JPH0156599B2 - - Google Patents

Info

Publication number
JPH0156599B2
JPH0156599B2 JP56129919A JP12991981A JPH0156599B2 JP H0156599 B2 JPH0156599 B2 JP H0156599B2 JP 56129919 A JP56129919 A JP 56129919A JP 12991981 A JP12991981 A JP 12991981A JP H0156599 B2 JPH0156599 B2 JP H0156599B2
Authority
JP
Japan
Prior art keywords
diaphragm
aramid fibers
flat
speaker
long axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56129919A
Other languages
Japanese (ja)
Other versions
JPS5831695A (en
Inventor
Tooru Yamamoto
Hirotoshi Niiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12991981A priority Critical patent/JPS5831695A/en
Publication of JPS5831695A publication Critical patent/JPS5831695A/en
Publication of JPH0156599B2 publication Critical patent/JPH0156599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスピーカ用振動板に関するものであ
り、その目的とするところは比弾性率が高く、か
つ内部損失の大きいスピーカ用振動板を提供する
ことにある。 一般にスピーカの特性は使用する振動板の物性
と大きな関係があり、周波数帯域は比弾性率
(E/P)に、周波数特性の平坦性は内部損失
(tanδ)に関連している。従来からスピーカ用振
動板には紙が多く用いられてきたが、近年になつ
て高分子材料や金属材料を素材にした振動板が使
われるようになつていた。しかし、スピーカ用振
動板に要求される比弾性率、内部損失の両者を同
時に十分満足するものは見当らない。比弾性率と
内部損失は相反する性質のものであり、単一材料
では両者を同時に満足させることは無理である。
現在のところ樹脂にフレークを混ぜたものが有力
と考えられているが、この場合はフレークの含有
率を相当高くしないと高比弾性率が得られない。
これはフレークのアスペクト比が小さく、弾性率
への寄与が少ないためである。そして、この様な
フレークの含有率の多い材料はスピーカ用振動板
は脆性破壊を起し易く、小さな衝撃にも破れが生
じる欠点があり、また、重量面でもフレークの含
有量が多いと重くなる欠点があつた。 本発明はこのような従来の欠点を解消するもの
である。本発明のスピーカ用振動板は断面形状が
偏平なアラミド繊維を含有することにより、高比
弾性率でかつ高内部損失の物性を同時に満足する
特長を有するものである。ここで、アラミド繊維
とはたとえば米国デユポン社のKevlar−49(商品
名)に代表される芳香族ポリアミドであり、液晶
紡糸後に繊維を緊張状態で熱処理して結晶化を進
めたものである。 第1表に各種の繊維の物性を示す。
The present invention relates to a diaphragm for a speaker, and an object thereof is to provide a diaphragm for a speaker that has a high specific modulus of elasticity and a large internal loss. In general, the characteristics of a speaker are largely related to the physical properties of the diaphragm used, and the frequency band is related to the specific modulus of elasticity (E/P), and the flatness of the frequency characteristics is related to the internal loss (tan δ). Traditionally, paper has often been used for speaker diaphragms, but in recent years diaphragms made of polymeric or metallic materials have come into use. However, no material has yet been found that simultaneously satisfies both the specific elastic modulus and internal loss required of a speaker diaphragm. Specific modulus of elasticity and internal loss have contradictory properties, and it is impossible to satisfy both simultaneously with a single material.
At present, a mixture of resin and flakes is considered to be effective, but in this case, a high specific modulus cannot be obtained unless the flake content is considerably increased.
This is because the aspect ratio of the flakes is small and their contribution to the elastic modulus is small. Materials with a high flake content have the disadvantage that speaker diaphragms are prone to brittle fracture and break even with the slightest impact, and in terms of weight, the higher the flake content, the heavier the speaker diaphragm becomes. There were flaws. The present invention overcomes these conventional drawbacks. The speaker diaphragm of the present invention contains aramid fibers with a flat cross-sectional shape, and thus has the feature of simultaneously satisfying physical properties of high specific modulus and high internal loss. Here, the aramid fiber is an aromatic polyamide represented by, for example, Kevlar-49 (trade name) manufactured by DuPont in the United States, and is obtained by heat-treating the fiber under tension after liquid crystal spinning to promote crystallization. Table 1 shows the physical properties of various fibers.

【表】 第1表より明らかなように、アラミド繊維は比
重が小さく、弾性率もガラス繊維より高い。炭素
繊維に較べ弾性率は若干落ちるが、引張強さで勝
り、非導電性であるため間接リードタイプにも使
用可能で用途が広い。樹脂との複合材料において
はアラミド繊維の断面形状が偏平であるため、複
合材料中における繊維間でのまさつが大きい。そ
して、フレーク状のものは層が重なり合うため、
まさつ面が広く内部損失が大きくなる。よつて、
断面形状が偏平なアラミド繊維を強化材に使用す
ることによつて軽量で、高比弾性率、高内部損失
のスピーカ用振動板材料を可能にする。この際、
高内部損失を得るにはアラミド繊維として長軸/
短軸比の少なくとも3以上のものを用いることが
望ましい。第1図にアラミド繊維の長軸/短軸比
と内部損失の関係を示す。断面形状が偏平なアラ
ミド繊維の製造方法としては偏平なノズルによる
紡糸法と、フイルムを切断する方法の2通りがあ
る。 以下、本発明のスピーカ用振動板の一実施例に
ついて説明する。 実施例 1 長軸/短軸比が4のノズルを用いアラミド繊維
を紡糸し、さらにこれを10倍に延伸して長軸30μ
m、短軸10μm、長軸/短軸比3の断面形状が偏
平なアラミド繊維を得た。この偏平なアラミド繊
維を繊維長1.5mmに切断し、強化材に使用した。
基材としてポリエチレンを用い、8:2の比で偏
平なアラミド繊維とよく混練して切断し、マスタ
ーペレツトを作つた。このマスターペレツトを用
いて再びTダイを装着した押出し機により、厚さ
0.2mmの強化ポリエチレンシートを得た。次にこ
のシートを遠赤外線で十数秒加熱、軟化した時点
で冷間プレスで成形を行ない振動板を得た。この
振動板の物性値を第2表に示した。尚、基材とし
てポリエチレンの代わりにポリプロピレン、
TPX、ポリカーボネート、ポリエチレンテレフ
タレート等の熱可塑性樹脂を使用して同様の結果
を得た。 実施例 2 長軸/短軸比が4のノズルを用いてアラミド繊
維を紡糸し、さらにこれを10倍に延伸して長軸
30μm、短軸10μm、長軸/短軸比3の断面形状
が偏平なアラミド繊維を得た。この偏平なアラミ
ド繊維より織布を作り、次にこの織布にフエノー
ル樹脂を含浸させ、溶剤を除去したのち金型温度
200℃の条件で熱プレス成形を行ない、アフター
キユア150℃、2時間で振動板を得た。この振動
板の物性値を第2表に示す。フエノール樹脂だけ
でなくエポキシ等の熱硬化性樹脂でも同様の結果
を得た。 実施例 3 長軸/短軸比が4のノズルを用いてアラミド繊
維を紡糸し、さらにこれを10倍に延伸して長軸
30μm、短軸10μm、長軸/短軸比3の断面形状
が偏平なアラミド繊維を得た。そして、この偏平
なアラミド繊維を1.5mmに切断した。次にこの繊
維長1.5mmの偏平なアラミド繊維20wt%と木材パ
ルプ(NUKP)80wt%とを水溶液中で混合し、
これをコーン形状に抄造して吸水後、熱プレス成
形を行ない振動板を得た。この振動板の物性値を
第2表に示す。 実施例 4 長軸/短軸比が4のノズルを用いてアラミド繊
維を紡糸し、さらにこれを10倍に延伸して長軸
30μm、短軸10μm、長軸/短軸比3の断面形状
が偏平なアラミド繊維を得、これを1.5mmの長さ
に切断した。そして、この繊維長1.5mmの偏平な
アラミド繊維20wt%と高密度ポリエチレン合成
パルプ80wt%とを水溶液中で混合した。この時、
高密度ポリエチレン合成パルプには叩解度210ml
のものを使用し、偏平なアラミド繊維とよく撹拌
して分散させた。その後丸網シリンダーで抄造を
行ない、次にこの抄造シートを遠赤外線で加熱
し、シートが軟化した時点で冷間プレスで成形し
て振動板を得た。この振動板の物性値を第2表に
示す。又この振動板を用いた10cmスピーカの周波
数特性を第2図の曲線Aに示す。尚、高密度ポリ
エチレン合成パルプの代りにポリプロピレン、
TPX等の熱可塑性合成パルプを使用して同様の
結果を得た。 尚、第2図の曲線Bは従来の紙コーン振動板を
用いた10cmスピーカの周波数特性を示している。
[Table] As is clear from Table 1, aramid fibers have a lower specific gravity and a higher elastic modulus than glass fibers. Although its elastic modulus is slightly lower than that of carbon fiber, it has superior tensile strength and is non-conductive, so it can be used in indirect lead types and has a wide range of uses. In a composite material with a resin, since the aramid fiber has a flat cross-sectional shape, there is a large amount of spacing between the fibers in the composite material. And since the flaky ones have overlapping layers,
The surface area is wide and the internal loss becomes large. Then,
By using aramid fibers with a flat cross-sectional shape as a reinforcing material, it is possible to create a speaker diaphragm material that is lightweight, has a high specific modulus, and has a high internal loss. On this occasion,
To obtain high internal loss, aramid fibers with long axes/
It is desirable to use a material with a minor axis ratio of at least 3 or more. Figure 1 shows the relationship between the long axis/short axis ratio of aramid fibers and internal loss. There are two methods for producing aramid fibers with a flat cross-sectional shape: a spinning method using a flat nozzle and a method of cutting a film. An embodiment of the speaker diaphragm of the present invention will be described below. Example 1 Aramid fibers were spun using a nozzle with a long axis/short axis ratio of 4, and then stretched 10 times to a long axis of 30μ.
An aramid fiber having a flat cross-sectional shape with a short axis of 10 μm and a long axis/short axis ratio of 3 was obtained. This flat aramid fiber was cut into fiber lengths of 1.5 mm and used as reinforcing materials.
Using polyethylene as a base material, it was thoroughly kneaded with flat aramid fibers at a ratio of 8:2 and cut to make master pellets. Using this master pellet, the thickness is
A 0.2 mm reinforced polyethylene sheet was obtained. Next, this sheet was heated with far infrared rays for ten seconds or so, and when it softened, it was cold pressed and formed to obtain a diaphragm. The physical properties of this diaphragm are shown in Table 2. In addition, polypropylene is used instead of polyethylene as the base material.
Similar results were obtained using thermoplastics such as TPX, polycarbonate, and polyethylene terephthalate. Example 2 Aramid fibers were spun using a nozzle with a long axis/short axis ratio of 4, and then stretched 10 times to increase the long axis.
Aramid fibers having a flat cross-sectional shape of 30 μm, a short axis of 10 μm, and a long axis/short axis ratio of 3 were obtained. A woven fabric is made from these flat aramid fibers, and then this woven fabric is impregnated with phenolic resin, the solvent is removed, and the mold temperature is
Hot press molding was performed at 200°C, and a diaphragm was obtained after curing at 150°C for 2 hours. Table 2 shows the physical properties of this diaphragm. Similar results were obtained not only with phenolic resin but also with thermosetting resins such as epoxy. Example 3 Aramid fibers were spun using a nozzle with a long axis/short axis ratio of 4, and then stretched 10 times to increase the long axis.
Aramid fibers having a flat cross-sectional shape of 30 μm, a short axis of 10 μm, and a long axis/short axis ratio of 3 were obtained. Then, this flat aramid fiber was cut into 1.5 mm pieces. Next, 20wt% of this flat aramid fiber with a fiber length of 1.5mm and 80wt% of wood pulp (NUKP) were mixed in an aqueous solution.
This was made into a cone shape, and after absorbing water, hot press molding was performed to obtain a diaphragm. Table 2 shows the physical properties of this diaphragm. Example 4 Aramid fibers were spun using a nozzle with a long axis/short axis ratio of 4, and then stretched 10 times to increase the long axis.
An aramid fiber having a flat cross-sectional shape of 30 μm, a short axis of 10 μm, and a long axis/short axis ratio of 3 was obtained and cut into a length of 1.5 mm. Then, 20 wt% of this flat aramid fiber with a fiber length of 1.5 mm and 80 wt% of high density polyethylene synthetic pulp were mixed in an aqueous solution. At this time,
High-density polyethylene synthetic pulp has a beatability of 210ml.
was used and thoroughly stirred and dispersed with the flat aramid fibers. Thereafter, papermaking was carried out in a round mesh cylinder, and then this papersheet was heated with far infrared rays, and when the sheet softened, it was molded in a cold press to obtain a diaphragm. Table 2 shows the physical properties of this diaphragm. Curve A in Figure 2 shows the frequency characteristics of a 10cm speaker using this diaphragm. In addition, polypropylene is used instead of high-density polyethylene synthetic pulp.
Similar results were obtained using thermoplastic synthetic pulp such as TPX. Incidentally, curve B in FIG. 2 shows the frequency characteristics of a 10 cm speaker using a conventional paper cone diaphragm.

【表】 第2表の物性値より明らかなように実施例1〜
4の振動板はいずれの場合も高比弾性率、高内部
損失の物性を同時に満足していることがわかる。
又、第2図より明らかなように周波数特性もあば
れの少ない平坦でかつ高域が伸びたものとなつて
おり、偏平なアラミド繊維がスピーカ用振動板材
料として非常に優れていることがわかる。 以上のように本発明によれば、断面形状が偏平
なアラミド繊維を含有するので、高比弾性率、高
内部損失の物性を同時に満足し、周波数特性のす
ぐれたスピーカー用振動板を得ることができるも
のである。
[Table] As is clear from the physical property values in Table 2, Examples 1-
It can be seen that the diaphragm No. 4 simultaneously satisfies the physical properties of high specific modulus and high internal loss in all cases.
Moreover, as is clear from FIG. 2, the frequency characteristics are flat with few flaws and the high range is extended, which shows that flat aramid fibers are very excellent as a material for speaker diaphragms. As described above, since the present invention contains aramid fibers with a flat cross-sectional shape, it is possible to obtain a speaker diaphragm that simultaneously satisfies the physical properties of high specific modulus and high internal loss and has excellent frequency characteristics. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアラミド繊維の長軸/短軸比と内部損
失の関係曲線図、第2図は本発明の一実施例のス
ピーカ用振動板と従来の紙コーン振動板の周波数
特性の比較曲線図である。
Figure 1 is a curve diagram of the relationship between the long axis/minor axis ratio of aramid fibers and internal loss, and Figure 2 is a comparison curve diagram of the frequency characteristics of a speaker diaphragm according to an embodiment of the present invention and a conventional paper cone diaphragm. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 単糸断面形状の長軸/短軸比が3以上である
偏平なアラミド繊維を強化材として用い、これを
熱可塑性樹脂、熱硬化性樹脂、木材パルプ、熱可
塑性合成パルプのいずれかに混合したことを特徴
とするスピーカ用振動板。
1 Flat aramid fibers with a long axis/short axis ratio of single fiber cross-sectional shape of 3 or more are used as a reinforcing material, and mixed with either thermoplastic resin, thermosetting resin, wood pulp, or thermoplastic synthetic pulp. A speaker diaphragm characterized by:
JP12991981A 1981-08-19 1981-08-19 Diaphragm for speaker Granted JPS5831695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12991981A JPS5831695A (en) 1981-08-19 1981-08-19 Diaphragm for speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12991981A JPS5831695A (en) 1981-08-19 1981-08-19 Diaphragm for speaker

Publications (2)

Publication Number Publication Date
JPS5831695A JPS5831695A (en) 1983-02-24
JPH0156599B2 true JPH0156599B2 (en) 1989-11-30

Family

ID=15021639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12991981A Granted JPS5831695A (en) 1981-08-19 1981-08-19 Diaphragm for speaker

Country Status (1)

Country Link
JP (1) JPS5831695A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720583B2 (en) * 2005-04-20 2011-07-13 パナソニック株式会社 Manufacturing method of speaker diaphragm
JP2006325190A (en) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd Diaphragm for speaker, method for producing the same, speaker using such diaphragm and apparatus using such speaker
JP6312122B2 (en) * 2013-11-13 2018-04-18 国立研究開発法人産業技術総合研究所 Acoustic diaphragm made of wood material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443890A (en) * 1977-09-12 1979-04-06 Texaco Development Corp Surfactant
JPS5621499A (en) * 1979-07-31 1981-02-27 Matsushita Electric Ind Co Ltd Diaphragm for speaker
JPS5626199A (en) * 1979-08-10 1981-03-13 Fujirebio Inc Determination of minor constituent contained in serum or urine
JPS5658394A (en) * 1979-10-19 1981-05-21 Matsushita Electric Ind Co Ltd Diaphragm plate for speaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443890A (en) * 1977-09-12 1979-04-06 Texaco Development Corp Surfactant
JPS5621499A (en) * 1979-07-31 1981-02-27 Matsushita Electric Ind Co Ltd Diaphragm for speaker
JPS5626199A (en) * 1979-08-10 1981-03-13 Fujirebio Inc Determination of minor constituent contained in serum or urine
JPS5658394A (en) * 1979-10-19 1981-05-21 Matsushita Electric Ind Co Ltd Diaphragm plate for speaker

Also Published As

Publication number Publication date
JPS5831695A (en) 1983-02-24

Similar Documents

Publication Publication Date Title
US4013810A (en) Sandwich panel construction
CN1247046C (en) Loudspeaker
JP3199559B2 (en) Speaker damper and method of manufacturing the same
EP0322587A2 (en) Speaker diaphragm
US3409497A (en) Adhesive sheet materials and method of making the same
US5047288A (en) Nonwoven fabric comprising single filaments and filament bundles that yield improved impact resistant molded articles
US4431696A (en) Manufactured articles based on thermoplastic polymers reinforced with glass fibers
JPH0156599B2 (en)
JPH0411576B2 (en)
JPS58153491A (en) Speaker diaphragm
JP7196988B2 (en) Method for manufacturing composite molded body
JP3073083B2 (en) Fibrous polyimide resin molding for reinforcing composite materials
JP2961201B2 (en) Dust cap for speaker
KR20200136525A (en) Composite material preform board
CN107057189B (en) Multilayer natural fiber sheet and thermoplastic composite material and preparation method thereof
JPS5875398A (en) Loud speaker diaphragm
JPS5947707A (en) Composite ferrite and preparation thereof
JPH0790551B2 (en) Non-woven fabric for resin reinforcement and molding sheet using the non-woven fabric
JP7039852B2 (en) Composite molded body
JPH0257096A (en) Diaphragm for acoustic device
JPS63232799A (en) Speaker diaphragm
JPH06133392A (en) Manufacture of diaphragm for speaker
JPS6359639B2 (en)
JPS60152198A (en) Diaphragm for electroaccoustic transducer
JP2519764B2 (en) Stamping molding material with improved strength