JPH0156657B2 - - Google Patents
Info
- Publication number
- JPH0156657B2 JPH0156657B2 JP57087200A JP8720082A JPH0156657B2 JP H0156657 B2 JPH0156657 B2 JP H0156657B2 JP 57087200 A JP57087200 A JP 57087200A JP 8720082 A JP8720082 A JP 8720082A JP H0156657 B2 JPH0156657 B2 JP H0156657B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretching
- temperature
- stretched
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920006267 polyester film Polymers 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000010408 film Substances 0.000 description 83
- 239000002245 particle Substances 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 7
- -1 polyethylene terephthalate Polymers 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000009998 heat setting Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明はフイルムの表面に微細な突起と窪とか
らなる凹凸を多数備えたポリエステルフイルム及
びその製造方法の改良技術に係わる。
ポリエステル系重合体に微細な有機または無機
化合物を添加すると、フイルム表面に微細な化合
物の影響によつて突起が現われることは公知であ
る。そしてフイルムに微細な突起が存在するとフ
イルムは易滑性を呈することも公知である。同様
な易滑効果はポリエステル系重合体に不溶性の触
媒残渣を析出させることによつても達成できる。
不溶性の触媒残渣はフイルムに重合体を製膜した
場合に、その表面に微細な突起を形成させる性質
を有している。
これらの慣用的なポリエステルフイルムの易滑
化技術を改良したものとしてフイルムに突起と窪
とを形成させる方法が特開昭57−66936号公報に
よつて開示されている。慣用技術はフイルム表面
に突起のみをもたらすものであるのに対し、この
公報に記載された改良技術は突起と窪とを構成単
位とする微細な凹凸が表面に夥しく存在すること
から、フイルムと他のフイルム等との接触時に接
触する有効面積が減少し、滑り易さが一層向上す
るものである。この改良技術の窪の形成の原因は
公報に明記されているように、微粒子(添加物又
は不溶性触媒残渣)の周囲に延伸に際して生じ易
いボイドの変形であつて、微粒子を中心核として
その周囲の表面が陥没して窪をもたらしたものと
推測されている。
ポリエステルフイルムは磁気テープ、コンデン
サー等の用途をはじめとして種々の工業材料に使
用されている。殊に磁気テープ用途、就中、ビデ
オテープ用途にあつては電磁変換特性の向上を策
するには極めて平滑平坦なフイルム表面が要求さ
れるとともに、テープの走行性、耐摩耗性及び耐
久性の向上も要求される。後者の特性はフイルム
に微細な突起の存在が必要であるが、この突起は
しばしば電磁特性の低下をもたらす。このような
フイルムの二律背反的な表面特性にあつて、本発
明の突起と窪とを備えたフイルムは滑り性が極め
て高く、突起の高さや突起の数を制限しても従来
技術のフイルムの走行性を凌駕するものとなる点
で優れている。
本発明は、磁気テープに要求される縦方向(長
手方向)強度、低い摩擦係数、表面の平滑・平坦
性を兼備した新規な表面特性を具えたポリエステ
ルフイルムを提供するものである。
従来の低摩擦係数を有するフイルムがその表面
の突起によつてもたらされるのに対し、本発明の
ものは、フイルム表面に凸部と凹部とを備え、こ
のような凹凸単位がフイルム表面の平滑・平坦性
を損わないように充分に微細であるとともに適度
な形状を有することによつて磁気テープとしての
表面特性を満足させたものである。
本発明は、
1) フイルム表面に微細な突起と該突起を核と
した周囲の窪とからなる凹凸単位を多数備えた
ポリエステルフイルムにおいて、該窪の長径と
短径との比が1:1乃至1.8:1の範囲である
ことを特徴とする表面に凹凸を有するポリエス
テルフイルム、および
2) ポリエステルフイルムを第一軸方向に100
〜150℃の温度で2.9倍以上3.2倍以下の延伸倍
率で延伸し、次いで第一軸とほぼ直角方向の第
二軸に第一軸方向の延伸温度と同程度乃至やや
高温の温度において3.0〜4.5倍の範囲の延伸倍
率で延伸し、要すれば、140〜200℃の温度域で
中間熱処理を施し、更に120〜170℃の温度にお
いて第一軸方向に1.2〜2.5倍の延伸倍率に再延
伸を施すことからなる、フイルム表面に微細な
突起と該突起を核とした周囲の窪とからなる凹
凸単位を多数備え該窪の長径と短径との比が
1:1乃至1.8:1の範囲にあるポリエステル
フイルムの製造方法。
本発明を説明する。
本発明が適用できるポリエステルとは、テレフ
タル酸、イソフタル酸、ナフタレン−2,6−ジ
カルボン酸等の如き芳香族二塩基酸成分とエチレ
ングリコール、テトラメチレングリコール、ネオ
ペンチルグリコール等の如きグリコール成分との
縮重合によつて得られる重合体又は共重合体をい
う。これらの代表的重合体としてポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポ
リエチレン−2,6−ナフタレンジカルボキシレ
ートなどのホモポリマー、これらの部分変性した
共重合体、ポリエチレンテレフタレートに(エチ
レンテレフタレート、ポリエチレングリコール)
ブロツク共重合体を添加した如きポリマーブレン
ドが例示できる。勿論、重合体や共重合体は充填
剤、顔料着色剤、酸化防止剤、光安定剤などを添
加することもできる。これらのものから得たフイ
ルムは本発明のポリエステルフイルムに含まれ
る。
本発明のフイルム表面に形成された突起は、ポ
リマーに添加した無機粒子、ポリマーの重合に際
し生成した不溶性の触媒残渣に基づく粒子、また
は両者の粒子の存在による。
本発明にいう突起の周りに該突起を核として生
じた窪とは、従来のエンボス等機械的なスタンプ
による凹状のものではなく、フイルムを延伸する
工程に施て、フイルム自体の変形によつて生じる
ものである。
粒子を含有した未延伸フイルムを一軸方向に延
伸すると、粒子は変形せずにポリマーが塑性変形
するから、大変形(延伸)に際しポリマーと粒子
との境にボイドが生じる。このボイドを含むフイ
ルムを、次に一軸延伸方向とほぼ直角方向(第二
軸方向)に延伸して二軸配向フイルムにすると、
一軸延伸時に生じていたボイドは更に第二軸方向
に変形されて、図1−1に示す如く突起21の周
囲にボイド22が楕円形状に形成される。更に第
一軸方向に再延伸を施してもこのボイドは楕円形
状のまゝ残存する。この場合は図1−2の断面図
に示したようなフイルム表面近傍の浅い部分に存
在する粒子とその周囲のボイドは粒子を核とする
突起をもたらすが、粒子周囲には窪を形成するこ
とはない。
本発明は、上記のボイドをフイルム表面の窪に
変化させたものである。未延伸フイルムを一軸延
伸するに際し、延伸前のフイルムの予備加熱を90
℃以上の高い温度に設定し、かつ延伸倍率を低く
設定することによつて第一軸延伸を経たフイルム
が粒子(無機化合物添加による外部粒子又は不溶
性の触媒残渣を含む内部粒子)周辺にボイドが実
質的に形成されないようにする。第一軸延伸の条
件は100〜150℃、好ましくは100〜120℃の温度
で、約3.2倍以下、好ましくは約3.0倍以下の延伸
倍率を選択するとよい。延伸倍率の下限は2.9倍
とするのがよい。延伸速度を高くする場合には延
伸温度として高目の温度を設定するとよい。
次に第二軸延伸は第一軸と直角な方向に施す。
この第二軸延伸は一軸配向フイルムを一旦ガラス
転移点以下に冷却するか、又は冷却することな
く、100〜150℃の温度に予備加熱し、更にほゞ同
程度又はやゝ高い温度下において第二軸方向に
3.0〜4.5倍(好ましくは3.2〜3.8倍)に延伸する。
第二軸延伸の温度が高い場合は凹凸単位の窪部の
境界が明瞭となるが、低温では境界が明らかとな
らない場合が多い。第二軸方向の延伸倍率は凹凸
単位の発生頻度に著しい影響を及ぼすことはな
い。たゞ第二軸延伸倍率として3.8倍以上を選択
すると、第二軸方向の機械的強度(ヤング率)が
第一軸方向の機械的強度に比較して高くなり所謂
テンシライズドフイルムとなり、しかもフイルム
の易滑性が低下する傾向がある。
第二軸延伸を経た二軸配向フイルムは、第二軸
延伸温度よりもやゝ高い温度下に0.1〜数秒間熱
固定(中間熱固定)を施すことができる。この熱
固定は二軸配向を緩和させ、再延伸を円滑とする
ものであるが、必須的ではない。この中間熱固定
温度は140〜200℃、更には140〜180℃の温度域で
第二軸延伸温度より少なくとも10℃高温を選ぶと
よい。
二軸配向フイルムは、第一軸方向に再度延伸さ
れる。この延伸条件は延伸温度として120〜170℃
を選び延伸倍率として1.2〜2.5倍、好ましくは1.2
〜2.0倍を設定する。再度第一軸方向に延伸する
ことによつて、バランスドフイルムからテンシラ
イズドフイルムまで広範囲に選択できる。
再延伸後の二軸延伸フイルムは、180〜240℃、
好ましくは190〜220℃の温度で0.2〜30秒間程度
熱固定を施すことができる。
このような方法によつて、本発明の窪の長径と
短径との比率が1〜1.8の範囲のものであつて、
ヤング率の高いフイルムが得られる。
本発明のフイルムは、その窪とその中核部に突
起を有つことにより、フイルムとロール、フイル
ムとフイルムの接触面積が一層減少し、易滑効果
が高められる利点がある。
ところで、昨今情報産業の発達に伴ない磁気記
録媒体の基体となるフイルムを一層薄くすること
が要請されている。これらの薄いフイルムは従来
の強度では不充分であり高強度化される必要があ
る。通常の二軸延伸ポリエステルフイルムの長手
方向のヤング率は500Kg/mm2附近であるが、薄物化
指向のベースフイルムとして長手方向のヤング率
は600Kg/mm2以上、好ましくは700Kg/mm2以上である
ことが望まれている。このような高強度フイルム
製造法として二軸延伸フイルムを再度延伸するこ
とが公知である。本発明では長手方向においてフ
イルムを再度延伸することによつて、縦方向ヤン
グ率が600Kg/mm2以上であり窪が図2−1に示され
たような楕円形状24の中心に突起をもつフイル
ムが得られるものである。この窪の擬楕円形状の
長径/短径の比は1.0〜1.8の範囲である。この比
のバラツキは一水準フイルムで標準偏差が0.2位
である。またこの擬楕円形状は図2−1のような
楕円状のものや、図2−3のような突起21を中
心とした楕円状の窪24が対称にあるものも含
む。こうして得られた窪をもつ高強度のフイルム
は易滑効果が充分賦与されている。
なお、長手方向の機械的強度の高いフイルムを
得るためには第1段の延伸条件を高倍率延伸とす
ればよいものの、この方法ではフイルムにボイド
が形成され易く本発明の窪を備えたものは得がた
い。
この窪部の大きさは延伸フイルムの表面に薄く
アルミニウムを蒸着したのち微分干渉顕微鏡(例
えばNikon微分干渉顕微鏡装置R型、倍率900倍)
を用いて写真を撮影し、観察することができる。
以下実施例により本発明を具体的に説明する。
本発明における物性測定法は次の通りである。
(1) 凹凸部分の測定法
フイルム表面に薄くアルミニウム蒸着をした
ものをNikon微分干渉顕微鏡装置R型を用いて
写真撮影し、その大きさをスケールで測定す
る。
(2) 表面粗さCLA
本発明で言う表面粗さCLA(Center Line
Average)値とは、下記の方法によつて測定さ
れたものである。
粗面化されたフイルムを、例えば東京精密社
製触針式表面粗さ計(SURFCOM3B)を使用
して、針の半径2μm、荷重70mgの条件で、フ
イルム粗さ曲線を求め、これより測定長さL
(基準長2mm)の部分を抜き取り、この抜き取
り部分の中心線をX線、縦倍率の方向をY軸と
して、粗さ曲線をY=f(x)で表わした時、
次の式で与えられた値をμ単位で表わす。
CLA=1/L∫L O|f(x)|dx
この測定を8個のサンプルについて行ない、
値の大きい方から3個除外し、5個の平均値で
表わす。なお、測定は縦方向と横方向とにつき
行い、両者を平均した値を用いる。
(3) ヤング率
フイルムを試料巾10mm、長さ150mmに切り、
チヤツク間100mmにして、引張速度を毎分10mm
としてインストロンタイプの万能引張試験装置
にて引張つた。得られた荷重伸長曲線の立上り
部の接線よりヤング率を計算した。
(4) 静摩擦係数
重ね合せた2枚のフイルムの下側に、固定し
たガラス板を置き、重ね合せた下側のガラス板
と接しているフイルムを一定速度(毎分10〜15
mm)で引取り、上側のフイルムの一端(下側フ
イルムの引取り方向と反対向きに)に検出端を
固定し、フイルム:フイルム間の引張力を検出
する。なおこの測定に用いるスレツドは重さ1
Kg、下側のフイルムの面積は10〜100cm2の範囲
のものを用意する。
実施例 1
平均粒径0.6μmのカオリンを0.25重量パーセン
ト含有した極限粘度数0.65dl/g(オルソクロロ
フエノールを溶媒として用い25℃で測定した値)
のポリエチレンテレフタレートを160℃で3時間
乾燥したのち280℃で溶融押出し50℃に保持した
キヤステイングドラム上に急冷固化せしめて
160μmの未延伸フイルムを得た。これを縦方向
にフイルム温度100℃で3.2倍延伸し、次いで横方
向に120℃で3.7倍延伸し、更に160℃で熱固定し
た。次に再延伸を続けて、フイルム温度140℃で
縦方向に1.8倍再縦延伸し、225℃で熱固定した。
この時のフイルム速度は、1段延伸後で22m/分
である。
実施例 2
実施例1と同様に横延伸までのフイルムを得た
のち140℃で1.5倍再縦延伸し、205℃で熱固定し
た。
実施例 3
実施例1と同様に横延伸までのフイルムを得た
のち140℃で1.3倍再縦延伸し、205℃で熱固定し
た。
実施例 4
実施例1と同様の未延伸フイルムを縦方向に
100℃で2.9倍延伸し、次いで、横方向に115℃で
3.7倍延伸し、更に160℃で熱固定した。次に縦方
向に1.5倍再縦延伸し、205℃で熱固定した。
実施例 5
ポリエチレンテレフタレート106部当り、エス
テル交換触媒として酢酸カルシウム200部、酢酸
リチウム150部、重合触媒として三酸化アンチモ
ン450部及び安定剤としてトリメチルホスフエー
ト1450部を用いて常法によりポリエチレンテレフ
タレートを重合した。このポリマーは内部析出粒
子を多く含んでおり、25℃のオルソクロロフエノ
ール溶液中の固有粘度が0.65dl/gであつた。こ
のポリエチレンテレフタレートを実施例1と同様
の2段延伸後、フイルム温度140℃で1.6倍再縦延
伸し、220℃で熱固定した。1段延伸後のフイル
ム速度は22m/分である。
比較例 1
実施例1と同様の未延伸フイルムを80℃で3.3
倍縦延伸し、100℃、3.5倍で横延伸後、170℃で
熱固定し、150℃、1.6倍で再縦延伸後、220℃で
熱固定した。
比較例 2
実施例1と同様の未延伸フイルムを100℃で3.4
倍縦延伸後、120℃、3.7倍で横延伸後、205℃に
て熱固定をした(再縦延伸は未実施)。
比較例 3
実施例1と同一条件で得た2段延伸フイルムを
140℃で1.2倍再縦延伸し、225℃で熱固定した。
実施例1〜5、比較例1〜3で得たフイルムの
特性を表示する。
The present invention relates to a polyester film having a large number of irregularities consisting of minute protrusions and depressions on the surface of the film, and an improved technique for manufacturing the same. It is known that when a fine organic or inorganic compound is added to a polyester polymer, protrusions appear on the film surface due to the influence of the fine compound. It is also known that the presence of minute protrusions on a film makes it slippery. A similar lubricity effect can also be achieved by precipitating insoluble catalyst residues in the polyester polymer.
Insoluble catalyst residues have the property of forming fine protrusions on the surface of a polymer film. JP-A-57-66936 discloses a method of forming protrusions and depressions on the film as an improvement on these conventional techniques for making polyester films slippery. While the conventional technique produces only protrusions on the film surface, the improved technique described in this publication has many fine irregularities on the surface, each consisting of protrusions and depressions, and therefore The effective area of contact with other films, etc. is reduced, and the slipperiness is further improved. As specified in the publication, the cause of the formation of depressions in this improved technology is the deformation of voids that tend to occur around fine particles (additives or insoluble catalyst residues) during stretching, and the formation of hollows around fine particles with the fine particles as the center core. It is assumed that the surface caved in, creating a depression. Polyester films are used in various industrial materials including magnetic tapes and capacitors. In particular, for magnetic tape applications, especially video tape applications, an extremely smooth and flat film surface is required in order to improve electromagnetic conversion characteristics. Improvement is also required. The latter property requires the presence of fine protrusions in the film, which often result in a reduction in electromagnetic properties. In contrast to these contradictory surface characteristics of films, the film provided with projections and depressions of the present invention has extremely high slipperiness, and even if the height and number of projections are limited, the film of the prior art will not run as easily. It is excellent in that it surpasses sexuality. The present invention provides a polyester film that has novel surface properties that combine longitudinal (longitudinal) strength, low coefficient of friction, and surface smoothness and flatness required for magnetic tapes. While the conventional film has a low coefficient of friction due to protrusions on its surface, the film of the present invention has protrusions and depressions on the film surface, and these uneven units improve the smoothness and smoothness of the film surface. It satisfies the surface characteristics of a magnetic tape by being sufficiently fine and having an appropriate shape so as not to impair flatness. The present invention provides: 1) A polyester film having a large number of concavo-convex units on the film surface consisting of fine protrusions and depressions surrounding the protrusions, wherein the ratio of the major axis to the minor axis of the depressions is 1:1 to 1:1. 1.8:1 polyester film having a surface roughness in the range of 1.8:1;
Stretching at a stretching ratio of 2.9 times or more and 3.2 times or less at a temperature of ~150°C, and then stretching on a second axis approximately perpendicular to the first axis at a temperature of 3.0 to slightly higher than the stretching temperature in the first axis direction. Stretched at a stretching ratio of 4.5 times, if necessary, subjected to intermediate heat treatment at a temperature range of 140 to 200°C, and further stretched to a stretching ratio of 1.2 to 2.5 times in the first axis direction at a temperature of 120 to 170°C. The film surface is subjected to stretching, and the surface of the film is provided with a large number of uneven units consisting of fine protrusions and depressions around the protrusions, and the ratio of the major axis to the minor axis of the depressions is 1:1 to 1.8:1. Method of manufacturing polyester film in the range. The present invention will be explained. The polyester to which the present invention can be applied is a combination of an aromatic dibasic acid component such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, etc. and a glycol component such as ethylene glycol, tetramethylene glycol, neopentyl glycol, etc. A polymer or copolymer obtained by condensation polymerization. Representative polymers include homopolymers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalene dicarboxylate, partially modified copolymers of these, and polyethylene terephthalate (ethylene terephthalate, polyethylene glycol).
Examples include polymer blends to which block copolymers are added. Of course, fillers, pigment colorants, antioxidants, light stabilizers, etc. can also be added to the polymers and copolymers. Films obtained from these materials are included in the polyester film of the present invention. The protrusions formed on the surface of the film of the present invention are due to the presence of inorganic particles added to the polymer, particles based on insoluble catalyst residues generated during polymerization of the polymer, or particles of both. In the present invention, a depression formed around a protrusion with the protrusion as a core is not a depression formed by a mechanical stamp such as a conventional embossing, but is formed by deformation of the film itself during the process of stretching the film. It is something that occurs. When an unstretched film containing particles is stretched in a uniaxial direction, the polymer is plastically deformed without deforming the particles, so that voids are generated at the boundary between the polymer and the particles during large deformation (stretching). When this film containing voids is then stretched in a direction substantially perpendicular to the uniaxial stretching direction (second axial direction) to form a biaxially oriented film,
The voids generated during the uniaxial stretching are further deformed in the second axial direction, and voids 22 are formed in an elliptical shape around the projections 21 as shown in FIG. 1-1. Furthermore, even if the film is re-stretched in the first axis direction, this void remains in an elliptical shape. In this case, as shown in the cross-sectional view of Figure 1-2, the particles existing in a shallow area near the film surface and the voids around them produce protrusions with the particles as the nucleus, but depressions are formed around the particles. There isn't. In the present invention, the above voids are changed to depressions on the film surface. When unstretched film is uniaxially stretched, the film is preheated to 90°C before stretching.
By setting the temperature to a high temperature of ℃ or higher and the stretching ratio to a low value, the film after the first axial stretching will have voids around the particles (external particles due to the addition of inorganic compounds or internal particles containing insoluble catalyst residues). substantially prevent it from forming. The conditions for the first axial stretching are a temperature of 100 to 150°C, preferably 100 to 120°C, and a stretching ratio of about 3.2 times or less, preferably about 3.0 times or less. The lower limit of the stretching ratio is preferably 2.9 times. When increasing the stretching speed, it is preferable to set a higher stretching temperature. Next, second axis stretching is performed in a direction perpendicular to the first axis.
This second axial stretching is performed by first cooling the uniaxially oriented film below its glass transition point, or by preheating it to a temperature of 100 to 150°C without cooling, and then stretching it again at approximately the same or slightly higher temperature. biaxially
Stretch 3.0 to 4.5 times (preferably 3.2 to 3.8 times).
When the temperature of the second axis stretching is high, the boundaries between the concave portions of the concave and convex units become clear, but at low temperatures, the boundaries are often not clear. The stretching ratio in the second axis direction does not significantly affect the frequency of occurrence of uneven units. If a stretching ratio of 3.8 times or more is selected as the second axis stretching ratio, the mechanical strength in the second axis direction (Young's modulus) will be higher than the mechanical strength in the first axis direction, resulting in a so-called tensilized film. The slipperiness of the film tends to decrease. The biaxially oriented film that has undergone second axial stretching can be heat set (intermediate heat setting) for 0.1 to several seconds at a temperature slightly higher than the second axial stretching temperature. This heat setting relaxes the biaxial orientation and makes re-stretching smoother, but is not essential. This intermediate heat setting temperature is preferably selected to be at least 10°C higher than the second axial stretching temperature in the temperature range of 140 to 200°C, more preferably 140 to 180°C. The biaxially oriented film is stretched again in the first axial direction. This stretching condition is 120 to 170℃ as the stretching temperature.
Select a stretching ratio of 1.2 to 2.5 times, preferably 1.2
Set ~2.0x. By stretching the film in the first axial direction again, a wide range of films can be selected from balanced films to tensilized films. The biaxially stretched film after re-stretching is 180~240℃,
Preferably, heat setting can be performed at a temperature of 190 to 220°C for about 0.2 to 30 seconds. By such a method, the ratio of the major axis to the minor axis of the depression of the present invention is in the range of 1 to 1.8,
A film with a high Young's modulus can be obtained. The film of the present invention has the advantage that the film-to-roll and film-to-film contact area is further reduced by having the protrusions in the recesses and the core portions, thereby increasing the sliding effect. Incidentally, with the recent development of the information industry, there is a demand for thinner films serving as the base of magnetic recording media. The conventional strength of these thin films is insufficient and it is necessary to increase the strength of these thin films. The Young's modulus in the longitudinal direction of a normal biaxially stretched polyester film is around 500 Kg/mm 2 , but as a base film aimed at thinning, the Young's modulus in the longitudinal direction is 600 Kg/mm 2 or more, preferably 700 Kg/mm 2 or more. Something is desired. As a method for producing such a high-strength film, it is known to re-stretch a biaxially stretched film. In the present invention, by re-stretching the film in the longitudinal direction, a film having a Young's modulus in the longitudinal direction of 600 Kg/mm 2 or more and a depression having a protrusion at the center of an elliptical shape 24 as shown in FIG. 2-1 is produced. is obtained. The ratio of the major axis to the minor axis of the pseudo-elliptical shape of this depression is in the range of 1.0 to 1.8. The standard deviation of this ratio is about 0.2 for a one-level film. Further, this pseudo-elliptical shape includes an elliptical shape as shown in FIG. 2-1, and a shape in which the elliptical depression 24 is symmetrical about the protrusion 21 as shown in FIG. 2-3. The thus-obtained high-strength film with depressions has a sufficient sliding effect. In addition, in order to obtain a film with high mechanical strength in the longitudinal direction, the first stage may be stretched at a high stretching ratio, but this method tends to cause voids to be formed in the film, and the film provided with the dimples of the present invention It's hard to get. The size of this depression can be determined by depositing a thin layer of aluminum on the surface of the stretched film and using a differential interference microscope (e.g. Nikon differential interference microscope R type, magnification 900x).
can be used to take and observe photographs. The present invention will be specifically explained below using Examples.
The method for measuring physical properties in the present invention is as follows. (1) Measuring method for uneven parts A photograph of a film surface with a thin layer of aluminum vapor deposited is taken using a Nikon differential interference microscope (R type), and its size is measured using a scale. (2) Surface roughness CLA Surface roughness CLA (Center Line
Average) value is measured by the following method. Using a stylus-type surface roughness meter (SURFCOM3B) made by Tokyo Seimitsu Co., Ltd., for example, obtain the film roughness curve of the roughened film under the conditions of a needle radius of 2 μm and a load of 70 mg, and from this, calculate the measurement length. L
(Reference length 2 mm) is extracted, the center line of this extracted portion is the X-ray, the vertical magnification direction is the Y axis, and the roughness curve is expressed as Y=f(x).
The value given by the following formula is expressed in μ. CLA=1/L∫ L O |f(x)|dx This measurement was performed on 8 samples,
Three of the highest values are excluded and the average value of the five values is expressed. Note that the measurement is performed in the vertical direction and the horizontal direction, and the average value of both is used. (3) Young's modulus Cut the film into a sample width of 10 mm and length of 150 mm.
The chuck distance is 100mm, and the pulling speed is 10mm/min.
The material was tensile tested using an Instron-type universal tensile testing device. Young's modulus was calculated from the tangent to the rising part of the obtained load-elongation curve. (4) Coefficient of static friction A fixed glass plate is placed below two stacked films, and the film in contact with the lower stacked glass plate is moved at a constant speed (10 to 15 per minute).
mm), the detection end is fixed to one end of the upper film (in the opposite direction to the direction in which the lower film is taken), and the tensile force between the films is detected. The weight of the thread used for this measurement is 1
Kg, and the area of the lower film is in the range of 10 to 100 cm2 . Example 1 Intrinsic viscosity number 0.65 dl/g containing 0.25% by weight of kaolin with an average particle size of 0.6 μm (value measured at 25°C using orthochlorophenol as a solvent)
Polyethylene terephthalate was dried at 160°C for 3 hours, then melt-extruded at 280°C and rapidly solidified on a casting drum kept at 50°C.
An unstretched film of 160 μm was obtained. This was stretched 3.2 times in the machine direction at a film temperature of 100°C, then stretched 3.7 times in the transverse direction at 120°C, and further heat-set at 160°C. Next, re-stretching was continued, and the film was re-stretched 1.8 times in the machine direction at a film temperature of 140°C, and heat-set at 225°C.
The film speed at this time was 22 m/min after the first stage of stretching. Example 2 A film was obtained in the same manner as in Example 1 up to transverse stretching, then longitudinally stretched again by 1.5 times at 140°C, and heat-set at 205°C. Example 3 A film was obtained in the same manner as in Example 1 up to transverse stretching, then longitudinally stretched again by a factor of 1.3 at 140°C, and heat-set at 205°C. Example 4 An unstretched film similar to Example 1 was stretched in the longitudinal direction.
Stretched 2.9 times at 100℃, then 115℃ in the transverse direction
It was stretched 3.7 times and further heat-set at 160°C. Next, it was longitudinally stretched again by 1.5 times in the machine direction and heat-set at 205°C. Example 5 Polyethylene terephthalate was produced by a conventional method using 200 parts of calcium acetate as a transesterification catalyst, 150 parts of lithium acetate as a transesterification catalyst, 450 parts of antimony trioxide as a polymerization catalyst, and 1450 parts of trimethyl phosphate as a stabilizer per 10 6 parts of polyethylene terephthalate. Polymerized. This polymer contained many internally precipitated particles and had an intrinsic viscosity of 0.65 dl/g in an orthochlorophenol solution at 25°C. This polyethylene terephthalate was stretched in two stages as in Example 1, then longitudinally stretched again by 1.6 times at a film temperature of 140°C, and heat-set at 220°C. The film speed after the first stage stretching was 22 m/min. Comparative Example 1 The same unstretched film as in Example 1 was heated to 80°C for 3.3
It was longitudinally stretched twice, then transversely stretched at 100°C and 3.5 times, then heat-set at 170°C, longitudinally stretched again at 150°C and 1.6 times, and then heat-set at 220°C. Comparative Example 2 The same unstretched film as in Example 1 was heated to 3.4°C at 100°C.
After longitudinal stretching, it was stretched horizontally at 120°C and 3.7 times, and then heat-set at 205°C (longitudinal stretching was not performed again). Comparative Example 3 A two-stage stretched film obtained under the same conditions as Example 1 was
It was longitudinally stretched again by 1.2 times at 140°C and heat-set at 225°C. Characteristics of the films obtained in Examples 1 to 5 and Comparative Examples 1 to 3 are displayed.
【表】
これらの結果を要約すると次の通りである。
(1) 実施例1〜5において、フイルムの縦方向の
ヤング率は600Kg/mm2以上あり、表面が平坦で摩
擦係数が低い特徴を有しており、縦方向のヤン
グ率が高く、電磁変換特性及び易滑性に優れた
磁気テープ用フイルムが得られた。
(2) 比較例1〜3
比較例1では縦方向のヤング率が高いもの
の、フイルム表面には窪が殆どない。この比較
例は、実施例1〜5に較べて、表面が粗れてい
るにも拘らず摩擦係数も高く、好ましい品質と
は云えない。比較例2及び3は、表面に窪が存
在し摩擦係数も低い特徴を有すものの、その表
面は、実施例1〜5に較べて粗れており、縦方
向のヤング率は600Kg/mm2以下で好ましくない。
比較例2及び3の窪は長径短径の形状比は、
各々3.0及び2.4と高いものであつた。[Table] These results are summarized as follows. (1) In Examples 1 to 5, the Young's modulus in the longitudinal direction of the film was 600 Kg/mm 2 or more, the surface was flat, the coefficient of friction was low, the Young's modulus in the longitudinal direction was high, and the electromagnetic conversion A magnetic tape film with excellent properties and slipperiness was obtained. (2) Comparative Examples 1 to 3 Although Comparative Example 1 has a high Young's modulus in the longitudinal direction, there are almost no depressions on the film surface. This comparative example has a higher coefficient of friction than Examples 1 to 5 despite having a rougher surface, and cannot be said to have a desirable quality. Although Comparative Examples 2 and 3 have depressions on the surface and a low coefficient of friction, their surfaces are rougher than those of Examples 1 to 5, and the Young's modulus in the longitudinal direction is 600 Kg/mm 2 The following are unfavorable.
The shape ratio of the major axis and minor axis of the depressions in Comparative Examples 2 and 3 is as follows:
They were high at 3.0 and 2.4, respectively.
図−1は従来法で延伸した場合に粒子の周りに
出来たボイドの状態を示し、図1−1は平面図、
図1−2は断面図である。図2は本発明のポリエ
ステルフイルムであつて粒子を含む突起とその周
辺に窪が形成されたものであつて、図2−1、図
2−3は平面図、図2−2は断面図である。図3
は本発明の実施例1のポリエステルフイルムの表
面の顕微鏡写真である(拡大倍率900倍)。
Figure 1 shows the state of voids created around particles when stretched using the conventional method, and Figure 1-1 is a plan view;
1-2 is a cross-sectional view. Figure 2 shows the polyester film of the present invention, which has protrusions containing particles and depressions formed around them. Figures 2-1 and 2-3 are plan views, and Figure 2-2 is a cross-sectional view. be. Figure 3
is a micrograph of the surface of the polyester film of Example 1 of the present invention (magnification: 900 times).
Claims (1)
た周囲の窪とからなる凹凸単位を多数備えたポリ
エステルフイルムにおいて、該窪の長径と短径と
の比が1:1乃至1.8:1の範囲であることを特
徴とする表面に凹凸を有するポリエステルフイル
ム。 2 ポリエステルフイルムを第一軸方向に100〜
150℃の温度で2.9倍以上3.2倍以下の延伸倍率で
延伸し、次いで第一軸とほぼ直角方向の第二軸に
第一軸方向の延伸温度と同程度乃至やや高温の温
度において3.0〜4.5倍の範囲の延伸倍率で延伸
し、要すれば、140〜200℃の温度域で中間熱処理
を施し、更に120〜170℃の温度において第一軸方
向に1.2〜2.5倍の延伸倍率に再延伸を施すことか
らなる、フイルム表面に微細な突起と該突起を核
とした周囲の窪とからなる凹凸単位を多数備え該
窪の長径と短径との比が1:1乃至1.8:1の範
囲にあるポリエステルフイルムの製造方法。[Scope of Claims] 1. A polyester film having a large number of concavo-convex units on the film surface consisting of fine protrusions and depressions surrounding the protrusions, wherein the ratio of the major axis to the minor axis of the depressions is 1:1. A polyester film having an uneven surface, characterized in that the ratio is in the range of 1.8:1 to 1.8:1. 2 The polyester film is 100~
Stretched at a temperature of 150°C with a stretching ratio of 2.9 times or more and 3.2 times or less, and then stretched on a second axis approximately perpendicular to the first axis at a temperature of 3.0 to 4.5 at a temperature that is about the same or slightly higher than the stretching temperature in the first axis direction. If necessary, perform intermediate heat treatment at a temperature range of 140 to 200°C, and then re-stretch in the first axis direction at a stretching ratio of 1.2 to 2.5 times at a temperature of 120 to 170°C. The film surface has many uneven units consisting of fine protrusions and depressions around the protrusions, and the ratio of the major axis to the minor axis of the depressions is in the range of 1:1 to 1.8:1. A method for manufacturing polyester film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8720082A JPS58205735A (en) | 1982-05-25 | 1982-05-25 | Polyester film and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8720082A JPS58205735A (en) | 1982-05-25 | 1982-05-25 | Polyester film and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58205735A JPS58205735A (en) | 1983-11-30 |
JPH0156657B2 true JPH0156657B2 (en) | 1989-11-30 |
Family
ID=13908324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8720082A Granted JPS58205735A (en) | 1982-05-25 | 1982-05-25 | Polyester film and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58205735A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6199711B2 (en) * | 2013-11-26 | 2017-09-20 | 京セラ株式会社 | Dielectric film and film capacitor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841030A (en) * | 1971-09-27 | 1973-06-16 | ||
JPS49116173A (en) * | 1973-03-12 | 1974-11-06 | ||
JPS50121368A (en) * | 1974-03-12 | 1975-09-23 | ||
JPS50133276A (en) * | 1974-04-10 | 1975-10-22 | ||
JPS5766936A (en) * | 1980-10-15 | 1982-04-23 | Teijin Ltd | Polyester film |
JPS57189822A (en) * | 1981-05-20 | 1982-11-22 | Toray Ind Inc | Biaxially stretched polyester film |
-
1982
- 1982-05-25 JP JP8720082A patent/JPS58205735A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841030A (en) * | 1971-09-27 | 1973-06-16 | ||
JPS49116173A (en) * | 1973-03-12 | 1974-11-06 | ||
JPS50121368A (en) * | 1974-03-12 | 1975-09-23 | ||
JPS50133276A (en) * | 1974-04-10 | 1975-10-22 | ||
JPS5766936A (en) * | 1980-10-15 | 1982-04-23 | Teijin Ltd | Polyester film |
JPS57189822A (en) * | 1981-05-20 | 1982-11-22 | Toray Ind Inc | Biaxially stretched polyester film |
Also Published As
Publication number | Publication date |
---|---|
JPS58205735A (en) | 1983-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6351090B2 (en) | ||
KR100227401B1 (en) | Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate | |
JPH0379178B2 (en) | ||
JP6819082B2 (en) | Biaxially oriented polyester film and magnetic recording medium | |
JP6701666B2 (en) | Biaxially oriented polyester film and magnetic recording medium | |
JPH0449170B2 (en) | ||
JPS6364289B2 (en) | ||
JPS62164733A (en) | Biaxially oriented polyester film for magnetic recording | |
JPH0156657B2 (en) | ||
JP6707861B2 (en) | Biaxially oriented polyester film | |
JPH0155986B2 (en) | ||
JP6866703B2 (en) | Biaxially oriented polyester film and magnetic recording medium | |
JP2019130777A (en) | Laminate polyester film and magnetic recording medium | |
JP3351821B2 (en) | Biaxially oriented polyester film | |
JPS58124617A (en) | Polyester film | |
JPS59227421A (en) | Polyester film | |
KR0157090B1 (en) | Biaxial oriented polyester film | |
EP0368319B1 (en) | Process for producing biaxially oriented polyester film | |
KR0175951B1 (en) | Biaxially oriented unidirectionally long polyethylene-2,6-naphthalene dicarboxylate film | |
JP2621340B2 (en) | Base film for magnetic tape | |
JPH0425855B2 (en) | ||
JPH0371977B2 (en) | ||
JPS58183225A (en) | Polyester film | |
JPH07126502A (en) | Polyester composition | |
JPH02120329A (en) | Polyethylene 2,6-naphthalate film |