JPH0154848B2 - - Google Patents

Info

Publication number
JPH0154848B2
JPH0154848B2 JP10466180A JP10466180A JPH0154848B2 JP H0154848 B2 JPH0154848 B2 JP H0154848B2 JP 10466180 A JP10466180 A JP 10466180A JP 10466180 A JP10466180 A JP 10466180A JP H0154848 B2 JPH0154848 B2 JP H0154848B2
Authority
JP
Japan
Prior art keywords
grain boundary
electrodes
grain
insulated semiconductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10466180A
Other languages
Japanese (ja)
Other versions
JPS5730310A (en
Inventor
Yasunobu Yoneda
Norimitsu Kito
Tetsuya Hatsutori
Toshihiko Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichikon KK
Original Assignee
Nichikon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichikon KK filed Critical Nichikon KK
Priority to JP10466180A priority Critical patent/JPS5730310A/en
Publication of JPS5730310A publication Critical patent/JPS5730310A/en
Publication of JPH0154848B2 publication Critical patent/JPH0154848B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン酸ストロンチウム(以下
SrTiO3という)を主成分とする粒界絶縁型半導
体コンデンサの電極を改良したもので、従来の銀
電極を形成した粒界絶縁型半導体コンデンサと同
等あるいは遜色のない電気特性および信頼性をも
ち、かつ安価なメツキ電極を有する粒界絶縁型半
導体コンデンサ製造方法を提供するものである。 SrTiO3を主成分とする粒界絶縁型半導体コン
デンサは、温度特性、DCバイアスなどに優れ、
かつ比誘電率も極めて大きいため、小型大容量の
優れた半導体コンデンサとして低電圧電子回路に
多く使用されている。 しかしこの粒界絶縁型半導体コンデンサの電極
は従来のセラミツクコンデンサ、再酸化型半導体
コンデンサと同様に銀を主成分とする電極が通常
用いられているが、コスト高となつていた。 この銀電極のコスト高を改消するため、近年セ
ラミツクコンデンサにおいてはメツキ電極の有効
性が認められ、銀電極に代る低コスト電極として
実用化されている。 しかしながら、Bi、Cu、Pb、Bなどの粒界絶
縁化剤を拡散し、磁器の粒界を絶縁化してなる粒
界絶縁型半導体磁器に無電解メツキ電極を施し、
得られた半導体コンデンサを高温負荷試験したと
ころ絶縁抵抗の劣化が著しく、半導体コンデンサ
の無電解メツキ電極化への実用化の大きな障害と
なつていた。 本発明は上記の欠点を改良するもので、
SrTiO3を主成分とする半導体磁器にBi、Cu、
Pb、Bなどの粒界絶縁化剤と、該粒界絶縁化剤
に1〜200重量%のガラスフリツトを混合してな
る拡散剤を塗布して拡散させたのち、無電解メツ
キ電極を付与することにより得られた粒界絶縁型
半導体コンデンサは、高温負荷での絶縁抵抗劣化
現象が著しく改善されることを見い出したもの
で、第1図に高温負荷試験結果を示す。○イは銀電
極を有する粒界絶縁型半導体コンデンサ。○ロは本
発明のメツキ電極を有する粒界絶縁型半導体コン
デンサ。○ハ従来のメツキ電極を有する粒界絶縁型
半導体コンデンサを示し、この第1図からわかる
ように本発明品は従来の銀電極を有する粒界絶縁
型半導体コンデンサと同等の電気特性および信頼
性をもち、かつ従来の銀電極品に比較して極めて
安価であり、また従来のメツキ電極品の欠点を解
消したものである。 以下、本発明を実施例に基き詳細に説明する。 SrTiO3を主成分とする円板形の半導体磁器
(磁器寸法12.5mmφ、厚み0.45mm)に第1表のよ
うにBi、Cu、Pb、Bのうち1種または2種以上
からなる粒界絶縁化剤と、該粒界絶縁化剤に対し
て1〜200重量%のホウケイ酸鉛ガラスを混合し、
さらにバインダーを加えてペースト状にした拡散
剤を半導体磁器表面に塗布し、温度1150〜1200℃
で2時間粒界拡散を行ない粒界絶縁化半導体磁器
を得た。次いで該粒界絶縁化半導体磁器の表面に
通常の無電解メツキ法によりニツケルメツキを施
し、その後外周研磨して11.6mmφとし、ニツケル
メツキ電極を形成した。このように電極が施され
た粒界絶縁型半導体磁器に引出リードを半田接続
し外装して完成する。 このようにして得られた粒界絶縁型半導体コン
デンサについて、容量、誘電体損失、絶縁抵抗お
よび破壊電圧を測定すると共に高温負荷試験を行
ない、1000時間後の絶縁抵抗について測定した。
その結果を第1表に示す。
The present invention utilizes strontium titanate (hereinafter referred to as strontium titanate).
It is an improved electrode of a grain boundary insulated semiconductor capacitor whose main component is SrTiO 3 ), and has electrical characteristics and reliability comparable to or comparable to those of conventional grain boundary insulated semiconductor capacitors with silver electrodes. The present invention also provides a method for manufacturing a grain boundary insulated semiconductor capacitor having an inexpensive plated electrode. Grain boundary insulated semiconductor capacitors whose main component is SrTiO 3 have excellent temperature characteristics, DC bias, etc.
In addition, since it has an extremely high dielectric constant, it is often used in low-voltage electronic circuits as an excellent semiconductor capacitor with a small size and large capacity. However, as with conventional ceramic capacitors and reoxidation type semiconductor capacitors, electrodes containing silver as a main component are usually used for the electrodes of this grain boundary insulated semiconductor capacitor, but these are expensive. In order to reduce the high cost of silver electrodes, plating electrodes have recently been recognized as effective in ceramic capacitors, and have been put into practical use as low-cost electrodes in place of silver electrodes. However, when grain boundary insulated semiconductor porcelain is made by diffusing grain boundary insulating agents such as Bi, Cu, Pb, and B to insulate the grain boundaries of the porcelain, electroless plating electrodes are applied.
When the obtained semiconductor capacitor was subjected to a high temperature load test, the insulation resistance deteriorated significantly, which was a major obstacle to the practical application of electroless plating electrodes of semiconductor capacitors. The present invention aims to improve the above-mentioned drawbacks.
Bi , Cu,
Applying and diffusing a grain boundary insulating agent such as Pb or B and a diffusing agent made by mixing 1 to 200% by weight of glass frit with the grain boundary insulating agent, and then applying an electroless plating electrode. It has been found that the grain boundary insulated semiconductor capacitor obtained by the method has a marked improvement in the insulation resistance deterioration phenomenon under high temperature load, and the high temperature load test results are shown in FIG. ○A is a grain boundary insulated semiconductor capacitor with silver electrodes. ○B is a grain boundary insulated semiconductor capacitor having a plating electrode of the present invention. ○C shows a conventional grain boundary insulated semiconductor capacitor with plating electrodes. As can be seen from Figure 1, the product of the present invention has the same electrical characteristics and reliability as the conventional grain boundary insulated semiconductor capacitors with silver electrodes. It is durable and extremely inexpensive compared to conventional silver electrode products, and also eliminates the drawbacks of conventional plating electrode products. Hereinafter, the present invention will be explained in detail based on examples. As shown in Table 1, grain boundary insulation consisting of one or more of Bi, Cu, Pb, and B is applied to a disk-shaped semiconductor porcelain (porcelain size: 12.5 mmφ, thickness: 0.45 mm) whose main component is SrTiO 3 . mixing agent and lead borosilicate glass in an amount of 1 to 200% by weight based on the grain boundary insulating agent,
Furthermore, a binder is added to make a paste-like diffusing agent, which is then applied to the surface of the semiconductor porcelain at a temperature of 1150 to 1200℃.
Grain boundary diffusion was carried out for 2 hours to obtain grain boundary insulated semiconductor porcelain. Next, the surface of the grain boundary insulated semiconductor ceramic was nickel plated by a conventional electroless plating method, and then the outer periphery was polished to a diameter of 11.6 mm to form a nickel plated electrode. The grain-boundary insulated semiconductor porcelain provided with the electrodes is connected with lead leads by soldering and packaged to complete the process. Regarding the grain boundary insulated semiconductor capacitor thus obtained, the capacitance, dielectric loss, insulation resistance, and breakdown voltage were measured, and a high temperature load test was also conducted, and the insulation resistance after 1000 hours was measured.
The results are shown in Table 1.

【表】 なお、第1表中No.15は比較のための銀電極を有
する粒界絶縁型半導体コンデンサ、No.1、2、
7、8、14は本発明の範囲外である。また容量、
誘電体損失については測定電圧1Vrms、周波数
1KHz、温度25℃で測定し、高温負荷試験は温度
85±2℃の槽中で37.5VDCを印加し、1000時間
後の絶縁抵抗値である。第1表で明らかなように
本発明の無電解メツキ電極品はBi―Cu―Pb―B
などの拡散剤のみによる従来の粒界絶縁型半導体
磁器に無電解メツキ電極を設けたものに比較して
電気的特性が安定し、高温負荷試験における絶縁
抵抗も極めて安定である。 このようにSrTiO3を主体とする半導体磁器に
Bi―CuあるいはBi―Cu―Pb―Bなどの粒界絶縁
化剤と、該絶縁化剤に対して1.0〜200重量%のガ
ラス粉末を混合した拡散剤を塗布して粒界に拡散
し粒界絶縁化したのち、無電解メツキ法によりメ
ツキ電極を施こした本発明の粒界絶縁型半導体コ
ンデンサで、従来の銀電極品と同等の諸特性を有
し、かつ信頼性に優れ安価なものである。 なお、上記実施例でメツキ電極を無電極ニツケ
ルメツキによる電極形成法について説明したが、
例えば銅メツキ電極などについても同様の効果を
有する。また粒界絶縁化剤をBi―CuとBi―Cu―
Pb―Bについて説明したが、Bi、Cu、Pb、Bの
1種でもよく、2種以上を組合せ混合するとなお
よく、このほかW、Ta、Th、Co、Ni、Mnなど
の金属酸化物においても同様の効果が得られる。
さらにこれらの粒界絶縁化剤に混合するガラス粉
末はホウケイ酸鉛ガラスに限らず、B―Si―Pb、
Zn―Si―B、Ba―Si―Bなど軟化度を、300〜
900℃の範囲にもつガラス組成系のものが最適で
ある。 以上のように本発明はSrTiO3を主成分とする
半導体磁器の粒界を絶縁化する粒界絶縁化剤にガ
ラス粉末を混合した拡散剤として塗布などし拡散
して粒界を絶縁化しているので、電極形成に際し
て無電解メツキを施こし、安価に電極形成ができ
ると共に信頼性に優れ、工業上有益なものであ
る。
[Table] In Table 1, No. 15 is a grain boundary insulated semiconductor capacitor with a silver electrode for comparison, Nos. 1, 2,
7, 8, and 14 are outside the scope of the present invention. Also capacity,
For dielectric loss, measurement voltage 1Vrms, frequency
Measured at 1KHz, temperature 25℃, high temperature load test
This is the insulation resistance value after 1000 hours when 37.5VDC was applied in a bath at 85±2°C. As is clear from Table 1, the electroless plating electrode product of the present invention has Bi-Cu-Pb-B
Compared to conventional grain-boundary insulated semiconductor porcelain with electroless plating electrodes using only a diffusing agent, the electrical properties are more stable, and the insulation resistance in high-temperature load tests is also extremely stable. In this way, semiconductor porcelain mainly composed of SrTiO 3
A dispersing agent made by mixing a grain boundary insulating agent such as Bi-Cu or Bi-Cu-Pb-B with glass powder of 1.0 to 200% by weight relative to the insulating agent is applied and diffused into the grain boundaries. The grain boundary insulated semiconductor capacitor of the present invention is made of a grain boundary insulated semiconductor capacitor in which a plating electrode is applied by an electroless plating method after interlayer insulation, and the capacitor has properties equivalent to conventional silver electrode products, and is highly reliable and inexpensive. It is. In addition, in the above example, the method of forming the plated electrode by electrodeless nickel plating was explained.
For example, copper plating electrodes have similar effects. In addition, grain boundary insulating agents are Bi-Cu and Bi-Cu-
Although Pb-B has been explained, it may be used alone of Bi, Cu, Pb, and B, and it is even better to mix two or more of them.In addition, metal oxides such as W, Ta, Th, Co, Ni, and Mn A similar effect can be obtained.
Furthermore, the glass powder mixed with these grain boundary insulating agents is not limited to lead borosilicate glass, but also B-Si-Pb,
Softening degree such as Zn-Si-B, Ba-Si-B, etc. from 300 to
Glass compositions that can withstand temperatures in the 900°C range are optimal. As described above, the present invention insulates the grain boundaries of semiconductor porcelain whose main component is SrTiO 3 by coating and diffusing glass powder as a diffusion agent in a grain boundary insulating agent that insulates the grain boundaries of semiconductor ceramics. Therefore, when forming electrodes, electroless plating is performed, and the electrodes can be formed at low cost and have excellent reliability, which is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高温負荷試験による絶縁抵抗−時間特
性図である。
FIG. 1 is an insulation resistance-time characteristic diagram obtained from a high-temperature load test.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸ストロンチウムを主成分とする半導
体磁器の粒界を絶縁化するビスマス、銅、鉛、ホ
ウ素などよりなる粒界絶縁化剤と該粒界絶縁化剤
に対して1〜200重量%のガラス粉末とを添加混
合してなる拡散剤を半導体磁器に塗布し、拡散し
て粒界を絶縁化したのち、無電解メツキを施して
メツキ電極を形成したことを特徴とする粒界絶縁
型半導体コンデンサの製造方法。
1. A grain boundary insulating agent made of bismuth, copper, lead, boron, etc. that insulates the grain boundaries of semiconductor porcelain mainly composed of strontium titanate, and 1 to 200% by weight of glass based on the grain boundary insulating agent. A grain boundary insulated semiconductor capacitor characterized in that a diffusing agent made by adding and mixing a powder is applied to semiconductor porcelain, diffused to insulate the grain boundaries, and then subjected to electroless plating to form a plating electrode. manufacturing method.
JP10466180A 1980-07-29 1980-07-29 Grain boundary insulation type semiconductor condenser Granted JPS5730310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10466180A JPS5730310A (en) 1980-07-29 1980-07-29 Grain boundary insulation type semiconductor condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10466180A JPS5730310A (en) 1980-07-29 1980-07-29 Grain boundary insulation type semiconductor condenser

Publications (2)

Publication Number Publication Date
JPS5730310A JPS5730310A (en) 1982-02-18
JPH0154848B2 true JPH0154848B2 (en) 1989-11-21

Family

ID=14386642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10466180A Granted JPS5730310A (en) 1980-07-29 1980-07-29 Grain boundary insulation type semiconductor condenser

Country Status (1)

Country Link
JP (1) JPS5730310A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119877A (en) * 1986-12-18 2000-09-19 G & G Intellectual Properties, Inc. Adjustable vehicle-carrying frame
US5417332A (en) * 1986-12-18 1995-05-23 G & G Intellectual Properties, Inc. Adjustable vehicle-carrying frame
JPH02133908A (en) * 1988-11-15 1990-05-23 Tdk Corp Surface-layer type semiconductor ceramic capacitor and its manufacture
US5415505A (en) * 1991-10-30 1995-05-16 G & G Intellectual Properties, Inc. Vehicle-carrying frame
US5769591A (en) * 1993-02-04 1998-06-23 Kar-Tainer International, Inc. Frame structure and method of packing vehicle bodies
US5454672A (en) * 1993-03-17 1995-10-03 G & G Intellectual Properties, Inc. Adjustable load-carrying frame for fully utilizing transport enclosure space
US5924248A (en) * 1995-08-02 1999-07-20 Kar-Tainer International Inc. Collapsible frame device

Also Published As

Publication number Publication date
JPS5730310A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
KR920003225B1 (en) Semiconductive ceramic composition
KR100366928B1 (en) Conductive paste and ceramic electronic component
JPS63927B2 (en)
US3760244A (en) Ceramic capacitor and method of forming same
JPH0154848B2 (en)
JPH0226775B2 (en)
JP3419321B2 (en) Ceramic electronic component and method of manufacturing the same
JPH09190950A (en) Outer electrode of electronic part
JPH11106259A (en) Dielectric ceramic composition
JPH04293214A (en) Conductive paste for chip type electronic component
JPS6127003A (en) Conductive paste composition
US4709299A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
JP3123310B2 (en) Conductive paste for chip-type electronic components
JPH0154849B2 (en)
JP3656860B2 (en) Non-reducing dielectric ceramic composition
JPH0636970A (en) External electrode of chip type electronic component
US4769354A (en) Type I dielectric composition based on neodymium titanate
JPS6133251B2 (en)
JP2693249B2 (en) Low loss porcelain capacitor
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH02150007A (en) Laminated porcelain capacitor
JPS59127826A (en) Grain boundary insulating semiconductor porcelain capacitor
KR920009172B1 (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JPH038759A (en) Semiconductive porcelain material
JPH0674166B2 (en) Porcelain composition for low temperature firing