JPH0156877B2 - - Google Patents
Info
- Publication number
- JPH0156877B2 JPH0156877B2 JP59166550A JP16655084A JPH0156877B2 JP H0156877 B2 JPH0156877 B2 JP H0156877B2 JP 59166550 A JP59166550 A JP 59166550A JP 16655084 A JP16655084 A JP 16655084A JP H0156877 B2 JPH0156877 B2 JP H0156877B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- laser beam
- processing
- workpiece
- offset amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000003754 machining Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/10—Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明はレーザ加工機の改良に関し、さらに
詳しくはレーザ発振器から加工ヘツドの集光装置
に至る光路長の変化に伴つて変化する被加工物上
のレーザ光のスポツト半径つまりスポツト径に応
じて加工ヘツドのオフセツト量を変化させるよう
にしたレーザ加工機に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an improvement in a laser processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser beam processing machine, and more particularly, it relates to an improvement in a laser processing machine. The present invention relates to a laser processing machine in which the amount of offset of a processing head is changed in accordance with the spot radius of a laser beam, that is, the spot diameter.
第2図はレーザ加工機の原理を示す構成図であ
る。図において、1はレーザ発振器、2は平面
鏡、3は加工ヘツド、4は集光装置であるレン
ズ、5はレーザ光、6は被加工物で、平面鏡2お
よび加工ヘツド3は筐体に固定され、レーザ発振
器1からの出力であるレーザ光5を平面鏡2によ
つて反射させ、加工ヘツド3内に設けたレンズ4
へ入射させて、このレンズ4により集光されたレ
ーザ光5の焦点位置近傍に被加工物6が定置され
ている。
FIG. 2 is a configuration diagram showing the principle of a laser processing machine. In the figure, 1 is a laser oscillator, 2 is a plane mirror, 3 is a processing head, 4 is a lens that is a condensing device, 5 is a laser beam, and 6 is a workpiece.The plane mirror 2 and processing head 3 are fixed to a housing. , a laser beam 5 output from a laser oscillator 1 is reflected by a plane mirror 2, and a lens 4 provided in a processing head 3
A workpiece 6 is placed near the focal point of the laser beam 5 that is incident on the lens 4 and focused by the lens 4 .
次に動作について説明する。第2図の構成にお
いて、レンズ4で集光されたレーザ光5が焦点位
置近傍にある被加工物6に照射されると、レーザ
光5は被加工物6の表面層で吸収されて熱エネル
ギに変換され、被加工物6を溶融して穴あけ、溶
断等の加工を行なう。例えば被加工物6にレーザ
光5を照射しながら、加工ヘツド3の位置を図示
のAから破線で示したBへ移動すると、レーザ光
5の被加工物6へ照射した軌跡長さ、すなわち図
のLに相当する長さの溶断加工を行なうことがで
きる。 Next, the operation will be explained. In the configuration shown in FIG. 2, when the laser beam 5 focused by the lens 4 is irradiated onto the workpiece 6 near the focal position, the laser beam 5 is absorbed by the surface layer of the workpiece 6 and is converted into thermal energy. The workpiece 6 is melted and processed such as drilling and cutting. For example, if the position of the processing head 3 is moved from A shown in the figure to B shown by a broken line while irradiating the workpiece 6 with the laser beam 5, the length of the trajectory of the laser beam 5 irradiated onto the workpiece 6, that is, the It is possible to carry out a fusing process with a length corresponding to L.
しかし、第3図に示すように、レーザ発振器1
から発振するレーザ光5はθで示した発散角を持
つ特性があるので、レーザ発振器1からの距離の
長さに応じて、レーザ光5のビーム径が大きくな
る。 However, as shown in FIG.
Since the laser beam 5 oscillated from the laser beam 5 has a characteristic of having a divergence angle indicated by θ, the beam diameter of the laser beam 5 increases according to the length of the distance from the laser oscillator 1.
一方、レンズに入射するレーザ光のビーム径が
変わると、レンズを通過したあとの集光の様子が
変わる。 On the other hand, if the beam diameter of the laser light incident on the lens changes, the way the light is focused after passing through the lens changes.
第4図はレンズに入射したレーザ光の状態を説
明するための説明図で、一般にレンズ4に入射す
るガウスモードのレーザ光、つまり光の強度分布
がガウス分布をしているレーザ光のビームウエス
ト半径W0、レンズ4とビームウエスト位置の距
離d1、レンズ4の焦点距離f、レンズを通過した
レーザ光のレンズからの距離d2の位置でのビーム
半径W1は(1)式の関係がある。 FIG. 4 is an explanatory diagram for explaining the state of the laser light incident on the lens. Generally, the beam waist of the Gaussian mode laser light incident on the lens 4, that is, the laser light whose intensity distribution is Gaussian. The radius W 0 , the distance d 1 between the lens 4 and the beam waist position, the focal length f of the lens 4, and the beam radius W 1 at the distance d 2 from the lens of the laser light that has passed through the lens are expressed by equation (1). There is.
W1=W0d2/d1〔1+Z2/0/d2/1〕-1/2・〔1+d4/1
/Z2/0(1+Z2/0/d2/1)2×{1/d2−1/f+1
/d1〔1+(Z2/0/d2/1)〕}2〕1/2………(1)
ただしZ0≡πW2/0/λ
λはビームの波長で、ビームウエスト半径W0
とその位置は発振器1内の構造によつて決定され
る。W 1 = W 0 d 2 / d 1 [1 + Z 2 / 0 / d 2 / 1 ] -1/2・[1 + d 4 / 1
/Z 2 / 0 (1 + Z 2 / 0 /d 2 / 1 ) 2 × {1 / d 2 -1 / f + 1
/d 1 [1+(Z 2 / 0 /d 2 / 1 )]} 2 ] 1/2 ………(1) where Z 0 ≡πW 2 / 0 /λ λ is the beam wavelength and the beam waist radius W 0
and its position are determined by the structure within the oscillator 1.
以下、d1をさして発振器1からの距離と呼ぶこ
とにする。また、被加工物上でのW1をスポツト
半径と呼ぶことにする。 Hereinafter, d 1 will be referred to as the distance from the oscillator 1. Also, W 1 on the workpiece will be called the spot radius.
なお、第4図において、1a,1bはミラーで
ある。 In addition, in FIG. 4, 1a and 1b are mirrors.
第5図は第3図におけるA位置のレーザ光を5
a、B位置のレーザ光を5bとした、レンズ4に
よる集光性の差を示す。すなわち、太い径のレー
ザ光5aが細い径のレーザ光5bよりレンズに対
して近距離の位置で小さなビーム径にしぼられ
る。 Figure 5 shows the laser beam at position A in Figure 3.
The difference in light focusing by the lens 4 is shown when the laser beams at positions a and B are shown as 5b. That is, the laser beam 5a having a large diameter is narrowed to a smaller beam diameter at a position closer to the lens than the laser beam 5b having a narrower diameter.
第6図は加工ヘツドが二次元的な走査を行なう
加工機の原理を示す斜視図である。第6図におい
て第2図と同一部分は同一符号を付して示してあ
る。2a,2b,2cは平面鏡、7は加工テーブ
ル、8XはX軸移動台で、駆動装置により駆動さ
れて加工テーブル7の長手方向であるX軸方向に
移動する。8YはY軸移動台で、加工ヘツド3が
取り付けられており、駆動装置により駆動されて
X軸移動台8X上を移動する。したがつて、X軸
移動台8X及びY軸移動台8YをNC装置等で制
御して移動させることにより、加工ヘツド3を二
次元的に移動させることができ、二次元の任意形
状10で加工を行なうことができるものである。
なお、9X,9Yは移動台用のガイドレールを示
す。 FIG. 6 is a perspective view showing the principle of a processing machine in which a processing head performs two-dimensional scanning. In FIG. 6, the same parts as in FIG. 2 are designated by the same reference numerals. 2a, 2b, and 2c are plane mirrors, 7 is a processing table, and 8X is an X-axis moving table, which is driven by a drive device and moves in the X-axis direction, which is the longitudinal direction of the processing table 7. 8Y is a Y-axis moving table, to which the processing head 3 is attached, and is driven by a drive device to move on the X-axis moving table 8X. Therefore, by controlling and moving the X-axis moving table 8X and the Y-axis moving table 8Y with an NC device, the machining head 3 can be moved two-dimensionally, and an arbitrary two-dimensional shape 10 can be processed. It is possible to do this.
Note that 9X and 9Y indicate guide rails for the movable table.
第6図に示す加工機ではレーザ発振器1からの
距離d1はX座標、Y座標の和によつて決定され
る。 In the processing machine shown in FIG. 6, the distance d 1 from the laser oscillator 1 is determined by the sum of the X and Y coordinates.
以上のように、加工ヘツド3が移動して前述の
距離d1が変化するにしたがつて、スポツト半径
W1が変化する。 As described above, as the machining head 3 moves and the aforementioned distance d1 changes, the spot radius changes.
W 1 changes.
ところで、レーザ加工機において、上記スポツ
ト半径W1が或る大きさを持つているので、この
半径の値だけ加工ヘツド3をずらして、つまりオ
フセツトをかけて所望の寸法のものが得られるよ
うに加工を行なうが、NC装置に登録するオフセ
ツト量は一定であるから、加工中にレーザ光5の
スポツト半径W1が変化すると設定オフセツト量
からずれて、切断幅が製品にくい込んだり、大き
めに切つたりするという問題点が生ずる。 By the way, in a laser processing machine, the spot radius W1 has a certain size, so the processing head 3 is shifted by the value of this radius, that is, an offset is applied to obtain the desired size. During machining, the offset amount registered in the NC device is constant, so if the spot radius W1 of the laser beam 5 changes during machining, it will deviate from the set offset amount, causing the cutting width to dig into the product or make a larger cut. This results in the problem of dryness.
すなわち、被加工物6から、例えば正方形を切
抜く場合を、わかりよくするためスポツト半径
W1の変化の状況を極端に表現して図示すると第
7図に示すようになり、NC装装置のプログラム
上は正方形を切抜くようになつていても、実際に
切抜かれた製品11は正確な正方形にならないと
いう欠点を有する。なお、12はレーザ光5のス
ポツトの軌跡を、13で示す一点鎖線は加工ヘツ
ド3の移動軌跡を示す。 In other words, when cutting out, for example, a square from the workpiece 6, the spot radius is
An extreme illustration of the state of change in W 1 is shown in Figure 7. Even though the program of the NC equipment is designed to cut out a square, the actually cut out product 11 is not accurate. It has the disadvantage that it does not form a perfect square. Note that 12 indicates the locus of the spot of the laser beam 5, and the dashed line 13 indicates the locus of movement of the processing head 3.
この発明は上記のような欠点を解消するために
なされたもので、レーザ発振器から加工ヘツドの
集光装置に至る光路長の変化に伴つて変化する被
加工物上のレーザ光のスポツト半径、つまりスポ
ツト径に応じて加工ヘツドのオフセツト量を変化
させるオフセツト量制御装置を設けたレーザ加工
機を提供することも目的とするものである。
This invention was made to solve the above-mentioned drawbacks, and the spot radius of the laser beam on the workpiece changes as the optical path length from the laser oscillator to the condensing device of the processing head changes. Another object of the present invention is to provide a laser processing machine equipped with an offset amount control device that changes the offset amount of a processing head in accordance with the spot diameter.
以下、この発明の一実施例を図に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図はこの発明におけるオフセツト量制御装
置の一実施例を示す構成図である。第1図におい
て、21は光路長計算回路で、加工ヘツド3の
X、Y移動量に基づいてレーザ発振器1からの距
離d1を計算する回路、22はスポツト径計算回路
で、(1)式によりレーザ光5の被加工物6上のスポ
ツト半径W1を計算する回路である。 FIG. 1 is a block diagram showing an embodiment of an offset amount control device according to the present invention. In FIG. 1, 21 is an optical path length calculation circuit, which calculates the distance d 1 from the laser oscillator 1 based on the X and Y movement amount of the processing head 3, and 22 is a spot diameter calculation circuit, which is calculated using the formula (1). This is a circuit for calculating the spot radius W1 of the laser beam 5 on the workpiece 6.
23a,23bは加算回路、24はX軸モータ
駆動回路で、X軸移動台8Xの駆動用モータへ駆
動信号を出力する回路、25はY軸モータ駆動回
路で、Y軸移動台8Yの駆動用モータへ駆動信号
を出力する回路である。 23a and 23b are adder circuits, 24 is an X-axis motor drive circuit, which outputs a drive signal to the drive motor of the X-axis moving table 8X, and 25 is a Y-axis motor drive circuit, for driving the Y-axis moving table 8Y. This is a circuit that outputs a drive signal to the motor.
次に動作を説明する。 Next, the operation will be explained.
加工ヘツド3のX方向、Y方向の移動量はNC
装置で位置決めを行なうために検出されているの
で、このX、Y移動量に基づいて光路長計算回路
21によりレーザ発振器1からの距離d1が計算さ
れる。この計算結果はスポツト径計算回路22に
入力され、(1)式によりスポツト半径W1を計算す
る。なお、距離d2は一定とする。すなわち、加工
ヘツド3は被加工物6に対して上下方向には動か
ないものとする。 The amount of movement of processing head 3 in the X and Y directions is NC.
Since it is detected for positioning by the apparatus, the distance d 1 from the laser oscillator 1 is calculated by the optical path length calculation circuit 21 based on this X and Y movement amount. This calculation result is input to the spot diameter calculation circuit 22, which calculates the spot radius W1 using equation (1). Note that the distance d 2 is constant. That is, it is assumed that the processing head 3 does not move vertically relative to the workpiece 6.
次に、スポツト径計算回路22は計算されたス
ポツト半径W1の値をオフセツト量として出力す
る。以下はNC装置の通常のオフセツト機能によ
つて動作する。まず、このオフセツト量は加算回
路23aに入力される。又、NC装置のプログラ
ムの指令によるX軸移動量も加算回路23aに入
力される。そして、加工を行なう位置に応じてオ
フセツトをかける方向を、例えば右にするか左に
するかにより、加算回路23aによりオフセツト
量のX成分がX軸移動量にプラス又はマイナスさ
れる。加算回路23aの出力はX軸モータ駆動回
路24に入力され、X軸モータ駆動回路から出力
されるX軸移動台8Xの駆動用モータの駆動信号
により、X軸移動台8Xはオフセツトをかけられ
た位置へ移動する。 Next, the spot diameter calculation circuit 22 outputs the calculated value of the spot radius W1 as an offset amount. The following operates according to the normal offset function of the NC device. First, this offset amount is input to the adder circuit 23a. Further, the amount of X-axis movement according to the command of the program of the NC device is also input to the addition circuit 23a. The X component of the offset amount is added to or subtracted from the X-axis movement amount by the adding circuit 23a depending on whether the direction of offset is applied, for example, to the right or to the left depending on the position to be processed. The output of the adder circuit 23a is input to the X-axis motor drive circuit 24, and the X-axis movable base 8X is offset by the drive signal of the drive motor of the X-axis movable base 8X output from the X-axis motor drive circuit. Move to position.
一方、上記オフセツト量は加算回路23bへも
入力され、又NC装置のプログラムの指令による
Y軸移動量も加算回路23bに入力される。そし
て、加工を行なう位置に応じてオフセツトをかけ
る方向を、例えば上にするか下にするにより、加
算回路23bによりオフセツト量のY成分がY軸
移動量にプラス又はマイナスされる。加算回路2
3bの出力はY軸モータ駆動回路25に入力さ
れ、Y軸モータ駆動回路25から出力されるY軸
移動台8Yの駆動用モータの駆動信号により、Y
軸移動台8Yはオフセツトをかけられた位置へ移
動する。 On the other hand, the offset amount is also input to the addition circuit 23b, and the Y-axis movement amount according to the command of the program of the NC device is also input to the addition circuit 23b. Then, depending on the position to be processed, the direction in which the offset is applied is set, for example, upward or downward, so that the Y component of the offset amount is added or subtracted from the Y-axis movement amount by the addition circuit 23b. Addition circuit 2
The output of 3b is input to the Y-axis motor drive circuit 25, and the drive signal of the drive motor of the Y-axis moving table 8Y output from the Y-axis motor drive circuit 25 causes the Y-axis
The shaft moving table 8Y moves to the offset position.
以上のようにして、スポツト半径W1が変化す
るに従つてオフセツト量も変化させることができ
るので、光路長が変化しても、所望の寸法で精密
に加工が行なわれる。 As described above, as the spot radius W1 changes, the offset amount can also be changed, so that even if the optical path length changes, precise processing can be performed with the desired dimensions.
また、加工ヘツド3が被加工物6に対して上下
する場合も、加工ヘツド3と被加工物6間の距離
を測定する装置をつけて、その値を(1)式のd2に代
入すれば、スポツト半径W1を求めることができ
るので、同様にオフセツト量を制御できる。 Also, when the machining head 3 moves up and down with respect to the workpiece 6, a device to measure the distance between the machining head 3 and the workpiece 6 should be attached, and that value should be substituted into d2 in equation (1). For example, since the spot radius W1 can be determined, the offset amount can be controlled in the same way.
光路の途中にコリメーシヨンがある場合など
は、その場合々々のビーム伝搬の式を(1)式の代わ
りに用いればよい。 If there is collimation in the middle of the optical path, the appropriate equation for beam propagation may be used instead of equation (1).
以上の説明からわかるように、この発明によれ
ばレーザ発振器から伝送されたレーザ光を加工ヘ
ツドに設けた集光装置により集光して、加工テー
ブルに載置された被加工物に照射すると共に、上
記加工ヘツドを移動させて加工を行なうレーザ加
工機に、上記レーザ発振器から上記集光装置に至
る光路長の変化に伴つて変化する上記被加工物上
のレーザ光のスポツト半径、つまりスポツト径に
応じて上記加工ヘツドのオフセツト量を変化させ
るオフセツト量制御装置を設けたから、加工中に
レーザ光のスポツト径が変化しても、これに伴つ
てオフセツト量も変化するので、オフセツト量が
スポツト半径の量からずれることがなく、切断幅
が製品にくい込んだり、大きめに切つたりすると
いうことがない。
As can be seen from the above description, according to the present invention, a laser beam transmitted from a laser oscillator is focused by a condensing device installed in a processing head, and is irradiated onto a workpiece placed on a processing table. In a laser processing machine that performs processing by moving the processing head, the spot radius of the laser beam on the workpiece changes as the optical path length from the laser oscillator to the light condensing device changes, that is, the spot diameter. Since the offset amount control device is provided to change the offset amount of the machining head according to the processing head, even if the spot diameter of the laser beam changes during machining, the offset amount also changes accordingly, so that the offset amount can be adjusted to the spot radius. The cutting width will not deviate from the amount, and the cutting width will not dig into the product or cut the product too large.
第1図はこの発明におけるオフセツト量制御装
置の一実施例を示す構成図、第2図はレーザ加工
機の原理を説明するための説明図、第3図はレー
ザ光の伝播特性を説明するための説明図、第4図
はレンズに入射したレーザ光の状態説明図、第5
図はレーザ光の集光性を説明するための説明図、
第6図は加工ヘツドが二次元的に走査されるレー
ザ加工機の原理を示す斜視図、第7図は従来のレ
ーザ加工機で加工した状態を説明するための説明
図である。
図中、1はレーザ発振器、2,2a,2b,2
cは平面鏡、3は加工ヘツド、4はレンズ(集光
装置)、5,5a,5bはレーザ光、6は被加工
物、7は加工テーブル、8XはX軸移動台、8Y
はY軸移動台、9X,9Yはガイドレール、10
は被加工図形、11は切抜かれた製品、12はレ
ーザ光のスポツト軌跡、21は光路長計算回路、
22はスポツト径計算回路、23a,23bは加
算回路、24はX軸モータ駆動回路、25はY軸
モータ駆動回路である。なお、図中同一符号は同
一又は相当部分を示す。
Fig. 1 is a configuration diagram showing an embodiment of the offset amount control device in this invention, Fig. 2 is an explanatory diagram for explaining the principle of a laser processing machine, and Fig. 3 is an explanatory diagram for explaining the propagation characteristics of laser light. Figure 4 is an explanatory diagram of the state of the laser beam incident on the lens.
The figure is an explanatory diagram to explain the focusing ability of laser light.
FIG. 6 is a perspective view showing the principle of a laser beam machine in which a machining head is two-dimensionally scanned, and FIG. 7 is an explanatory view for explaining the state of machining with a conventional laser beam machine. In the figure, 1 is a laser oscillator, 2, 2a, 2b, 2
c is a plane mirror, 3 is a processing head, 4 is a lens (concentrator), 5, 5a, 5b is a laser beam, 6 is a workpiece, 7 is a processing table, 8X is an X-axis moving table, 8Y
is the Y-axis moving table, 9X, 9Y are guide rails, 10
is the figure to be processed, 11 is the cut out product, 12 is the spot trajectory of the laser beam, 21 is the optical path length calculation circuit,
22 is a spot diameter calculation circuit, 23a and 23b are addition circuits, 24 is an X-axis motor drive circuit, and 25 is a Y-axis motor drive circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
ヘツドに設けた集光装置により集光して、加工テ
ーブルに載置された被加工物に照射すると共に、
上記加工ヘツドを移動させて加工を行なうレーザ
加工機において、上記レーザ発振器から上記集光
装置に至る光路長の変化に伴つて変化する上記被
加工物上のレーザ光のスポツト径に応じて上記加
工ヘツドのオフセツト量を変化させるオフセツト
量制御装置を設けたことを特徴とするレーザ加工
機。1 The laser beam transmitted from the laser oscillator is focused by a condensing device installed in the processing head, and is irradiated onto the workpiece placed on the processing table,
In a laser processing machine that performs processing by moving the processing head, the processing is performed according to the spot diameter of the laser beam on the workpiece, which changes with the change in the optical path length from the laser oscillator to the light condensing device. A laser processing machine characterized by being provided with an offset amount control device that changes the offset amount of a head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59166550A JPS6146388A (en) | 1984-08-10 | 1984-08-10 | Laser working machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59166550A JPS6146388A (en) | 1984-08-10 | 1984-08-10 | Laser working machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6146388A JPS6146388A (en) | 1986-03-06 |
JPH0156877B2 true JPH0156877B2 (en) | 1989-12-01 |
Family
ID=15833343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59166550A Granted JPS6146388A (en) | 1984-08-10 | 1984-08-10 | Laser working machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6146388A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0490184U (en) * | 1990-06-05 | 1992-08-06 | ||
JP2020011268A (en) * | 2018-07-19 | 2020-01-23 | Dgshape株式会社 | Creation method of irradiation route data, processing method and cam system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828787B2 (en) * | 1974-07-10 | 1983-06-17 | 株式会社東芝 | Saidaichi Count Souchi |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828787U (en) * | 1981-08-20 | 1983-02-24 | 株式会社東芝 | Laser processing equipment |
-
1984
- 1984-08-10 JP JP59166550A patent/JPS6146388A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828787B2 (en) * | 1974-07-10 | 1983-06-17 | 株式会社東芝 | Saidaichi Count Souchi |
Also Published As
Publication number | Publication date |
---|---|
JPS6146388A (en) | 1986-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102437379B1 (en) | Laser machining device and laser machining method | |
CN103801838A (en) | Wire-width-variable laser galvanometer scanning quick etching method and device | |
WO1994003302A1 (en) | Photo-scanning type laser machine | |
JP3257157B2 (en) | CO2 laser drilling device and method | |
JPH11170072A (en) | Method and device for laser beam machining and for forming circuit of nonconductive transparent substrate | |
JPH0155076B2 (en) | ||
JPH0436794B2 (en) | ||
JPH03138092A (en) | Laser beam machine | |
JPS60199585A (en) | Laser welding machine | |
JPS6320638B2 (en) | ||
JPH0156877B2 (en) | ||
US20210114139A1 (en) | Controller, control system, and recording medium storing program | |
JPH0780674A (en) | Laser beam machining method and laser beam machining device | |
JPH02137688A (en) | Laser beam machine | |
JPS6146387A (en) | Laser working machine | |
JPH0159076B2 (en) | ||
JP2020082149A (en) | Laser irradiation system | |
JP2822698B2 (en) | Positioning device and laser processing device | |
JPH03184687A (en) | Laser beam machining apparatus | |
JPH02280987A (en) | Method for controlling focus to variation of laser beam scanning length | |
JPS6116939Y2 (en) | ||
JP2501594B2 (en) | Focus position adjustment method of laser processing machine | |
JPH039905Y2 (en) | ||
JP2002079393A (en) | Laser beam irradiation device and method for laser beam machining | |
JPH0768392A (en) | Laser beam machining method and laser beam machine |