JPH0156655B2 - - Google Patents

Info

Publication number
JPH0156655B2
JPH0156655B2 JP6542982A JP6542982A JPH0156655B2 JP H0156655 B2 JPH0156655 B2 JP H0156655B2 JP 6542982 A JP6542982 A JP 6542982A JP 6542982 A JP6542982 A JP 6542982A JP H0156655 B2 JPH0156655 B2 JP H0156655B2
Authority
JP
Japan
Prior art keywords
film
stretching
particles
depressions
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6542982A
Other languages
Japanese (ja)
Other versions
JPS58183225A (en
Inventor
Atsushi Yamamoto
Michio Sato
Hideo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP6542982A priority Critical patent/JPS58183225A/en
Publication of JPS58183225A publication Critical patent/JPS58183225A/en
Publication of JPH0156655B2 publication Critical patent/JPH0156655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は表面が平滑であつて摩擦係数の低いポ
リエステルフイルムに関する。 ポリエステルフイルムは磁気テープ用途、電気
用途など種々な用途を有している。磁気テープ用
途、就中ビデオテープ用途においては、電磁変換
特性を向上さすために平滑なフイルム表面が要求
されていると共に、デツキにおけるテープの走行
性、耐摩耗性及び耐久性の向上のために摩擦係数
が低いことが要求されている。 従来、フイルムの摩擦係数を低減せしめる技術
として、無機粒子を添加したポリマーまたはポリ
マー中に不溶性の触媒残査粒子を生成せしめたポ
リマーをフイルムに成形することによりフイルム
表面に凹凸を付与する手段が知られている。 この手段は、フイルム表面に突起をもたらすこ
とにより、フイルムと該フイルムが接触する対物
間との接触面積を減少させ、摩擦抵抗を低減させ
るものである。これらの方法はいずれもフイルム
の表面に凸部を積極的につくるものであり、摩擦
係数を減少させるにはフイルム表面に高い突起を
数多く生成させることが有効となる。しかし、こ
の場合高い突起が増加するに伴つて摩擦係数を低
減し得るものの、磁気コーテイングしたときにコ
ーテイング面にも突起の影響が現われて電磁変換
特性を悪化させる惧れが大きい。 本発明者は、電磁変換特性の優れたものであつ
て、フイルムの摩擦係数の低い易滑性磁気テープ
に好適なベースフイルムに関して鋭意検討した結
果、ポリエステルフイルム表面に凸部と凹部とを
備えた、微細な凹凸単位を多数形成させることに
よつてこの問題を解決できることを知見し、更
に、フイルムの極限粘度とフイルム表面の凹凸形
成との関係を見出し、この発明に到達したもので
ある。 即ち、本発明は、フイルムの極限粘度が0.42〜
0.55dl/grの範囲にあつて、フイルム表面に突起
と該突起を中心としたその周囲に長径が少なくと
も4μmの窪とからなる凹凸単位が400個/mm2以上
の頻度に形成されてなるポリエステルフイルムで
ある。 本発明を説明する。 本発明が適用できるポリエステルとは、テレフ
タル酸、イソフタル酸、ナフタレン−2,6−ジ
カルボン酸の如き芳香族二塩基酸とエチレングリ
コール、テトラメチレングリコール、ネオペンチ
ルグリコール等の如きグリコールとの縮重合によ
つて得られる重合体又は共重合体をいう。これら
の代表的重合体としてポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリエチレン
−2,6−ナフタレンジカルボキシレートなどの
ホモポリマー、これらの部分変性した共重合体、
ポリエチレンテレフタレートに(ポリエチレンテ
レフタレート、ポリエチレングリコール)ブロツ
ク共重合体を添加した如きポリマーブレンドが例
示できる。勿論重合体や共重合体は充填剤、顔
料、着色剤、酸化防止剤、光安定剤などを添加す
ることもできる。これらのものから得たフイルム
は本発明のポリエステルフイルムに含まれる。 本発明のフイルム表面に形成された突起は、ポ
リマーに添加した無機粒子;ポリマーの重合に際
し生成した不溶性の触媒残査に基づく粒子;また
は両者の粒子の存在による。 本発明にいう突起の周りに生じた該突起を核と
して生成しうる窪とは、従来のエンボス等の機械
的なスタンプによる凹状のものではなく、フイル
ムを延伸する工程において、フイルム自身の変形
によつて生じるものである。 粒子を含有した未延伸フイルムを一軸方向に延
伸すると、粒子は変形できずにポリマーが塑性変
形するから、大変形(延伸)に際しポリマーと粒
子との境にボイドが生じる。このボイドを含むフ
イルムを、次は一軸延伸方向とほぼ直角方向(第
二軸方向)に延伸して二軸配向フイルムにする
と、一軸延伸時に生じていたボイドは更に第二軸
方向に変形されて、図1−1に示す如く、突起2
1の周りにボイド22が擬円形状に形成される。
この場合は図1−2の断面図に示す如くフイルム
表面近傍の浅い部分に存在する粒子とその周囲の
ボイドは粒子を核とする突起をもたらすが、粒子
周囲には窪を形成することはない。 本発明は、上記のボイドをフイルム表面の窪に
変化させたものである。未延伸フイルムを一軸延
伸するに際し、延伸前のフイルムの予備加熱を高
い温度に設定するか、または(及び)延伸倍率を
低く設定することによつて、第一軸延伸を経たフ
イルムが粒子(無機添加物による外部粒子又は触
媒残査を含む内部粒子)周辺にボイドが実質的に
形成されないようにする。次いでこの状態の延伸
フイルムを第二軸方向に延伸するとこの第二軸方
向に沿つて粒子を核としたフイルムの陥没部分
(窪)が形成される。 第一軸延伸に際し、僅かなボイドが粒子周辺に
形成された場合でもこの粒子を核として窪が生ず
る。 二軸延伸を経たフイルム表面は図2−1(平面
図)の如き状態にあり、第二軸延伸が粒子を中心
に応力集中されるような条件で“あるほど”陥没
部分は深く窪みかつ第二軸方向に沿つて長くなる
傾向がある。図2−2(断面)は表面近傍のフイ
ルム断面を示すものであつて、粒子を含む突起2
1とその周辺に形成された窪24とがポリエステ
ルフイルム23に生じる。 本発明では突起の周辺に生じた窪は第二軸方向
に偏心した擬楕円状のものを包含する。 この際窪の最も偏奇した長軸を長径と称する
と、この窪の長径は少なくとも2μmとなること
が磁気テープの電磁変換特性の改良及び走行性の
改良の面から必要となる。 本発明によればフイルム表面の窪は接触面積を
減少させることによつて摩擦抵抗を低減させてい
るものと解される。このような表面の窪を形成す
るフイルムの延伸条件はフイルム表面を比較的平
滑にする効果があつて、結果的に磁気テープとし
ての電磁変換特性が改良されることとなる。 本発明のポリエステルフイルムは、その表面に
易滑性をもたらす突起を有している。しかもこの
突起は周囲に窪をもつため、磁気テープのベース
フイルムとして、フイルム表面に磁気記録層を設
ける際にもドロツプアウトやカラーノイズの原因
とならない傾向があること、並びに突起周辺が窪
をもつためにテープとして磁気ヘツドや他のフイ
ルムとの接触面積が一層減少し、低い突起でも易
滑効果が高められる利点がある。 本発明では第一軸延伸を施す方向は、フイルム
の機械方向でも幅方向でも差支えない。また第二
軸延伸方向は第一軸方向とほぼ直角であるとよ
い。勿論更に第一軸方向及び(又は)第二軸方向
に延伸を加える高段(多段)延伸を施すことがで
きる。 この場合にも、フイルム表面の突起と窪とが、
その凹凸単位の形状が多少変形しても、そのまま
残存することから、磁気テープとしての電磁変換
特性の維持やフイルム(テープ)の走行性(低摩
擦係数)が保たれる。 本発明でいう凹凸単位は1個の突起とその周辺
の窪とからなる。この凹凸単位の大きさ、発生頻
度は粒子の種類、ポリマー中の存在量、フイルム
の延伸条件によつてコントロールできる。 磁気テープとしての走行性を保つためには窪部
分の大きさは長径(図2参照)で4μm以上必要
であり、好ましくは8μm以上である。また凹部
の大きさはビデオテープとしての信号欠落(ドロ
ツプアウト)を考慮すると30μm以上のものは出
来るだけ少ない方が好ましい。 凹凸単位の数は400ケ/mm2以上必要であり、好
ましくは800ケ/mm2以上である。 この窪部の大きさ、凹凸単位の発生頻度は延伸
フイルムの表面に薄くアルミニウムを蒸着したの
ち微分干渉顕微鏡(例えばNikon微分干渉顕微鏡
装置R型、倍率900倍)を用いて写真撮影し、観
察することができる。 一方、本発明の表面凹凸単位の好ましい発生頻
度を満足するためのフイルムの極限粘度はオルソ
クロロフエノール溶媒で25℃で測定して0.42〜
0.55dl/gの範囲であり、0.46〜0.53dl/gの範囲
が好ましい。 フイルムの極限粘度を低下させていくと、未延
伸フイルムを一軸延伸するに際して、同一の延伸
倍率、延伸温度、延伸速度において延伸張力が低
下するため、第一軸延伸を経たフイルムにおいて
粒子周辺にボイドが実質的に形成されにくい傾向
となり、次いでこの一軸フイルムを第二軸方向に
延伸して得られた二軸延伸フイルムの表面では、
長径が4μm以上の窪みを有する凹凸単位の個数
が増加する。これと同時に、表面の中心線粗さ
(CLA)が低下し、摩擦係数も低くなり、従つて
磁気テープ用ベスフイルムとして良好な特性が得
られる。 ここで、フイルムの極限粘度が0.42dl/gより
低いとフイルムの長手方向の機械特性(ヤング
率、5%伸長時の強度)が低下することとなるか
ら、磁気テープとなした場合、使用中にテープが
伸びたりして、実用特性上に欠陥を伴う。 フイルムの極限粘度が0.55dl/gを超えると、
本発明でいう表面が平坦で摩擦係数の低い特徴の
あるフイルムが得られにくくなる。これを避ける
ためには、第一軸延伸において延伸速度の低速
化、延伸温度の高温化による対策があるものの、
いずれも工業生産性という観点から不利となるこ
とは否めない。 このように、フイルムの極限粘度を0.42〜0.55
dl/gの範囲とすることにより、高い延伸速度の
設定が可能となり、工業生産性の著しい向上を可
能となし得る。 以下実施例により本発明を具体的に説明する。
本発明における物性測定法は次の通りである。 (1) 凹凸部分の測定法 フイルム表面に薄くアルミニウム蒸着をした
ものをNikon微分干渉顕微鏡装置R型を用いて
写真撮影し、その大きさをスケールで測定す
る。 (2) 表面粗さCLA 本発明でいう表面粗さCLA(Center Line
Average)値とは、下記の方法によつて測定さ
れたものである。 粗面化されたフイルムを、例えば東京精密社
製触針式表面粗さ計(SURFCOM3B)を使用
して、針の半径2μm、荷重70mgの条件で、フ
イルム粗さ曲線を求め、これにより測定長さL
(基準長2mm)の部分を抜き取り、この抜き取
り部分の中心線をX線、縦倍率の方向をY軸と
して、粗さ曲線をY=f(x)で表わした時、
次の式で与えられた値をμ単位で表わす。 CLA=1/L∫L O|f(x)−|dx 但しは中心線を表わし、 =1/L∫L Of(x)dx で求められる。 この測定を8個のサンプルについて行ない、
値の大きい方から3個除外し、5個の平均値で
表わす。なお、測定は縦方向と横方向とにつき
行ない、両者を平均した値を用いる。 (3) 摩擦係数 第4図に示す如く室温25℃、相対湿度60%の
雰囲気下で外径5mmφのSUS304の固定棒(表
面粗度CLA=0.030μmに1/2インチ幅にカツト
したフイルムを捲付角度πラジアンで接触さ
せ、3.3cm/secの速さで移動摩擦させる。入口
テンシヨンT1(入口テンシヨン検出機5で検
出)が30gとなるようテンシヨンコントローラ
−2を調整した時の出口テンシヨンT2g(出
口テンシヨン検出機10で検出)より次式で動
摩擦係数μkを算出する。 本発明では90m走行時の動摩擦係数をもつて
μkとする。 μk=1/πlnT2/T1 実施例1〜2、比較例1〜2 平均粒径0.7μmのカオリンを0.3重量パーセン
ト含有した極限粘度0.53dl/g(オルソクロロフ
エノールを溶媒として用い、25℃で測定した値)
のポリエチレンテレフタレートを160℃で乾燥し
た後、280℃で溶融押出し、50℃に保持したキヤ
ステイングドラム上に急冷固化せしめて、160μ
mの未延伸フイルムを得た。 引続きこの未延伸フイルムを図−3に示した如
き4本の加熱ローラー31,32,33及び34
で予熱し、更に赤外線ヒーターでフイルムを加熱
してからローラー34とローラー35の間で縦方
向に一段延伸した。次いでこのフイルムを120℃
の温度において横方向に3.6倍に延伸し、更に210
℃で熱処理を施した。なお、この時の延伸速度は
200m/分であつた。また製膜後のフイルムの極
限粘度は0.51dl/gであつた。 ここで、縦延伸時の加熱ローラー31〜34で
の予熱温度及び赤外ヒーター38の条件を変更し
ながら、ローラー35直前のフイルム温度と延伸
倍率とを変えて製膜延伸し、表−1の如きフイル
ムを得た。
The present invention relates to a polyester film having a smooth surface and a low coefficient of friction. Polyester films have a variety of uses, including magnetic tape applications and electrical applications. In magnetic tape applications, particularly video tape applications, a smooth film surface is required to improve electromagnetic conversion characteristics, and a smooth film surface is required to improve the tape's runnability on a deck, abrasion resistance, and durability. A low coefficient is required. Conventionally, as a technique for reducing the coefficient of friction of a film, there has been known a method of imparting irregularities to the surface of the film by forming into a film a polymer to which inorganic particles have been added or a polymer in which insoluble catalyst residue particles have been generated. It is being This means provides protrusions on the film surface to reduce the contact area between the film and the object with which it comes into contact, thereby reducing frictional resistance. All of these methods actively create protrusions on the surface of the film, and it is effective to create a large number of high protrusions on the film surface in order to reduce the coefficient of friction. However, in this case, although the coefficient of friction can be reduced as the number of tall protrusions increases, when magnetic coating is applied, the effect of the protrusions appears on the coated surface, and there is a strong possibility that the electromagnetic conversion characteristics will be deteriorated. As a result of extensive research into a base film that has excellent electromagnetic conversion characteristics and is suitable for slippery magnetic tapes with a low film friction coefficient, the present inventor has developed a polyester film having convex portions and concave portions on its surface. They discovered that this problem could be solved by forming a large number of fine uneven units, and further discovered the relationship between the intrinsic viscosity of the film and the formation of unevenness on the film surface, and arrived at the present invention. That is, in the present invention, the intrinsic viscosity of the film is from 0.42 to
A polyester in which unevenness units consisting of protrusions and depressions with a major diameter of at least 4 μm around the protrusions are formed on the film surface at a frequency of 400 pieces/mm 2 or more in the range of 0.55 dl/gr. It's a film. The present invention will be explained. The polyester to which the present invention can be applied refers to the condensation polymerization of aromatic dibasic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid with glycols such as ethylene glycol, tetramethylene glycol, neopentyl glycol, etc. refers to the polymer or copolymer obtained in this manner. Representative polymers include homopolymers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalene dicarboxylate, partially modified copolymers thereof,
An example is a polymer blend in which a block copolymer (polyethylene terephthalate, polyethylene glycol) is added to polyethylene terephthalate. Of course, fillers, pigments, colorants, antioxidants, light stabilizers, etc. can also be added to the polymers and copolymers. Films obtained from these materials are included in the polyester film of the present invention. The protrusions formed on the surface of the film of the present invention are due to the presence of inorganic particles added to the polymer; particles based on insoluble catalyst residues produced during polymerization of the polymer; or particles of both. In the present invention, the depressions that can be generated around the protrusions with the protrusions as the nucleus are not concave-shaped depressions caused by conventional mechanical stamps such as embossing, but are caused by the deformation of the film itself during the process of stretching the film. This is what happens because of this. When an unstretched film containing particles is stretched in a uniaxial direction, the particles cannot be deformed and the polymer is plastically deformed, so that voids are generated at the boundary between the polymer and the particles during large deformation (stretching). When this film containing voids is then stretched in a direction approximately perpendicular to the uniaxial stretching direction (second axial direction) to form a biaxially oriented film, the voids that were generated during uniaxial stretching are further deformed in the second axial direction. , as shown in Figure 1-1, the protrusion 2
A void 22 is formed around 1 in a quasi-circular shape.
In this case, as shown in the cross-sectional view of Figure 1-2, the particles existing in the shallow part near the film surface and the voids around them produce protrusions with the particles as the core, but no depressions are formed around the particles. . In the present invention, the above voids are changed to depressions on the film surface. When an unstretched film is uniaxially stretched, by preheating the film before stretching to a high temperature or (and) by setting a low stretching ratio, the film that has undergone the first axial stretching has particles (inorganic Voids are substantially not formed around external particles due to additives or internal particles containing catalyst residues. Next, when the stretched film in this state is stretched in the second axial direction, depressed portions (depressions) of the film with particles as cores are formed along the second axial direction. Even if a slight void is formed around the particles during the first axial stretching, a depression will be formed with the particles as the nucleus. The surface of the film after biaxial stretching is in a state as shown in Figure 2-1 (top view), and the more stress is concentrated around the grains during the second axial stretching, the deeper the recesses become. It tends to become longer along the biaxial directions. Figure 2-2 (cross section) shows a cross section of the film near the surface, and shows projections 2 containing particles.
1 and a depression 24 formed around the polyester film 23. In the present invention, the depressions formed around the protrusions include pseudo-ellipsoidal depressions that are eccentric in the second axis direction. In this case, if the most eccentric long axis of the depression is referred to as the long axis, it is necessary that the long axis of the depression be at least 2 μm from the viewpoint of improving the electromagnetic conversion characteristics and running properties of the magnetic tape. According to the present invention, the depressions on the film surface are understood to reduce frictional resistance by reducing the contact area. The film stretching conditions that form such surface depressions have the effect of making the film surface relatively smooth, resulting in improved electromagnetic characteristics as a magnetic tape. The polyester film of the present invention has protrusions on its surface that provide slipperiness. Furthermore, since these protrusions have depressions around them, they tend not to cause dropouts or color noise when a magnetic recording layer is provided on the surface of the film as a base film for magnetic tape. Another advantage of this tape is that the contact area with the magnetic head and other films is further reduced, and even with low protrusions, the sliding effect is enhanced. In the present invention, the direction in which the first axial stretching is applied may be either the machine direction or the width direction of the film. Further, the second axial stretching direction is preferably approximately perpendicular to the first axial direction. Of course, high-stage (multi-stage) stretching in which stretching is further performed in the first axial direction and/or the second axial direction can be performed. In this case as well, the protrusions and depressions on the film surface are
Even if the shape of the uneven unit is slightly deformed, it remains as it is, so that the electromagnetic conversion characteristics of the magnetic tape and the runnability (low coefficient of friction) of the film (tape) are maintained. The concavo-convex unit in the present invention consists of one protrusion and a depression around the protrusion. The size and frequency of occurrence of these uneven units can be controlled by the type of particles, the amount present in the polymer, and the stretching conditions of the film. In order to maintain running properties as a magnetic tape, the size of the recessed portion must be at least 4 μm in major axis (see FIG. 2), preferably at least 8 μm. Furthermore, considering the size of the concave portion, it is preferable that the size of the concave portion is as small as possible, in consideration of signal dropout (dropout) in the video tape. The number of uneven units is required to be 400 units/mm 2 or more, preferably 800 units/mm 2 or more. The size of these depressions and the frequency of occurrence of uneven units can be observed by depositing a thin layer of aluminum on the surface of the stretched film and then taking a photograph using a differential interference microscope (for example, Nikon differential interference microscope R type, magnification: 900x). be able to. On the other hand, the intrinsic viscosity of the film that satisfies the preferred frequency of occurrence of surface unevenness units of the present invention is 0.42 to 0.42 when measured at 25°C with an orthochlorophenol solvent.
It is in the range of 0.55 dl/g, preferably in the range of 0.46 to 0.53 dl/g. As the intrinsic viscosity of the film is lowered, when unstretched film is uniaxially stretched, the stretching tension decreases at the same stretching ratio, stretching temperature, and stretching speed, so that voids are formed around the particles in the film after first axial stretching. is substantially less likely to be formed, and then on the surface of a biaxially stretched film obtained by stretching this uniaxial film in the second axial direction,
The number of uneven units having depressions with a major axis of 4 μm or more increases. At the same time, the center line roughness (CLA) of the surface is reduced and the coefficient of friction is also reduced, thus providing good properties as a base film for magnetic tape. If the intrinsic viscosity of the film is lower than 0.42 dl/g, the mechanical properties of the film in the longitudinal direction (Young's modulus, strength at 5% elongation) will decrease, so when used as a magnetic tape, This may cause the tape to stretch, resulting in defects in practical properties. When the intrinsic viscosity of the film exceeds 0.55 dl/g,
It becomes difficult to obtain a film characterized by a flat surface and a low coefficient of friction as used in the present invention. In order to avoid this, there are measures to reduce the stretching speed and increase the stretching temperature in the first axial stretching.
It is undeniable that both are disadvantageous from the perspective of industrial productivity. In this way, the intrinsic viscosity of the film can be adjusted to 0.42~0.55.
By setting the dl/g range, it is possible to set a high drawing speed, and it is possible to significantly improve industrial productivity. The present invention will be specifically explained below using Examples.
The method for measuring physical properties in the present invention is as follows. (1) Measuring method for uneven parts A photograph of a film surface with a thin layer of aluminum vapor deposited is taken using a Nikon differential interference microscope (R type), and its size is measured using a scale. (2) Surface roughness CLA Surface roughness CLA (Center Line
Average) value is measured by the method below. Using a stylus-type surface roughness meter (SURFCOM3B) made by Tokyo Seimitsu Co., Ltd., for example, obtain the film roughness curve of the roughened film under the conditions of a needle radius of 2 μm and a load of 70 mg, and use this to determine the measurement length. SaL
(Reference length 2 mm) is extracted, the center line of this extracted portion is the X-ray, the vertical magnification direction is the Y axis, and the roughness curve is expressed as Y=f(x).
The value given by the following formula is expressed in μ. CLA=1/L∫ L O |f(x)−|dx However, it represents the center line and is determined by =1/L∫ L O f(x)dx. This measurement was performed on 8 samples,
The three highest values are excluded and the average value of the five values is expressed. Note that the measurement is performed in the vertical direction and the horizontal direction, and the average value of both directions is used. (3) Coefficient of friction As shown in Figure 4, a fixed rod of SUS304 with an outer diameter of 5 mmφ (a film cut into a 1/2 inch width with a surface roughness CLA = 0.030 μm) was installed at a room temperature of 25°C and a relative humidity of 60%. They are brought into contact at a winding angle of π radian, and moved and rubbed at a speed of 3.3 cm/sec.The exit when the tension controller 2 is adjusted so that the inlet tension T 1 (detected by the inlet tension detector 5) is 30 g. The dynamic friction coefficient μk is calculated from the tension T 2 g (detected by the exit tension detector 10) using the following formula. In the present invention, the dynamic friction coefficient when traveling 90 m is defined as μk. μk = 1/πlnT 2 /T 1 implementation Examples 1 and 2, Comparative Examples 1 and 2 Containing 0.3% by weight of kaolin with an average particle size of 0.7 μm, intrinsic viscosity 0.53 dl/g (value measured at 25°C using orthochlorophenol as a solvent)
After drying the polyethylene terephthalate at 160℃, it was melt extruded at 280℃ and rapidly solidified on a casting drum kept at 50℃.
An unstretched film of m was obtained. Subsequently, this unstretched film was passed through four heating rollers 31, 32, 33 and 34 as shown in FIG.
The film was further heated with an infrared heater, and then stretched one step in the longitudinal direction between rollers 34 and 35. This film was then heated to 120℃.
Stretched 3.6 times in the transverse direction at a temperature of 210
Heat treatment was performed at ℃. In addition, the stretching speed at this time is
It was 200m/min. Further, the intrinsic viscosity of the film after film formation was 0.51 dl/g. Here, while changing the preheating temperature of the heating rollers 31 to 34 during longitudinal stretching and the conditions of the infrared heater 38, film forming and stretching was performed while changing the film temperature immediately before the roller 35 and the stretching ratio. I got a film like this.

【表】 表−1の如く、縦延伸倍率は低い程、縦延伸時
のフイルム温度は高い程、窪部(凹凸単位)の数
は多くなり、それに伴つて表面は平滑になつてく
ることが判る。そして実施例1〜2は、比較例1
〜2に比し、表面粗さCLAが低いにも拘らず摩
擦係数が低いことが特徴である。 実施例1の表面写真(拡大倍率900倍)及び比
較例1の表面写真(拡大倍率900倍)をそれぞれ
図−6及び図−5にそれぞれ示した。本発明のフ
イルム表面は図−6のような凹凸単位を有するも
のであることが観察できた。 実施例3〜4、比較例3〜6 平均粒径0.6μmのカオリンを0.2重量パーセン
ト含有したポリエチレンテレフタレートを160℃
で乾燥した後、280℃で溶融押出し、50℃に保持
したキヤステイングドラム上に急冷固化せしめ
て、160μmの未延伸フイルムを得た。 この未延伸フイルムを図−3に示した4本の加
熱ローラー31,32,33及び34で予熱した
のち、赤外線ヒーターでフイルムを加熱してから
ローラー34とローラー35の間で縦方向に3.2
倍に一段延伸した。この時、加熱ローラー31〜
34の温度及び赤外線ヒーター38の条件を変更
しながら、ローラー35直前のフイルム温度125
℃とした。更にフイルムを120℃の温度で横方向
に3.6倍に延伸し、次いで210℃で熱処理を施し
た。ここでポリエチレンテレフタレートの極限粘
度(オルソクロロフエノールを溶媒として用い、
25℃で測定した値)と延伸速度(ローラー35の
速度)とを変えて製膜延伸し、表−2の如きフイ
ルムを得た。
[Table] As shown in Table 1, the lower the longitudinal stretching ratio and the higher the film temperature during longitudinal stretching, the greater the number of depressions (uneven units) and the smoother the surface becomes. I understand. Examples 1 and 2 are Comparative Example 1
-2, it is characterized by a low coefficient of friction despite the low surface roughness CLA. A surface photograph of Example 1 (magnification: 900 times) and a surface photograph of Comparative Example 1 (magnification: 900 times) are shown in FIG. 6 and FIG. 5, respectively. It was observed that the surface of the film of the present invention had uneven units as shown in Figure 6. Examples 3-4, Comparative Examples 3-6 Polyethylene terephthalate containing 0.2% by weight of kaolin with an average particle size of 0.6 μm was heated at 160°C.
After drying, the film was melt-extruded at 280°C and rapidly solidified on a casting drum kept at 50°C to obtain an unstretched film of 160 μm. After preheating this unstretched film with the four heating rollers 31, 32, 33, and 34 shown in Figure 3, the film is heated with an infrared heater, and then the film is heated by 3.2 mm in the longitudinal direction between rollers 34 and 35.
Stretched once to double. At this time, the heating roller 31~
While changing the temperature of 34 and the conditions of the infrared heater 38, the temperature of the film immediately before the roller 35 is 125.
℃. Furthermore, the film was stretched 3.6 times in the transverse direction at a temperature of 120°C, and then heat-treated at 210°C. Here, the intrinsic viscosity of polyethylene terephthalate (using orthochlorophenol as a solvent,
Film-forming and stretching were carried out by changing the value measured at 25° C.) and the stretching speed (speed of the roller 35) to obtain films as shown in Table 2.

【表】 表−2に示したように、フイルムの極限粘度が
低い程表面の窪部(凹凸単位)の数は多くなり、
それに伴つて表面は平滑になつてくることが判
る。そして実施例3〜4は、表面粗さCLAが低
くしかも摩擦係数が低い性質を有するから、磁気
テープ用ベースフイルムとして優れた品質を備え
ていて、比較的高い延伸温度で製膜できることか
ら高生産性を確保できる。 これに対し、比較例3は、表面粗さCLAが低
くかつ摩擦係数も低い特徴を有するが、フイルム
縦方向のF−5値が低いことから磁気テープ用ベ
ースフイルムとしては適当でない。 また、比較例4及び6は、極限粘度が高い為に
実施例3に較べると表面の特徴がない。比較例5
は比較例4に対して延伸速度を低下すれば表面粗
さCLAが低くかつ摩擦係数の低い特徴があるが、
生産性が低下するので好ましいものとは言えな
い。 実施例5及び比較例7 ポリエチレンテレフタレート106部当り、エス
テル交換触媒として酢酸カルシウム200部、酢酸
リチウム150部、重合触媒として三酸化アンチモ
ン450部及び安定剤としてトリメチルホスフエー
ト1450部を用いて常法によりポリエチレンテレフ
タレートを重合した。このポリマーは内部析出粒
子を多く含んでおり、25℃のオルソクロロフエノ
ール溶液中の極限粘度が0.52dl/gであつた。 このポリエチレンテレフタレートを160℃で乾
燥したのち280℃で溶融押出しをし、50℃に保持
したキヤステイングドラム上に急冷固化せしめて
160μmの未延伸フイルムを得た。 引き続き、該未延伸フイルムを図−3に示した
延伸設備を用いて縦方向に一段延伸した。更に引
き続き該フイルムを125℃の温度で横方向に3.5倍
に延伸し、次いで210℃で熱処理を行つた。なお、
この際の延伸速度は200m/分であつた。 また、この実施例でのフイルムの極限粘度は
0.50dl/gであつた。ここで、縦延伸倍率を変え
て製膜延伸し、表−3の如きフイルムを得た。
[Table] As shown in Table 2, the lower the intrinsic viscosity of the film, the greater the number of depressions (uneven units) on the surface.
It can be seen that the surface becomes smoother as a result. Examples 3 and 4 have a low surface roughness CLA and a low coefficient of friction, so they have excellent quality as base films for magnetic tapes, and can be formed at relatively high stretching temperatures, resulting in high productivity. can ensure sex. On the other hand, Comparative Example 3 has the characteristics of low surface roughness CLA and low coefficient of friction, but is not suitable as a base film for magnetic tape because of its low F-5 value in the longitudinal direction of the film. Moreover, Comparative Examples 4 and 6 have a high intrinsic viscosity, so compared to Example 3, there are no surface characteristics. Comparative example 5
Compared to Comparative Example 4, if the stretching speed is lowered, the surface roughness CLA is lower and the coefficient of friction is lower.
This is not desirable because productivity decreases. Example 5 and Comparative Example 7 A conventional method using 200 parts of calcium acetate, 150 parts of lithium acetate as a transesterification catalyst, 450 parts of antimony trioxide as a polymerization catalyst, and 1450 parts of trimethyl phosphate as a stabilizer per 6 parts of polyethylene terephthalate 10 Polyethylene terephthalate was polymerized. This polymer contained many internally precipitated particles and had an intrinsic viscosity of 0.52 dl/g in an orthochlorophenol solution at 25°C. This polyethylene terephthalate was dried at 160°C, then melt-extruded at 280°C, and then rapidly cooled and solidified on a casting drum kept at 50°C.
An unstretched film of 160 μm was obtained. Subsequently, the unstretched film was stretched one step in the longitudinal direction using the stretching equipment shown in FIG. Subsequently, the film was stretched 3.5 times in the transverse direction at a temperature of 125°C, and then heat treated at 210°C. In addition,
The stretching speed at this time was 200 m/min. Also, the intrinsic viscosity of the film in this example is
It was 0.50dl/g. At this point, film-forming stretching was carried out while changing the longitudinal stretching ratio, and films as shown in Table 3 were obtained.

【表】 表−3に示したように、実施例5は比較例7に
較べて、表面粗さCLAが低いにもかかわらず、
摩擦係数が低い特徴を有する。 比較例 8 比較例1において平均粒径0.6μmカオリンを
0.18重量パーセント含有したこと以外は同一条件
として製膜したフイルムの長さ4μm以上の凹凸
単位の頻度は0ケ/mm2であり、表面粗度CLAは
0.027であつた。このフイルムの摩擦係数μkは
0.50と高く、実施例1とほぼ同じ表面粗度である
にも拘らず易滑効果はない。
[Table] As shown in Table 3, although Example 5 has a lower surface roughness CLA than Comparative Example 7,
Features a low coefficient of friction. Comparative Example 8 In Comparative Example 1, kaolin with an average particle size of 0.6 μm was used.
The frequency of unevenness units with a length of 4 μm or more in the film produced under the same conditions except that the content was 0.18% by weight was 0 units/ mm2 , and the surface roughness CLA was
It was 0.027. The friction coefficient μk of this film is
Although the surface roughness is as high as 0.50, which is almost the same as in Example 1, there is no smoothing effect.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は従来法で延伸した場合に粒子の周りに
出来たボイドの状態を示し、図1−1は平面図、
図1−2は断面図である。図−2は本発明のポリ
エステルフイルムであつて、粒子を含む突起とそ
の周辺に窪が形成されたものであり、図2−1は
平面図、図2−2は断面図である。図−3は本発
明の実施例に用いた延伸機の模式図である。図−
4はフイルム粗面の動摩擦係数μkを測定するテ
ープベース検査機の模式図である。図−5は従来
技術によるポリエステルフイルムの表面を示す顕
微鏡写真であり、図−6は本発明のポリエステル
フイルムの表面の顕微鏡写真である(いずれも拡
大倍率900倍)。
Figure 1 shows the state of voids created around particles when stretched using the conventional method, and Figure 1-1 is a plan view;
1-2 is a cross-sectional view. FIG. 2 shows a polyester film of the present invention, in which projections containing particles and depressions are formed around the projections, FIG. 2-1 is a plan view, and FIG. 2-2 is a cross-sectional view. FIG. 3 is a schematic diagram of a stretching machine used in an example of the present invention. Figure-
4 is a schematic diagram of a tape base inspection machine that measures the dynamic friction coefficient μk of a film rough surface. FIG. 5 is a microscopic photograph showing the surface of a polyester film according to the prior art, and FIG. 6 is a microscopic photograph of the surface of the polyester film of the present invention (both magnifications are 900 times).

Claims (1)

【特許請求の範囲】[Claims] 1 フイルムの極限粘度(オルソクロロフエノー
ルを溶媒として用い、25℃で測定した値)が0.42
〜0.55dl/grの範囲にあつて、フイルム表面に突
起と該突起を核とした窪とからなる凹凸単位が在
つて、該凹凸単位の窪の長径が少なくとも4μm
である凹凸単位が400ケ/mm2以上形成されてなる
ポリエステルフイルム。
1 The intrinsic viscosity of the film (value measured at 25°C using orthochlorophenol as a solvent) is 0.42
~0.55 dl/gr, there is an uneven unit on the film surface consisting of a protrusion and a depression with the protrusion as a nucleus, and the long axis of the depression in the uneven unit is at least 4 μm.
A polyester film with 400 or more uneven units/ mm2 .
JP6542982A 1982-04-21 1982-04-21 Polyester film Granted JPS58183225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6542982A JPS58183225A (en) 1982-04-21 1982-04-21 Polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6542982A JPS58183225A (en) 1982-04-21 1982-04-21 Polyester film

Publications (2)

Publication Number Publication Date
JPS58183225A JPS58183225A (en) 1983-10-26
JPH0156655B2 true JPH0156655B2 (en) 1989-11-30

Family

ID=13286833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6542982A Granted JPS58183225A (en) 1982-04-21 1982-04-21 Polyester film

Country Status (1)

Country Link
JP (1) JPS58183225A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046627A1 (en) * 2010-09-17 2012-03-22 Schock Gmbh Molded part, such as kitchen sink, sink or the like, as well as methods for producing such a molded part

Also Published As

Publication number Publication date
JPS58183225A (en) 1983-10-26

Similar Documents

Publication Publication Date Title
JPS6351090B2 (en)
US4233352A (en) Polyester film and method of manufacture thereof
JPH054210B2 (en)
US5718860A (en) Process for the preparation of polyester base film for magnetic recording media
JPS605183B2 (en) polyester film
JPH0432730B2 (en)
JPS6364289B2 (en)
JPH0449170B2 (en)
JPH0155986B2 (en)
JPH0156655B2 (en)
WO2001000389A1 (en) Biaxially oriented polyester film, process for producing the same, and use thereof as substrate for photographic sensitive material
JPS61254328A (en) Biaxially oriented polyester film for magnetic recording
JPH0156654B2 (en)
JPS6351091B2 (en)
JP2008290365A (en) Composite film
JPH0332456B2 (en)
JPS634571B2 (en)
JPH021005B2 (en)
JPH01206042A (en) Composite film
JP2002018947A (en) Biaxially oriented polyester film and method for manufacturing the same
JPS61167531A (en) Polyester film for magnetic sheet
JP4495815B2 (en) Biaxially oriented polyester film
JPH0356538A (en) Biaxially oriented polyester film for magnetic recording medium
JP2001072780A (en) Biaxially oriented polyester film
JP3272867B2 (en) Polyester composition