JPH0156654B2 - - Google Patents
Info
- Publication number
- JPH0156654B2 JPH0156654B2 JP57006098A JP609882A JPH0156654B2 JP H0156654 B2 JPH0156654 B2 JP H0156654B2 JP 57006098 A JP57006098 A JP 57006098A JP 609882 A JP609882 A JP 609882A JP H0156654 B2 JPH0156654 B2 JP H0156654B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- protrusions
- stretching
- particles
- depression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 31
- 229920006267 polyester film Polymers 0.000 claims description 14
- 238000000034 method Methods 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 10
- 230000003746 surface roughness Effects 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- AAEHPKIXIIACPQ-UHFFFAOYSA-L calcium;terephthalate Chemical compound [Ca+2].[O-]C(=O)C1=CC=C(C([O-])=O)C=C1 AAEHPKIXIIACPQ-UHFFFAOYSA-L 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
- B29L2007/001—Flat articles, e.g. films or sheets having irregular or rough surfaces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Record Carriers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は表面が平坦であつて摩擦係数の低いポ
リエステルフイルムに関する。
ポリエステルフイルムは磁気テープ用途、電気
用途など種々な用途を有している。磁気テープ用
途、就中ビデオテープ用途においては、電磁変換
特性を向上さすために平滑なフイルム表面が要求
されていると共に、デツキにおけるテープの走行
性、耐摩耗性及び耐久性の向上のために摩擦係数
が低いことが要求されている。
従来、フイルムの摩擦係数を低減せしめる技術
として、無機粒子を添加したポリマーまたはポリ
マー中に不溶性の触媒残査粒子を生成せしめたポ
リマーをフイルムに成形することによりフイルム
表面に凹凸を付与する手段が知られている。
この手段は、フイルム表面に突起をもたらすこ
とにより、フイルムと該フイルムが接触する対物
間との接触面積を減少させ、摩擦抵抗を低減させ
るものである。これらの方法はいずれもフイルム
の表面に凸部を積極的につくるものであり、摩擦
係数を減少させるにはフイルム表面に高い突起を
数多く生成させることが有効となる。しかし、こ
の場合高い突起が増加するに伴つて摩擦係数を下
げ得るものの、磁気コーテイングしたときにコー
テイング面にも突起の影響が現われて電磁変換特
性を悪化させる惧れが大きい。
本発明者は、電磁変換特性の優れたものであつ
て、フイルムの摩擦係数の低い易滑性磁気テープ
に好適なベースフイルムに関して鋭意検討した結
果、ポリエステルフイルム表面に凸部と凹部とを
備えた微細な凹凸単位を多数形成させると共に該
凹凸単位に方向性をもたせることによつてこの問
題を解決できることを知見し、この発明に到達し
たものである。
即ち、本発明は、フイルム表面に突起と該突起
を核とした窪とからなる凹凸単位を多数有するポ
リエステルフイルムであつて、該突起はフイルム
内部に存在する粒子に起因して生じたものであ
り、該窪はフイルムの長手方向(機械方向)に沿
つた長径をもつ擬楕円状のものであつて、該窪の
長径は2μm乃至50μmの範囲にあつて、長径D
(μm)と凹凸単位の発生頻度N(個/mm2)との間
に、
2≦D< 5のもの 200≦N<3500、
5≦D<10のもの 150≦N<2000、
10≦D<30のもの 50≦N< 800、
30≦D<50のもの 0≦N≦ 5
なる関係が満足されることを特徴とする易滑性ポ
リエステルフイルムである。
本発明を説明する。従来技術が易滑性のフイル
ムを得るために不活性無機化合物粒子(例えばシ
リカ、クレイ、チタニア等)や有機化合物粒子
(例えばテレフタル酸カルシウム、高融点ポリエ
ステル)を添加するか又は(及び)触媒残渣によ
る粒子を利用して、フイルム表面に突起(凸部)
を形成するに対し、本発明はフイルム表面に凸部
と凹部とからなる擬楕円状の凹凸単位を形成させ
しかもこの擬楕円の長径がフイルムの長手方向に
向いている点に特色がある。本発明のような突起
と窪とを備えたものは、突起のみを表面にもつ従
来技術により得られるフイルムと比較して、摩擦
係数が著しく低くなり易滑化効果が顕われる利点
がある。
本発明が適用できるポリエステルとは、テレフ
タル酸、イソフタル酸、ナフタレン−2,6−ジ
カルボン酸等の如き芳香族二塩基酸成分とエチレ
ングリコール、テトラメチレングリコール、ネオ
ペンチルグリコール等の如きグリコール成分との
縮重合によつて得られる重合体又は共重合体をい
う。これらの代表的重合体としてポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポ
リエチレン−2,6−ナフタレンジカルボキシレ
ートなどのホモプリマー、これらの部分変性した
共重合体、ポリエチレンテレフタレートに〔エチ
レンテレフタレート/ポリエチレングリコール〕
ブロツク共重合体を添加した如きポリマーブレン
ドが例示できる。勿論、重合体や共重合体は充填
剤、顔料、着色剤、酸化防止剤、光安定剤などを
添加することもできる。これらのものから得たフ
イルムは本発明のポリエステルフイルムに含まれ
る。
本発明のフイルム表面に形成された突起は、ポ
リマーに添加した無機化合物の粒子;ポリマーの
重合に際し生成した不溶性の触媒残渣に基づく粒
子;または両者の粒子の存在による。
本発明にいう突起を核とした窪は、従来のエン
ボス等機械的なスタンプによる凹状のものではな
く、フイルムを延伸する工程において、フイルム
自身の変形によつて生じるものである。
粒子を含有した未延伸フイルムを従来技術で幅
方向に延伸すると、粒子は変形せずにポリマーが
塑性変形するから、大変形(延伸)に際しポリマ
ーと粒子との境にボイドが生じる。このボイドを
含むフイルムを、次は第一軸延伸方向とほぼ直角
方向(機械方向)に延伸して二軸配向フイルムに
すると、第一軸延伸時に生じていたボイドは更に
機械方向に変形されて、図1−1に示す如く、突
起21の周りにボイド22が擬円形状に形成され
る。この場合は図1−2の断面図に示す如くフイ
ルム表面近傍の浅い部分に存在する粒子とその周
囲のボイドは粒子を核とする突起をもたらすが、
粒子周囲には窪を形成することはない。
本発明は、上記のボイドをフイルム表面の窪に
変化させたものである。未延伸フイルムを一軸
(幅方向)延伸するに際し、延伸前のフイルムの
予備加熱を高い温度に設定するか、または(及
び)延伸倍率を低く設定することによつて第一軸
延伸を経たフイルムが粒子(無機添加物による外
部粒子又は触媒残渣を含む内部粒子)周辺にボイ
ドが実質的に形成されないようにする。次いでこ
の状態の延伸フイルムを機械方向に延伸するとこ
の長手方向に沿つて粒子を核としたフイルムの陥
没部分(窪)が形成される。そして楕円状の窪の
長径は長手方向に沿つたものとなる。
第一軸延伸に際し、僅かなボイドが粒子周辺に
形成された場合でもこの粒子を核として窪が生ず
る。
二軸延伸を経たフイルム表面は図2−1(平面
図)の如き状態にあり、第二軸延伸が粒子を中心
に応力集中されるような延伸条件であれば陥没部
分は応力集中の程度に応じて深く窪み、かつ第2
軸方向に沿つて長径が大となる傾向がある。図2
−2(断面図)は表面近傍のフイルム断面を示す
ものであつて、粒子を含む突起21とその周辺に
形成された窪24とがポリエステルフイルム23
に生じる。
本発明では突起の周辺に生じた窪は第二軸方向
に偏心した擬楕円状のものを包含する。
この際窪の最も偏奇した長軸を長径と称する
と、この窪の長径は少なくとも2μmとなること
が磁気テープの走行性の改良及び電磁変換特性の
改良の面から必要となる。
またこの窪の長径が50μmを超えると、磁気テ
ープのドロツプアウトが増加して磁気テープのベ
ースフイルムとして好ましくない。
本発明によれば、ポリエステルフイルム表面の
凹凸単位の窪の長径D(μm)と凹凸単位の発生
頻度N(個/mm2)との間に、
2≦D< 5のもの 200≦N<3500、
5≦D<10のもの 150≦N<2000、
10≦D<30のもの 50≦N< 800、
30≦D<50のもの 0≦N≦ 5
なる関係があるとき、好ましい易滑性を呈するも
のであつて、電磁変換特性も優れたものとなる。
更に好ましくは、
2≦D< 5のもの 350≦N<2500、
5≦D<10のもの 250≦N<1500、
10≦D<30のもの 100≦N< 500、及び
30≦D<50のもの 0≦N≦ 3
の条件を満足するとき走行性、電磁特性ともに優
れたベースフイルムとなる。
本発明によれば、フイルム表面の窪は接触面積
を減少させることによつて摩擦抵抗を減少させて
いるものと解される。
窪の方向性に関しては理由ははつきりしないが
特に金属ピンとの摩擦抵抗に関係し、窪の長手方
向がフイルムの長手方向とほぼ一致している場合
が摩擦抵抗が低い。
本発明でいう凹凸単位は1個の突起とその周辺
の窪とからなる。この凹凸単位の大きさ、発生頻
度は粒子の種類、ポリマー中の存在量、フイルム
の延伸条件によつてコントロールできる。
本発明のポリエステルフイルムの具体的な延伸
方法を説明する。カオリン、シリカ等の平均粒子
径が0.05〜5μm(好ましくは0.1〜2.5μm)の微細
粒子を0.01〜2.0重量%含有した未延伸ポリエス
テルフイルムを、第一軸方向(幅方向)に延伸す
るに際し、90〜120℃に予備加熱する。この未延
伸フイルムを約90〜120℃に予備加熱する場合に
は表面がマツト加工された硬質クロム鍍金ロール
やセラミツク製のロールが好ましい。未延伸フイ
ルムはロール表面に粘着することなく実質的な結
晶化の起きない条件で所定の予備温度に達し得
る。勿論非接触的に未延伸フイルムを予備加熱す
ることができる。未延伸フイルムは100〜135℃の
温度で3.5倍以下(好ましくは2.6〜3.4倍)の延伸
倍率で延伸される。
次に第二延伸は一軸配向フイルムを一旦ガラス
転移点以下に冷却するか、又は冷却することな
く、100〜150℃の温度に予備加熱し、更にほぼ同
程度の温度下において第二軸方向に3.0〜4.0倍
(好ましくは3.2〜3.8倍)に延伸する。第二軸延
伸の温度が高い場合は凹凸単位の窪部の境界が明
瞭となるが、低温では境界が明らかとならない場
合が多い。第二軸方向の延伸倍率は凹凸単位の発
生頻度に著しい影響を及ぼすことはない。ただ第
二軸延伸倍率として3.8倍以上を選択すると、第
二軸方向の機械的強度(ヤング率)が第一軸方向
の機械的強度に比較して高くなり所謂テンシライ
ズドフイルムとなり、しかもフイルムの易滑性が
低下する傾向がある。
本発明では第一軸延伸を施す方向は、フイルム
の長手方向とほぼ直角な方向であり、第二軸延伸
を施す方向はフイルムの長手方向であるのが最も
好ましい。但し第一軸延伸を施す前後及び二軸延
伸後において上記延伸方向と異なる方向に低倍率
で延伸することは窪の方向を乱さない範囲で差し
つかえはない。
このような表面の窪を形成するフイルムの延伸
条件は、フイルム表面を比較的平坦かつ平滑にす
る傾向があつて、結果的に磁気テープとしての電
磁変換特性が改良されることとなる。
即ち本発明のポリエステルフイルムは、磁気テ
ープのベースフイルムとして、フイルム表面が比
較的平坦であることより磁気記録層を設ける際に
もドロツプアウトやカラーノイズの原因とならな
い性能を備えていること、並びに突起周囲が窪を
もつためにテープとして磁気ヘツドやガイドロー
ルや他のフイルムとの接触面積が一層減少し、し
かも窪の長径がフイルムの長手方向に沿い、これ
はカイドロールの軸方向と直角な方向に相当する
から、易滑効果が一層高くなる利点がある。これ
らの易滑効果は、通常の突起のみを有するもの、
或いは凹凸単位を備えていても窪の長径がフイル
ムの幅方向に沿つている擬楕円状のものでは、得
られない。
本発明における物性測定法は次の通りである。
(1) 凹凸部分の測定法
フイルム表面に薄くアルミニウム蒸着をした
ものを微分干渉顕微鏡装置(例えばNikon微分
干渉顕微鏡R型)を用いて写真撮影し、その大
きさをスケールで測定する。
(2) 表面粗さCLA
本発明で言う表面粗さCLA(Center Line
Average)値とは、下記の方法によつて測定さ
れたものである。
粗面化されたフイルムを、例えば東京精密社
製触針式表面粗さ計(SURFCOM3B)を使用
して、針の半径2μm、荷重70mgの条件で、フ
イルム粗さ曲線を求め、これにより測定長さL
(基準長2mm)の部分を抜き取り、この抜き取
り部分の中心線をX線、縦倍率の方向をY軸と
して、粗さ曲線をY=f(x)で表わした時、
次の式で与えられた値をμ単位で表わす。
CLA=1/L∫L O f(x) dx
この測定を8個のサンプルについて行い、値
の大きい方から3個除外し、5個の平均値で表
わす。なお、測定は縦方向と横方向とにつき行
い、両者を平均した値を用いる。
(3) 摩擦係数
第3図に示す如く室温25℃、相対湿度60%の
雰囲気下で外径5mmφの18−8ステンレス鋼
SUS304の固定棒(表面粗度CLA=0.030)に1/
2インチ幅にカツトしたフイルムを捲付角度π
ラジアンで接触させ、3.3cm/secの速さで移動
摩擦させる。入口テンシヨンT1(入口テンシヨ
ン検出機5で検出)が30gとなるようテンシヨ
ンコントローラ−2を調整した時の出口テンシ
ヨンT2g(出口テンシヨン検出機10で検出)
より次式で動摩擦係数μkを算出する。本発明
では90m走行時の動摩擦係数をもつてμkとす
る。
μk=1/πlnT2/T1
(4) クロマS/N
磁気コーテイングテープを下記の方法にて測
定する。
市販の家庭用VTRを用いて50%白レベル信
号に100%クロマレベル信号を重畳した信号を
記録し、その再生信号をシバソクノイズメータ
ー925Cを用いて測定する。なお、クロマS/
Nの定義はシバソクの定義に従い次の通りであ
る。
クロマS/N=20logES(p−p)/EN(rms)(dB)
但し、ES(p−p)=0.714V(p−p)
EN(rms)=AMノイズ実効値電圧(V)
また磁性粉のコーテイングは次の方法で作成
する。
下記に示す磁性粉末塗料をグラビアロールに
より塗布し、ドクターナイフにより磁性塗料層
をスムージングし、約5μmの磁性層を形成す
る。磁性塗料の未だ乾かぬ間に常法により磁気
配向させ、しかる後オーブンに導いて乾燥キユ
アリングする。更にカレンダー加工して塗布表
面を均一にし1/2インチ幅のテープを作成する。
磁性塗料の組成
γ−Fe2O3粉末 100重量部
エスレツクA(積水化学製、塩化ビニル・酢酸
ビニル共重合体) 16 〃
ハイカー1432J(日本ゼオン製、ブタジエンアク
リロニトリル共重合体) 11 〃
レシチン 1 〃
カーボン 8 〃
MEK 100 〃
MIBK 100 〃
添加剤(潤滑剤、シリコン樹脂) 0.15 〃
以下実施例により本発明を更に具体的に説明す
る。
実施例 1〜4
平均粒径0.7μmのクレーを0.24パーセント含有
した極限粘度数0.62dl/g(オルソクロロフエノ
ールを溶媒として用い35℃で測定した値)のポリ
エチレンテレフタレートを160℃で乾燥したのち
280℃で溶融押出しをし、50℃に保持したキヤス
テイングドラム上に急冷固化せしめ160μmの未
延伸フイルムを得た。引きつづきこの未延伸フイ
ルムを80℃に予熱したのちテンターにて常法によ
り横方向に一段延伸を施した。更にこの一軸延伸
フイルムを再度2本の予熱ローラーにて90℃に予
熱をしたのち赤外ヒーターで加熱しながら2本の
ローラー間で3.3倍に縦方向に延伸し、次いで190
℃で熱処理を施した。
ここで横延伸時の赤外ヒーターの条件及び延伸
倍率を変えて製膜延伸し表の如きフイルムを得
た。
実施例2のフイルムの表面に存在する窪は第4
図に示したようなフイルムの長手方向、つまり縦
延伸方向に沿つた長径をもつ擬楕円状のものであ
つた。
比較例 1〜4
実施例1〜4と同一の原料と同一の方法で得た
160μmの未延伸フイルムを80℃に予熱したのち
テンターにて常法により縦方向に一段延伸をし
た。更にこのフイルムを120℃の温度で横方向に
3.3倍に延伸し次いで190℃で熱処理を施した。
ここで横延伸時の赤外ヒーターの加熱条件及び
延伸倍率を変えて製膜し、表の如きフイルムを
得た。
これらのフイルムの表面に存在する窪はフイル
ムの長手方向とほぼ直角な方向、つまり横延伸方
向に沿つた長径をもつ擬楕円状のものであつた。
表と表の比較において表のタイプの方が
対金属の摩擦係数が低いことがわかる。
クロマS/Nの基準は実施例4を用いたもので
ある。
The present invention relates to a polyester film having a flat surface and a low coefficient of friction. Polyester films have a variety of uses, including magnetic tape applications and electrical applications. In magnetic tape applications, particularly video tape applications, a smooth film surface is required to improve electromagnetic conversion characteristics, and a smooth film surface is required to improve the tape's runnability on a deck, abrasion resistance, and durability. A low coefficient is required. Conventionally, as a technique for reducing the coefficient of friction of a film, there has been known a method of imparting irregularities to the surface of the film by forming into a film a polymer to which inorganic particles have been added or a polymer in which insoluble catalyst residue particles have been generated. It is being This means provides protrusions on the film surface to reduce the contact area between the film and the object with which it comes into contact, thereby reducing frictional resistance. All of these methods actively create protrusions on the surface of the film, and it is effective to create a large number of high protrusions on the film surface in order to reduce the coefficient of friction. However, in this case, although the coefficient of friction can be lowered as the number of tall protrusions increases, there is a strong possibility that when magnetically coated, the protrusions will have an effect on the coated surface, deteriorating the electromagnetic conversion characteristics. As a result of extensive research into a base film that has excellent electromagnetic conversion characteristics and is suitable for slippery magnetic tapes with a low film friction coefficient, the present inventor has developed a polyester film having convex portions and concave portions on its surface. The present invention was achieved based on the finding that this problem can be solved by forming a large number of fine concavo-convex units and giving the concave-convex units directionality. That is, the present invention provides a polyester film having a large number of uneven units consisting of protrusions and depressions with the protrusions as cores on the film surface, and the protrusions are caused by particles existing inside the film. , the depression has a pseudo-elliptical shape with a major axis along the longitudinal direction (machine direction) of the film, and the major axis of the depression is in the range of 2 μm to 50 μm, and the major axis D is in the range of 2 μm to 50 μm.
(μm) and the occurrence frequency N (pieces/mm 2 ) of unevenness units: 2≦D<5 200≦N<3500, 5≦D<10 150≦N<2000, 10≦D <30: 50≦N<800;30≦D<50: 0≦N≦5. The present invention will be explained. In order to obtain a slippery film in the prior art, inert inorganic compound particles (e.g. silica, clay, titania, etc.) or organic compound particles (e.g. calcium terephthalate, high melting point polyester) are added or (and) catalyst residues are added. Protrusions (protrusions) are created on the film surface using particles from
In contrast, the present invention is characterized in that a pseudo-elliptical uneven unit consisting of convex portions and concave portions is formed on the film surface, and the major axis of the pseudo-ellipse is oriented in the longitudinal direction of the film. A film having protrusions and depressions as in the present invention has the advantage that it has a significantly lower coefficient of friction and a smoother slipping effect than a film obtained by the prior art having only protrusions on its surface. The polyester to which the present invention can be applied is a combination of an aromatic dibasic acid component such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, etc. and a glycol component such as ethylene glycol, tetramethylene glycol, neopentyl glycol, etc. A polymer or copolymer obtained by condensation polymerization. Representative polymers include homoprimers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalene dicarboxylate, partially modified copolymers of these, and polyethylene terephthalate [ethylene terephthalate/polyethylene glycol].
Examples include polymer blends to which block copolymers are added. Of course, fillers, pigments, colorants, antioxidants, light stabilizers, etc. can also be added to the polymers and copolymers. Films obtained from these materials are included in the polyester film of the present invention. The protrusions formed on the surface of the film of the present invention are due to the presence of particles of an inorganic compound added to the polymer; particles based on insoluble catalyst residues produced during polymerization of the polymer; or particles of both. The depressions having the protrusions as the core according to the present invention are not depressions formed by conventional mechanical stamps such as embossing, but are produced by deformation of the film itself during the process of stretching the film. When an unstretched film containing particles is stretched in the width direction using a conventional technique, the polymer is plastically deformed without deforming the particles, so that voids are generated at the boundary between the polymer and the particles during large deformation (stretching). When this film containing voids is then stretched in a direction approximately perpendicular to the first axis stretching direction (machine direction) to form a biaxially oriented film, the voids that were generated during the first axis stretching are further deformed in the machine direction. As shown in FIG. 1-1, a void 22 is formed around the protrusion 21 in a quasi-circular shape. In this case, as shown in the cross-sectional view of Figure 1-2, the particles existing in the shallow part near the film surface and the voids around them produce protrusions with the particles as the core.
No depressions are formed around the particles. In the present invention, the above voids are changed to depressions on the film surface. When stretching an unstretched film uniaxially (in the width direction), the film after the first axial stretching is Substantially no voids are formed around the particles (external particles due to inorganic additives or internal particles containing catalyst residues). Next, when the stretched film in this state is stretched in the machine direction, depressions (indentations) of the film with particles as cores are formed along the longitudinal direction. The major axis of the elliptical depression is along the longitudinal direction. Even if a slight void is formed around the particles during the first axial stretching, a depression will be formed with the particles as the nucleus. The surface of the film after biaxial stretching is in a state as shown in Figure 2-1 (top view), and if the stretching conditions are such that stress is concentrated around the particles during the second axial stretching, the depressed portions will be at the level of stress concentration. Depending on the depth, the second
The major axis tends to increase along the axial direction. Figure 2
-2 (cross-sectional view) shows a cross section of the film near the surface, in which the protrusions 21 containing particles and the depressions 24 formed around the protrusions 21 form the polyester film 23.
occurs in In the present invention, the depression formed around the protrusion includes a pseudo-elliptical shape eccentric in the second axis direction. In this case, if the most eccentric long axis of the depression is referred to as the major axis, it is necessary that the major axis of the depression be at least 2 μm from the viewpoint of improving the running properties of the magnetic tape and improving the electromagnetic conversion characteristics. Furthermore, if the major axis of the depression exceeds 50 μm, dropout of the magnetic tape increases, making it undesirable as a base film for a magnetic tape. According to the present invention, between the long diameter D (μm) of the depression of the uneven unit on the surface of the polyester film and the occurrence frequency N (pieces/mm 2 ) of the uneven unit, 2≦D<5 200≦N<3500 , 5≦D<10 150≦N<2000, 10≦D<30 50≦N<800, 30≦D<50 0≦N≦5. The electromagnetic conversion characteristics are also excellent. More preferably, 2≦D<5, 350≦N<2500, 5≦D<10, 250≦N<1500, 10≦D<30, 100≦N<500, and 30≦D<50. When the condition of 0≦N≦3 is satisfied, the base film has excellent running properties and electromagnetic properties. According to the present invention, it is understood that the depressions on the film surface reduce frictional resistance by reducing the contact area. Although the reason for the directionality of the depression is not clear, it is particularly related to the frictional resistance with the metal pin, and the frictional resistance is low when the longitudinal direction of the depression substantially coincides with the longitudinal direction of the film. The concavo-convex unit in the present invention consists of one protrusion and a depression around the protrusion. The size and frequency of occurrence of these uneven units can be controlled by the type of particles, the amount present in the polymer, and the stretching conditions of the film. A specific method for stretching the polyester film of the present invention will be explained. When stretching an unstretched polyester film containing 0.01 to 2.0% by weight of fine particles such as kaolin and silica with an average particle diameter of 0.05 to 5 μm (preferably 0.1 to 2.5 μm) in the first axis direction (width direction), Preheat to 90-120°C. When this unstretched film is preheated to about 90 DEG to 120 DEG C., a hard chromium-plated roll or a ceramic roll with a matte surface is preferred. The unstretched film can reach a predetermined pre-temperature without sticking to the roll surface and without substantial crystallization. Of course, the unstretched film can be preheated in a non-contact manner. The unstretched film is stretched at a temperature of 100 to 135°C at a stretching ratio of 3.5 times or less (preferably 2.6 to 3.4 times). Next, in the second stretching, the uniaxially oriented film is first cooled below the glass transition point, or preheated to a temperature of 100 to 150°C without cooling, and then stretched in the second axial direction at approximately the same temperature. Stretch 3.0 to 4.0 times (preferably 3.2 to 3.8 times). When the temperature of the second axis stretching is high, the boundaries between the concave portions of the concave and convex units become clear, but at low temperatures, the boundaries are often not clear. The stretching ratio in the second axis direction does not significantly affect the frequency of occurrence of uneven units. However, if a second axis stretching ratio of 3.8 times or more is selected, the mechanical strength in the second axis direction (Young's modulus) will be higher than the mechanical strength in the first axis direction, resulting in a so-called tensilized film. There is a tendency for the slipperiness to decrease. In the present invention, it is most preferable that the direction in which the first axial stretching is performed is substantially perpendicular to the longitudinal direction of the film, and the direction in which the second axial stretching is performed is in the longitudinal direction of the film. However, before and after the first axial stretching and after the biaxial stretching, it is permissible to stretch at a low magnification in a direction different from the above stretching direction as long as the direction of the depressions is not disturbed. The film stretching conditions that form such surface depressions tend to make the film surface relatively flat and smooth, resulting in improved electromagnetic characteristics as a magnetic tape. That is, the polyester film of the present invention has the ability to be used as a base film for magnetic tapes, since the film surface is relatively flat, so that it does not cause dropouts or color noise when a magnetic recording layer is provided, and it also has the ability to prevent protrusions. Since the circumference has a depression, the contact area of the tape with the magnetic head, guide roll, and other films is further reduced, and the major axis of the depression runs along the longitudinal direction of the film, which is perpendicular to the axial direction of the guide roll. Since they are equivalent, there is an advantage that the slipping effect becomes even higher. These slippery effects are limited to those with only normal protrusions,
Alternatively, a pseudo-elliptical shape in which the major axis of the depression runs along the width direction of the film cannot be obtained even if it is provided with a concavo-convex unit. The method for measuring physical properties in the present invention is as follows. (1) Measuring method for uneven parts A film surface with a thin layer of aluminum vapor deposited is photographed using a differential interference microscope device (for example, Nikon differential interference microscope R type), and its size is measured on a scale. (2) Surface roughness CLA Surface roughness CLA (Center Line
Average) value is measured by the following method. Using a stylus-type surface roughness meter (SURFCOM3B) made by Tokyo Seimitsu Co., Ltd., for example, obtain the film roughness curve of the roughened film under the conditions of a needle radius of 2 μm and a load of 70 mg, and use this to determine the measurement length. L
(Reference length 2 mm) is extracted, the center line of this extracted portion is the X-ray, the vertical magnification direction is the Y axis, and the roughness curve is expressed as Y=f(x).
The value given by the following formula is expressed in μ. CLA=1/L∫ L O f(x) dx This measurement is performed on eight samples, the three with the largest values are excluded, and the average value of the five is expressed. Note that measurements are made in the vertical and horizontal directions, and the average value of both is used. (3) Coefficient of friction As shown in Figure 3, 18-8 stainless steel with an outer diameter of 5 mmφ was measured at a room temperature of 25°C and a relative humidity of 60%.
1/ to SUS304 fixing rod (surface roughness CLA=0.030)
Wrap the film cut to 2 inches wide at an angle of π
They are brought into contact in radians and moved at a speed of 3.3cm/sec. When the tension controller 2 is adjusted so that the inlet tension T 1 (detected by the inlet tension detector 5) is 30 g, the outlet tension T 2 g (detected by the outlet tension detector 10)
The dynamic friction coefficient μk is calculated using the following formula. In the present invention, the coefficient of dynamic friction when traveling 90 m is defined as μk. μk=1/πlnT 2 /T 1 (4) Chroma S/N The magnetic coating tape is measured by the following method. A signal obtained by superimposing a 100% chroma level signal on a 50% white level signal is recorded using a commercially available home VTR, and the reproduced signal is measured using a Shibasoku noise meter 925C. In addition, Chroma S/
The definition of N is as follows according to Shibasoku's definition. Chroma S/N = 20log ES (p-p) / EN (rms) (dB) However, ES (p-p) = 0.714V (p-p) EN (rms) = AM noise effective value voltage (V) Also magnetic The powder coating is created in the following way. The magnetic powder coating shown below is applied using a gravure roll, and the magnetic coating layer is smoothed using a doctor knife to form a magnetic layer of about 5 μm. While the magnetic paint is still dry, it is magnetically oriented by a conventional method and then introduced into an oven for dry curing. Further, it is calendered to make the coating surface uniform and create a 1/2 inch wide tape. Composition of magnetic paint γ-Fe 2 O 3 powder 100 parts by weight Eslec A (Sekisui Chemical Co., Ltd., vinyl chloride/vinyl acetate copolymer) 16 〃 Hiker 1432J (Nippon Zeon Co., Ltd., butadiene acrylonitrile copolymer) 11 〃 Lecithin 1 〃 Carbon 8 MEK 100 MIBK 100 Additive (lubricant, silicone resin) 0.15 The present invention will be explained in more detail with reference to Examples below. Examples 1 to 4 After drying polyethylene terephthalate with an intrinsic viscosity of 0.62 dl/g (value measured at 35°C using orthochlorophenol as a solvent) at 160°C and containing 0.24% clay with an average particle size of 0.7 μm.
The mixture was melt-extruded at 280°C and rapidly solidified on a casting drum kept at 50°C to obtain an unstretched film of 160 μm. Subsequently, this unstretched film was preheated to 80°C and then subjected to one step of stretching in the transverse direction using a tenter in a conventional manner. Furthermore, this uniaxially stretched film was again preheated to 90°C using two preheating rollers, then stretched longitudinally to 3.3 times between two rollers while being heated with an infrared heater, and then stretched to 190°C.
Heat treatment was performed at ℃. Here, the infrared heater conditions and stretching ratio during transverse stretching were changed to form a film and the film as shown in the table was obtained. The depressions present on the surface of the film of Example 2 are the fourth depressions.
As shown in the figure, the film had a pseudo-elliptic shape with its major axis along the longitudinal direction of the film, that is, the longitudinal stretching direction. Comparative Examples 1 to 4 Obtained using the same raw materials and the same method as Examples 1 to 4
An unstretched film of 160 μm was preheated to 80° C. and then stretched one step in the longitudinal direction using a tenter in a conventional manner. Furthermore, this film was heated horizontally at a temperature of 120℃.
It was stretched 3.3 times and then heat treated at 190°C. Films were formed by changing the heating conditions of the infrared heater and the stretching ratio during transverse stretching, and the films shown in the table were obtained. The depressions present on the surface of these films were pseudo-ellipsoidal with a major axis along a direction substantially perpendicular to the longitudinal direction of the film, that is, along the lateral stretching direction. Comparing the table and table types, it can be seen that the table type has a lower coefficient of friction against metal. The chroma S/N standard is based on Example 4.
【表】【table】
【表】
比較例 5
実施例1〜4と同一原料及び同一方法で得た
210μmの未延伸フイルムを2本の予熱ローラー
にて80℃に予熱したのち赤外ヒーターでフイルム
を90℃に加熱しながら常法により縦方向に3.6倍
に一段延伸をした。更にこのフイルムを105℃の
温度で横方向に3.9倍に延伸を施し、次いで190℃
で熱処理を施した。
このフイルムの表面には実施例1〜4の如くの
窪は存在せずほとんどが凸部の突起のみであり添
加粒子の周囲には図−1の如くのほぼ円形のボイ
ドが存在するものであつた。
このフイルムの表面粗さCLAは0.035μmで実施
例1〜4に較べて表面は粗れているが摩擦係数
μkは0.42と実施例1〜4に比し相当高いものであ
つた。
比較例 6
実施例1〜4と同一原料及び同一方法で得た
310μmの未延伸フイルムを2本の予熱ローラー
にて80℃に予熱したのち赤外ヒーターでフイルム
を90℃に加熱しながら常法により縦方向に3.0倍
に一段延伸をした。更にこのフイルムを105℃の
温度で横方向に3.4倍に延伸をし、次いで更に2
本のローラーで80℃に予熱したのち赤外ヒーター
で100℃に加熱しながら縦方向に2.0倍延伸し、引
きつづき190℃で熱処理を施した。
このフイルムの表面には本発明に認められるよ
うな窪は存在せず、殆どが凸部の突起のみであ
り、添加粒子の周囲には添加粒子を中心としてフ
イルムの長手方向に擬楕円状のボイドが存在し、
従つてフイルムの表面の突起の形状はフイルムの
長手方向に沿つた方向性をもつ凸部を形成してい
るものであつた。
このフイルムの表面粗さCLAは0.029μmで実施
例1〜4と較べると表面は粗れているが摩擦係数
は0.44であつて、実施例1〜4に比し相当高いも
のであつた。
比較例 7〜9
実施例1〜4と、横延伸時の予熱延伸温度と延
伸倍率以外は同一の条件で製膜し表の結果を得
た。
実施例1〜4に比較し摩擦係数及び/又はクロ
マS/Nが劣つていることが判つた。[Table] Comparative Example 5 Obtained using the same raw materials and the same method as Examples 1 to 4
An unstretched film of 210 μm was preheated to 80° C. using two preheating rollers, and then stretched in one step to 3.6 times in the longitudinal direction by a conventional method while heating the film to 90° C. using an infrared heater. Furthermore, this film was stretched 3.9 times in the transverse direction at a temperature of 105°C, and then stretched at 190°C.
Heat treatment was performed. On the surface of this film, there were no depressions as in Examples 1 to 4, and most of the film had only convex protrusions, and there were approximately circular voids around the additive particles as shown in Figure 1. Ta. The surface roughness CLA of this film was 0.035 μm, which was rougher than in Examples 1-4, but the friction coefficient μk was 0.42, which was considerably higher than in Examples 1-4. Comparative Example 6 Obtained using the same raw materials and the same method as Examples 1 to 4
An unstretched film of 310 μm was preheated to 80° C. using two preheating rollers, and then stretched once in the longitudinal direction by a factor of 3.0 in a conventional manner while heating the film to 90° C. using an infrared heater. Furthermore, this film was stretched 3.4 times in the transverse direction at a temperature of 105°C, and then further stretched 2 times.
The film was preheated to 80°C using a book roller, then stretched 2.0 times in the machine direction while being heated to 100°C using an infrared heater, and then heat treated at 190°C. On the surface of this film, there are no depressions as recognized in the present invention, and there are mostly only convex protrusions, and there are pseudo-elliptical voids around the additive particles in the longitudinal direction of the film with the additive particles as the center. exists,
Therefore, the shape of the protrusions on the surface of the film formed a convex portion having directionality along the longitudinal direction of the film. The surface roughness CLA of this film was 0.029 μm, which made the surface rougher than in Examples 1-4, but the coefficient of friction was 0.44, which was considerably higher than in Examples 1-4. Comparative Examples 7 to 9 Films were formed under the same conditions as Examples 1 to 4, except for the preheating stretching temperature and stretching ratio during lateral stretching, and the results shown in the table were obtained. It was found that the friction coefficient and/or chroma S/N were inferior compared to Examples 1 to 4.
図−1は従来法で延伸した場合に粒子の周りに
出来たボイドの状態を示し、図1−1は平面図、
図1−2は断面図である。図−2は本発明のポリ
エステルフイルムであつて、粒子を含む突起とそ
の周辺に窪が形成されたものであり、図2−1は
平面図、図2−2は断面図である。図−3はフイ
ルム粗面の動摩擦係数μkを測定するテープベー
ス検査機の模式図である。また図−4は本発明の
実施例2のポリエステルフイルムの表面の顕微鏡
写真である(拡大倍率900倍)。
Figure 1 shows the state of voids created around particles when stretched using the conventional method, and Figure 1-1 is a plan view;
1-2 is a cross-sectional view. FIG. 2 shows a polyester film of the present invention, in which projections containing particles and depressions are formed around the projections, FIG. 2-1 is a plan view, and FIG. 2-2 is a cross-sectional view. Figure 3 is a schematic diagram of a tape-based inspection machine that measures the coefficient of dynamic friction μk of a rough film surface. Moreover, FIG. 4 is a micrograph of the surface of the polyester film of Example 2 of the present invention (magnification: 900 times).
Claims (1)
からなる凹凸単位が多数形成されているポリエス
テルフイルムであつて、該突起はフイルム内部に
存在する粒子に起因して生じたものであり、該窪
はフイルムの長手方向に沿つた長径をもつ擬楕円
状のものであつて、該窪の長径は2μm乃至50μm
の範囲にあつて、長径D(μm)と凹凸単位の発
生頻度N(個/mm2)との間に、 2≦D< 5のもの 200≦N<3500、 5≦D<10のもの 150≦N<2000、 10≦D<30のもの 50≦N< 800、 30≦D<50のもの 0≦N≦ 5 なる関係が満足されることを特徴とする易滑性ポ
リエステルフイルム。[Scope of Claims] 1. A polyester film in which a large number of uneven units consisting of protrusions and depressions with the protrusions as cores are formed on the film surface, and the protrusions are caused by particles existing inside the film. The depression has a pseudo-elliptical shape with a major axis along the longitudinal direction of the film, and the major axis of the depression is 2 μm to 50 μm.
In the range of 2≦D<5, 200≦N<3500, and 5≦D<10, 150 between the major axis D (μm) and the occurrence frequency N (pieces/mm 2 ) of unevenness units. An easily slippery polyester film characterized by satisfying the following relationships: ≦N<2000, 10≦D<30 50≦N<800, 30≦D<50 0≦N≦5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP609882A JPS58124617A (en) | 1982-01-20 | 1982-01-20 | Polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP609882A JPS58124617A (en) | 1982-01-20 | 1982-01-20 | Polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58124617A JPS58124617A (en) | 1983-07-25 |
JPH0156654B2 true JPH0156654B2 (en) | 1989-11-30 |
Family
ID=11629028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP609882A Granted JPS58124617A (en) | 1982-01-20 | 1982-01-20 | Polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58124617A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61112629A (en) * | 1984-11-07 | 1986-05-30 | Toyobo Co Ltd | Biaxially oriented polyester film |
DE3507729A1 (en) * | 1985-03-05 | 1986-09-11 | Hoechst Ag, 6230 Frankfurt | BIAXIAL-ORIENTED FILM WITH HIGH SCRATCH AND ABRASION RESISTANCE |
DE3682937D1 (en) * | 1985-04-09 | 1992-01-30 | Teijin Ltd | SURFACE TREATED POLYESTER FILM. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5766936A (en) * | 1980-10-15 | 1982-04-23 | Teijin Ltd | Polyester film |
JPS57189822A (en) * | 1981-05-20 | 1982-11-22 | Toray Ind Inc | Biaxially stretched polyester film |
JPS5853419A (en) * | 1981-09-28 | 1983-03-30 | Teijin Ltd | Polyester film |
-
1982
- 1982-01-20 JP JP609882A patent/JPS58124617A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5766936A (en) * | 1980-10-15 | 1982-04-23 | Teijin Ltd | Polyester film |
JPS57189822A (en) * | 1981-05-20 | 1982-11-22 | Toray Ind Inc | Biaxially stretched polyester film |
JPS5853419A (en) * | 1981-09-28 | 1983-03-30 | Teijin Ltd | Polyester film |
Also Published As
Publication number | Publication date |
---|---|
JPS58124617A (en) | 1983-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4461797A (en) | Polyester film with projections and depressions on the surface | |
US4233352A (en) | Polyester film and method of manufacture thereof | |
JPH054210B2 (en) | ||
JPH0432730B2 (en) | ||
JPS605183B2 (en) | polyester film | |
JPS6364289B2 (en) | ||
JPH0155986B2 (en) | ||
JPH0156654B2 (en) | ||
JPS6351091B2 (en) | ||
JPS5938898B2 (en) | surface modified polyester film | |
JPS6039022B2 (en) | polyester film | |
JPH0481806B2 (en) | ||
JPH09239829A (en) | Biaxially oriented polyester film | |
JPS61254328A (en) | Biaxially oriented polyester film for magnetic recording | |
JPH0156655B2 (en) | ||
JPH0332456B2 (en) | ||
JPS5939308B2 (en) | surface modified polyester film | |
JPH0547893B2 (en) | ||
JPS634571B2 (en) | ||
JPH03207651A (en) | Biaxially oriented polyester film | |
JPH01206042A (en) | Composite film | |
JPH0156657B2 (en) | ||
JP3050454B2 (en) | Method for producing base film for recording medium | |
JPH0425855B2 (en) | ||
JP2671333B2 (en) | Biaxially oriented polyester film |