
Each 6d of adsorbent thus prepared is 1.6cm
A breakthrough adsorption test for mercury vapor was carried out by filling a φ glass column and passing nitrogen gas at 30° C. containing 9 q/m of mercury vapor at a linear flow rate of 40 cm/sec. The result is the 4th
As shown in the table.

第4表 実施例j 実施例ユの吸着剤B−EおよびB1〜El の各6ml
を1.6cmφのガラス製カラムに充填して、水銀蒸気
1qim3含有の30℃の水素ガスを線流速40cm/
sθCで流通し、水銀蒸気の破過吸着テストを行なった
。その結果を第5表に示した。
Table 4 Example j 6 ml each of adsorbents B-E and B1 to El of Example Y
was packed into a 1.6 cmφ glass column, and hydrogen gas at 30°C containing 1qim3 of mercury vapor was introduced at a linear flow rate of 40 cm/
It was circulated at sθC and a breakthrough adsorption test for mercury vapor was conducted. The results are shown in Table 5.

第5表 −11−Table 5 -11-

Claims (2)

【特許請求の範囲】[Claims] (1)活性度にチオシアン酸アンモニウム、チオ硫酸ア
ンモニウム、硫化アンモニウム、スルファミン酸アンモ
ニウムの少なくとも一つを担持してなる水銀蒸気吸着剤
(1) A mercury vapor adsorbent which supports at least one of ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate at an active level.
(2)  チオシアン酸アンモニウム、チオ硫酸アンモ
ニウム、硫化アンモニウム、スルファミン酸アンモニウ
ムの少々くとも一つと共に不揮発性酸を担持してなる特
許請求の範囲第1項記載の水銀蒸気吸着剤。
(2) The mercury vapor adsorbent according to claim 1, which carries a nonvolatile acid together with at least one of ammonium thiocyanate, ammonium thiosulfate, ammonium sulfide, and ammonium sulfamate.
JP57013893A 1982-01-29 1982-01-29 Adsorbent for mercury vapor Granted JPS58131132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013893A JPS58131132A (en) 1982-01-29 1982-01-29 Adsorbent for mercury vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013893A JPS58131132A (en) 1982-01-29 1982-01-29 Adsorbent for mercury vapor

Publications (2)

Publication Number Publication Date
JPS58131132A true JPS58131132A (en) 1983-08-04
JPH0157617B2 JPH0157617B2 (en) 1989-12-06

Family

ID=11845856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013893A Granted JPS58131132A (en) 1982-01-29 1982-01-29 Adsorbent for mercury vapor

Country Status (1)

Country Link
JP (1) JPS58131132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061907A (en) * 2005-09-08 2006-03-09 Hitachi Zosen Corp Formation suppressant and formation suppressing method of chlorinated aromatic compound
JP2007012836A (en) * 2005-06-30 2007-01-18 Rohm Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2013539413A (en) * 2010-08-30 2013-10-24 アルベマール・コーポレーシヨン Improved adsorbent for removing mercury from emissions generated during fuel combustion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012836A (en) * 2005-06-30 2007-01-18 Rohm Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2006061907A (en) * 2005-09-08 2006-03-09 Hitachi Zosen Corp Formation suppressant and formation suppressing method of chlorinated aromatic compound
JP2013539413A (en) * 2010-08-30 2013-10-24 アルベマール・コーポレーシヨン Improved adsorbent for removing mercury from emissions generated during fuel combustion

Also Published As

Publication number Publication date
JPH0157617B2 (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US4786483A (en) Process for removing hydrogen sulfide and mercury from gases
JPS6240285B2 (en)
JPH0521031B2 (en)
US5248488A (en) Natural gas treating system
US4985389A (en) Polysulfide treated molecular sieves and use thereof to remove mercury from liquefied hydrocarbons
JPH0142744B2 (en)
JPH0211300B2 (en)
JPS59160534A (en) Adsorbent for mercury vapor and treatment of mercury vapor-containing gas
JPH0280310A (en) Purifying method for gaseous nf3
JPS5976537A (en) Adsorbent for mercury vapor
JPS58131132A (en) Adsorbent for mercury vapor
JPS644220A (en) Adsorbing and decomposing agent of ozone and usage thereof
US4828810A (en) Removal of low level ethylene oxide contaminants by treatment of contaminated gases with cationic exchange resins at gas-solid interface reaction conditions
JPS5978915A (en) Manufacture of activated carbon supporting sulfur
JPH07241441A (en) Method for desulfurizing sulfur dioxide-containing gas as gas to be treated
JPS5814363B2 (en) Activated carbon processing method
JPH02122885A (en) Process for removing ammonia in water
JPS6150676B2 (en)
JP3826337B2 (en) Method for producing activated carbon adsorbent
JPS62114632A (en) Adsorbent for mercury contained in gas
JPH0157618B2 (en)
JPH01288319A (en) Removal of sulfur-containing gas
JPS6071039A (en) Noxious gas adsorbent
JPS62725B2 (en)
RU2147924C1 (en) Sorbent for absorption of mercury vapor and method of its producing