JP2693249B2 - Low loss porcelain capacitor - Google Patents

Low loss porcelain capacitor

Info

Publication number
JP2693249B2
JP2693249B2 JP3331790A JP3331790A JP2693249B2 JP 2693249 B2 JP2693249 B2 JP 2693249B2 JP 3331790 A JP3331790 A JP 3331790A JP 3331790 A JP3331790 A JP 3331790A JP 2693249 B2 JP2693249 B2 JP 2693249B2
Authority
JP
Japan
Prior art keywords
weight
dielectric constant
dielectric
mno
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3331790A
Other languages
Japanese (ja)
Other versions
JPH03236211A (en
Inventor
亮 工藤
常男 増村
正美 佐藤
忍 藤原
哲司 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3331790A priority Critical patent/JP2693249B2/en
Publication of JPH03236211A publication Critical patent/JPH03236211A/en
Application granted granted Critical
Publication of JP2693249B2 publication Critical patent/JP2693249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低損失磁器コンデンサに係り、特に高誘電率
の上、誘電率の温度特性にすぐれ、且つ低損失で周波数
依存性、電圧依存性が小さく、高信頼性が得られる磁器
コンデンサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a low loss ceramic capacitor, and particularly to a high dielectric constant, an excellent dielectric constant temperature characteristic, a low loss, and frequency dependence and voltage dependence. The present invention relates to a porcelain capacitor which is small in size and has high reliability.

〔従来の技術〕[Conventional technology]

近年、スイッチング電源の小形軽量化、高周波化又は
CRTディスプレーの高精細度化にともない、磁器コンデ
ンサの誘電体損失(tanδ)が小さく誘電体磁器その物
の自己発熱も小さいことが要求される。
In recent years, switching power supplies have become smaller and lighter, have higher frequencies, or
Along with the high definition of CRT displays, it is required that the dielectric loss (tan δ) of the ceramic capacitor is small and the self-heating of the dielectric ceramic itself is also small.

従来、高誘電率系の磁器誘電体組成物としては、BaTi
O3系磁器組成物が広く実用化されてきたが、この種のも
のは誘電体損失が大きく、特に高周波では著しく誘電体
損失が大きくなる。
Conventionally, BaTi has been used as a high dielectric constant porcelain dielectric composition.
O 3 -based porcelain compositions have been widely put into practical use, but this type has a large dielectric loss, and particularly at high frequencies, the dielectric loss becomes significantly large.

これらの問題に対処するために、SrTiO3−PbTiO3−Bi
2O3−TiO2−MgTiO3系の磁器組成物が提案されてきた。
To address these issues, SrTiO 3 −PbTiO 3 −Bi
2 O 3 —TiO 2 —MgTiO 3 based porcelain compositions have been proposed.

また最近では、磁器コンデンサの電極材として、従来
から多用されている銀に代わり、安価な銅やニッケルが
使用されるようになってきた。その中でも銅について
は、銀電極の欠点とされるエレクトロ・マイグレーショ
ンもなく、信頼性も高いことや、比較的安価に電極形成
が可能なことから有望な電極材と考えられている。
Recently, inexpensive copper or nickel has come to be used as an electrode material of a porcelain capacitor instead of silver which has been widely used conventionally. Among them, copper is considered to be a promising electrode material because it has no electro-migration, which is a drawback of silver electrodes, has high reliability, and can be formed at a relatively low cost.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら銅電極の形成には、その酸化防止のた
め、中性または還元性雰囲気中での焼付けが必要である
が、従来まで上記のような磁器誘電体組成物では磁器誘
電体組成物自体が還元性雰囲気によって還元され易く、
所望の特性を得ることができなかった。
However, the formation of the copper electrode requires baking in a neutral or reducing atmosphere in order to prevent its oxidation. Conventionally, however, in the above-mentioned porcelain dielectric composition, the porcelain dielectric composition itself is reduced. Easy to be reduced by sexual atmosphere,
The desired properties could not be obtained.

したがって本発明の目的は、上記問題点を解決するた
め、耐還元性に優れ、高誘電率で誘電率温度特性変化率
が小さく、自己発熱の原因となる誘電体損失の小さい、
銅電極を有する磁器コンデンサを提供する。
Therefore, an object of the present invention is to solve the above problems, excellent reduction resistance, high dielectric constant and small rate of change in dielectric constant temperature characteristics, and small dielectric loss causing self-heating,
A porcelain capacitor having a copper electrode is provided.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するため、本発明者等は鋭意研究の結
果、上記磁器組成物系にMnO、CoO、CeO2の複合添加物を
添加することにより、所望の低損失磁器コンデンサを提
供できることを見出した。
In order to achieve the above-mentioned object, the inventors of the present invention have conducted extensive studies and found that a desired low-loss ceramic capacitor can be provided by adding a composite additive of MnO, CoO, and CeO 2 to the above-mentioned ceramic composition system. It was

即ち、SrTiO3を30.0〜70.0重量%、PbTiO3を0.0〜40.
0重量%、Bi2O3を8.0〜40.0重量%、TiO2を3.0〜20.0重
量%、MgOを1.0〜10.0重量%の配合組成100部に対し、
添加物としてMnOを0.05〜1.0重量%、CoOとCeO2を各々
0.05〜3.0重量%添加する。
That is, 30.0 to 70.0% by weight of SrTiO 3 and 0.0 to 40 of PbTiO 3 .
0 wt%, Bi 2 O 3 8.0 to 40.0 wt%, TiO 2 3.0 to 20.0 wt%, MgO 1.0 to 10.0 wt% to 100 parts of the composition,
0.05 to 1.0 wt% of MnO, CoO and CeO 2 as additives
Add 0.05 to 3.0% by weight.

これにより耐還元性に優れ、温度特性の良い低損失の
磁器誘電体組成物を得ることができ、この対向表面に銅
電極を焼付けることによって、高誘電率で誘電率温度特
性が小さく自己発熱の原因となる誘電体損失の小さい高
信頼性の磁器コンデンサが作製できる。
This makes it possible to obtain a low-loss porcelain dielectric composition with excellent reduction resistance and good temperature characteristics. By baking a copper electrode on this facing surface, a high dielectric constant, low dielectric constant temperature characteristics, and self-heating It is possible to manufacture a highly reliable porcelain capacitor with a small dielectric loss that causes the above.

〔実施例〕〔Example〕

本発明を実施例に基づいて詳細に説明する。 The present invention will be described in detail based on examples.

原料としてSrCO3、TiO2、PbO、Bi2O3、MgCO3及び添加
物が焼結後、第1表の組成比になるように秤量配合し、
ポットミル中で湿式混合する。その後脱水し、900〜100
0℃で仮焼成する。
After sintering SrCO 3 , TiO 2 , PbO, Bi 2 O 3 , MgCO 3 and additives as raw materials, weighed and blended so as to have the composition ratio shown in Table 1,
Wet mix in pot mill. Then dehydrated, 900-100
Pre-baking at 0 ° C.

次いでこれを粉砕し、有機バインダーを加えて造粒し
た後、直径16mm、厚さ0.6mmに加圧成型する。この成型
物を1160〜1260℃の範囲で2時間、空気雰囲気中で焼成
する。このようにして得られた磁器焼結体の両面に銅電
極を焼付けてコンデンサを作製し、測定用試料とする。
Next, this is crushed, an organic binder is added and granulated, and then pressure molding is performed to a diameter of 16 mm and a thickness of 0.6 mm. This molded product is fired in the air atmosphere at a temperature of 1160 to 1260 ° C. for 2 hours. Copper electrodes are baked on both sides of the thus obtained porcelain sintered body to prepare a capacitor, which is used as a measurement sample.

その後、それぞれの試料の誘電率ε、誘電体損失ta
nδ(%)(測定周波数1KHz、100KHz)、誘電率温度特
性変化率ΔC/C(%)、125℃の絶縁抵抗の特性値を測定
し、第1表に示した。
After that, the dielectric constant ε s and the dielectric loss ta of each sample are
The characteristic values of nδ (%) (measurement frequency 1 KHz, 100 KHz), dielectric constant temperature characteristic change rate ΔC / C (%), and insulation resistance at 125 ° C were measured and shown in Table 1.

第1表において、*印をつけた試料No.1、2、3、
4、6、7、8、9、13、14、15、19、21、23、24、2
7、28、30は本発明の範囲外のものである。また第1表
に示す測定値の測定条件は次に示す通りである。
In Table 1, sample numbers marked with * are 1, 2, 3,
4, 6, 7, 8, 9, 13, 14, 15, 19, 21, 23, 24, 2
7, 28 and 30 are outside the scope of the present invention. The measurement conditions for the measured values shown in Table 1 are as follows.

誘電率(ε) :常温1KHz 誘電体損失(tanδ) :常温1KHz、100KHz 誘電率温度特性変化率(ΔC/C):20℃の誘電率を基準に
し、−25℃、+85℃の範囲の変化率 絶縁抵抗 :125℃、500V、1分値 第1表によって明らかな如く、本発明の範囲内の試料
は誘電率が高く、誘電率温度特性変化率が良好であり、
更に1KHz、100KHzの誘電体損失が小さく、高温での絶縁
抵抗が高い。
Dielectric constant (ε s ): Room temperature 1KHz Dielectric loss (tan δ): Room temperature 1KHz, 100KHz Dielectric constant temperature characteristic change rate (ΔC / C): Based on the dielectric constant of 20 ℃, within the range of -25 ℃ and + 85 ℃ Rate of change Insulation resistance: 125 ° C., 500 V, 1 minute value As is clear from Table 1, the samples within the scope of the present invention have a high dielectric constant and a good rate of change in dielectric constant temperature characteristics.
Furthermore, the dielectric loss at 1KHz and 100KHz is small, and the insulation resistance at high temperature is high.

なお、本発明においてそれぞれの成分範囲を前記のよ
うに限定した理由は次の通りである。
The reason why the respective component ranges are limited as described above in the present invention is as follows.

主成分において、SrTiO3が30.0重量%未満では1KHzの
誘電体損失と誘電率温度特性変化率が大きく(例えば第
1表試料No.14参照)、また70.0重量%をこえると、誘
電率が1000以下と小さくなる(例えば前記No.23参
照)。
In the main component, when SrTiO 3 is less than 30.0% by weight, the dielectric loss at 1 KHz and the rate of change in the dielectric constant temperature characteristics are large (see sample No. 14 in Table 1), and when it exceeds 70.0% by weight, the dielectric constant becomes 1000. It becomes smaller as follows (for example, see No. 23 above).

PbTiO3は0.0重量%でも1000以上の誘電率を有する
(例えば前記No.7参照)ものの、40.0重量%をこえる
と、1KHz誘電体損失と誘電率温度特性変化率が大きくな
る(例えば前記No.3参照)。
Although PbTiO 3 has a dielectric constant of 1000 or more even at 0.0% by weight (for example, refer to No. 7 above), when it exceeds 40.0% by weight, the dielectric loss and the rate of change in the dielectric constant temperature characteristics become large at 1 KHz (for example, No. 7 above). See 3).

Bi2O3は40.0重量%をこえると、誘電率が1000以下と
なり(例えば前記No.13参照)、8.0重量%未満では誘電
率温度特性変化率が大きくなる(例えば前記No.8参
照)。
When Bi 2 O 3 exceeds 40.0% by weight, the dielectric constant becomes 1000 or less (for example, refer to No. 13 above), and when it is less than 8.0% by weight, the rate of change in dielectric constant temperature characteristics becomes large (for example, refer to No. 8 above).

TiO2は3.0重量%未満では、1KHz誘電体損失が大きく
なり、(例えば前記No.2参照)、20.0重量%をこえると
誘電率温度特性変化率が大きくなる(例えば前記No.15
参照)。
When TiO 2 is less than 3.0% by weight, 1 KHz dielectric loss becomes large (see, for example, No. 2 above), and when it exceeds 20.0% by weight, the rate of change in dielectric constant temperature characteristics becomes large (for example, No. 15 above).
reference).

MgOは1.0重量%未満では焼けずらく誘電率が1000以下
と小さく(例えば前記No.9参照)、10.0重量%をこえる
と、誘電率が1000以下と小さくなる(例えば前記No.6参
照)。
When MgO is less than 1.0% by weight, it is hard to be burnt and has a low dielectric constant of 1000 or less (see, for example, No. 9).

また、添加物MnOは上記の主組成成分100部に対して1.
0重量%をこえると、誘電率が1000以下と小さくなり
(例えば前記No.21参照)、0.05重量%未満では誘電率
温度特性変化率が大きくなる(例えば前記No.1、19参
照)。
Further, the additive MnO is 1.
When it exceeds 0% by weight, the dielectric constant becomes as low as 1000 or less (for example, see No. 21 above), and when it is less than 0.05% by weight, the rate of change in dielectric constant temperature characteristics becomes large (for example, see Nos. 1 and 19).

また、CoO、CeO2は主組成成分100部に対し、各々0.05
重量%未満では還元性雰囲気中で組成物自体が還元され
にくくなるという添加効果がなくなり、125℃での絶縁
抵抗が低くなり(例えば前記No.1、4、24、26参照)、
3.0重量%をこえると、還元性雰囲気に対する効果は変
わらないが、誘電率が小さくなる(例えば前記No.30参
照)。
CoO and CeO 2 are each 0.05% with respect to 100 parts of the main composition component.
If it is less than 10% by weight, the effect of the addition that the composition itself is less likely to be reduced in a reducing atmosphere is lost, and the insulation resistance at 125 ° C. becomes low (for example, see Nos. 1, 4, 24 and 26 above),
If it exceeds 3.0% by weight, the effect on the reducing atmosphere does not change, but the dielectric constant decreases (for example, see No. 30 above).

添加物としてMnO、CoO、CeO2を添加することによって
銅電極焼付時の還元性雰囲気中で磁器誘電体組成物が影
響をうけにくくなることは次のことからも明らかであ
る。
It is clear from the following that the addition of MnO, CoO or CeO 2 as an additive makes the porcelain dielectric composition less susceptible to the influence in the reducing atmosphere during baking of the copper electrode.

即ち、第3図に窒素雰囲気中での温度別還元実験結果
を示す。第3図によれは、上記の添加物がないと、磁器
誘電体組成物は還元され易く、高温での絶縁抵抗は著し
く低下する(試料No.1参照)。
That is, FIG. 3 shows the results of reduction experiments by temperature in a nitrogen atmosphere. According to FIG. 3, without the above-mentioned additive, the porcelain dielectric composition is easily reduced, and the insulation resistance at high temperature is significantly reduced (see sample No. 1).

CoO、CeO2を複合添加することにより、磁器誘電体組
成物は還元しずらくなり(試料No.19参照)、更にMnOを
添加することにより還元性雰囲気中での高温時の絶縁抵
抗劣化を改善する(試料No.25参照)。これは第1表の1
25℃の絶縁抵抗でも明らかな通り、MnO、CoO、CeO2を複
合添加することにより高温での絶縁抵抗が改善される
(試料No.1、19、25参照)ことを示しており、磁器誘電
体組成物自体が均一かつ高い絶縁力を有し、信頼性に優
れていることを示している。
The combined addition of CoO and CeO 2 makes the porcelain dielectric composition difficult to reduce (see Sample No. 19), and the addition of MnO further deteriorates the insulation resistance at high temperature in a reducing atmosphere. Improve (see Sample No. 25). This is 1 in Table 1
As is clear from the insulation resistance at 25 ° C, it is shown that the combined addition of MnO, CoO, and CeO 2 improves the insulation resistance at high temperatures (see Sample No. 1, 19, 25). It shows that the body composition itself has a uniform and high insulating force and is excellent in reliability.

第1図はMnOを添加混合した時のMnO添加量と誘電率と
誘電率温度特性変化率の関係を示しており、第1表中の
試料No.19(MnOが0.0重量%)、No.25(MnOが0.2重量
%)、No.20(MnOが0.5重量%)、No.21(MnOが1.5重量
%)の場合を示す。これからもMnOを添加量の限定理由
が明らかである。
Fig. 1 shows the relationship between the amount of added MnO, the dielectric constant and the rate of change in the dielectric constant temperature characteristics when MnO was added and mixed. Sample No. 19 (0.0% by weight of MnO) and No. 1 in Table 1 are shown. 25 (MnO 0.2 wt%), No. 20 (MnO 0.5 wt%), No. 21 (MnO 1.5 wt%) are shown. The reason for limiting the amount of MnO added is clear from this as well.

即ち、0.05重量%より少なくなると誘電率温度特性変
化率が急激に大きくなり、1.0重量%をこえると誘電率
が1000以下と小さくなる。
That is, if it is less than 0.05% by weight, the rate of change in the dielectric constant-temperature characteristic rapidly increases, and if it exceeds 1.0% by weight, the permittivity decreases to 1000 or less.

また第2図はMnO添加量と周波数と誘電体損失の関係
を示しており、これからもMnOの添加による誘電体損失
への影響が明らかである。
Further, FIG. 2 shows the relationship between the amount of added MnO, the frequency and the dielectric loss, and the effect of the addition of MnO on the dielectric loss is clear from this.

第2表は第1表の試料No.25の組成の磁器誘電体組成
物を用いて銀電極を設けた銀電極品と本発明の銅電極を
設けた銅電極品の特性を比較したものである。
Table 2 compares the characteristics of the silver electrode product provided with the silver electrode and the copper electrode product provided with the copper electrode of the present invention using the porcelain dielectric composition having the composition of sample No. 25 in Table 1. is there.

コンデンサ自己発熱温度は、印加電圧2000V、f=68K
Hzにおけるもので、製品の表面温度を周囲温度とした状
態での自己発熱温度である。
Self-heating temperature of the capacitor is applied voltage 2000V, f = 68K
In Hz, it is the self-heating temperature when the surface temperature of the product is the ambient temperature.

耐湿負荷試験故障数は、温度60℃、湿度90〜95%とし
印加電圧1500Vにおいて、30個の試料を試験し、4000時
間までに故障した数である。
The number of failures in the moisture resistance load test is the number of failures by 4000 hours when 30 samples were tested at a temperature of 60 ° C and a humidity of 90 to 95% and an applied voltage of 1500V.

第2表から明らかな如く、銀電極を焼付けたものは誘
電率温度特性変化率自己発熱温度、信頼性等従来品に比
べて大幅な特性向上がみられた。
As is clear from Table 2, the baked silver electrode showed significant improvements in characteristics such as the rate of change in dielectric constant-temperature characteristics, self-heating temperature, and reliability, as compared with conventional products.

第4図は本発明の磁器誘電体組成物範囲である第1表
の試料No.25の組成物に対して銀電極を設けたものと銅
電極を設けたものに60HzのAC電圧を印加した時のAC電圧
値と誘電体損失の関係を示すものである。これにより銅
電極の方が電圧依存性が小さく、これからも銅電極品の
メリットが明らかである。
FIG. 4 shows that the composition of sample No. 25 in Table 1 which is the range of the porcelain dielectric composition of the present invention is provided with a silver electrode and a copper electrode, and an AC voltage of 60 Hz is applied to the composition. It shows the relationship between the AC voltage value and the dielectric loss at that time. As a result, the copper electrode has a smaller voltage dependency, and the merit of the copper electrode product is clear from this.

なお、前記実施例の中で出発電料をそれぞれSrTiO3
PbTiO3、MgTiO3、Bi2O3、nTiO2のように、各成分を予め
作成してこれらを配合してもよく、またPbOまたはPb
3O4、CoOはCo3O4、MnOはMnCO3、MgOはMgCO3または他の
化合物でも焼結後、前記の組成になるものであれば同様
の特性が得られる。
In the above examples, the power generation charges are SrTiO 3 ,
Each component may be prepared in advance and blended, such as PbTiO 3 , MgTiO 3 , Bi 2 O 3 , and nTiO 2 , or PbO or Pb
3 O 4 , CoO is Co 3 O 4 , MnO is MnCO 3 , MgO is MgCO 3 or other compounds, and similar properties can be obtained as long as they have the above composition after sintering.

〔発明の効果〕〔The invention's effect〕

本発明によって、SrTiO3−PbTiO3−MgTiO3−Bi2O3−T
iO2系磁器誘電体組成物に新たに添加物としてMnO、Co
O、CeO2を混合することにより、銅電極焼付けの際の還
元性雰囲気にも磁器誘電体組成物が還元されることもな
く、更に銅電極により、高誘電率で誘電率温度特性変化
率を改善し、さらに高周波においての誘電体損失及び誘
電体損失の電圧依存性の小さい高信頼性の磁器コンデン
サが得られる。
The present invention, SrTiO 3 -PbTiO 3 -MgTiO 3 -Bi 2 O 3 -T
New additions to the iO 2 -based porcelain dielectric composition include MnO and Co
By mixing O and CeO 2 , the porcelain dielectric composition is not reduced even in the reducing atmosphere during baking of the copper electrode, and the copper electrode further increases the permittivity-temperature characteristic change rate at a high dielectric constant. It is possible to obtain a highly reliable porcelain capacitor having improved dielectric loss and reduced dielectric loss at high frequencies and voltage dependency of the dielectric loss.

【図面の簡単な説明】[Brief description of the drawings]

第1図は第1表の試料No.19、20、21、25のMnO添加量と
誘電率、誘電率温度特性変化率の関係図、 第2図は第1表の試料No.19、20、21、25のMnO添加量と
誘電体損失の周波数特性の関係図、 第3図は第1表の試料No.1、19、25の窒素雰囲気中の絶
縁抵抗特性図、 第4図は第1表の試料No.25の組成物に対して銀電極と
銅電極を焼付形成した試料の誘電体損失の電圧特性図で
ある。
Fig. 1 is a diagram showing the relationship between the amount of MnO added and the dielectric constant and the change rate of the dielectric constant temperature characteristics of sample Nos. 19, 20, 21, and 25 in Table 1, and Fig. 2 is the sample Nos. 19 and 20 in Table 1. , 21 and 25 relationship diagram of frequency characteristics of MnO addition amount and dielectric loss, Fig. 3 is insulation resistance characteristic diagram of sample No. 1, 19 and 25 in Table 1 in nitrogen atmosphere, and Fig. 4 is It is a voltage characteristic view of the dielectric loss of the sample which baked and formed the silver electrode and the copper electrode with respect to the composition of sample No. 25 of Table 1.

フロントページの続き (72)発明者 藤原 忍 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (72)発明者 丸野 哲司 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 平2−123720(JP,A) 特開 平2−222127(JP,A) 特開 昭60−189107(JP,A)Front page continuation (72) Inventor Shinobu Fujiwara 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation (72) Inventor Tetsuji Maruno 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation (56) References JP-A-2-123720 (JP, A) JP-A-2-222127 (JP, A) JP-A-60-189107 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SrTiO3 30.0〜70.0重量% PbTiO3 0.0〜40.0重量% Bi2O3 8.0〜40.0重量% TiO2 3.0〜20.0重量% MgO 1.0〜10.0重量% 上記配合組成100部に対して添加物MnOを0.05〜1.0重量
%、CoO、CeO2を各々0.05〜3.0重量%添加混合した磁器
組成物の対向表面に、銅を主体とする焼付電極を形成す
ることを特徴とする低損失磁器コンデンサ。
1. SrTiO 3 30.0 to 70.0% by weight PbTiO 3 0.0 to 40.0% by weight Bi 2 O 3 8.0 to 40.0% by weight TiO 2 3.0 to 20.0% by weight MgO 1.0 to 10.0% by weight Added to 100 parts by weight of the above composition. MnO 0.05-1.0% by weight, CoO, CeO 2 0.05-3.0% by weight, respectively, and mixed on the opposing surfaces of the porcelain composition, a low loss porcelain capacitor characterized by forming a baking electrode mainly composed of copper. .
JP3331790A 1990-02-14 1990-02-14 Low loss porcelain capacitor Expired - Lifetime JP2693249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331790A JP2693249B2 (en) 1990-02-14 1990-02-14 Low loss porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331790A JP2693249B2 (en) 1990-02-14 1990-02-14 Low loss porcelain capacitor

Publications (2)

Publication Number Publication Date
JPH03236211A JPH03236211A (en) 1991-10-22
JP2693249B2 true JP2693249B2 (en) 1997-12-24

Family

ID=12383182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331790A Expired - Lifetime JP2693249B2 (en) 1990-02-14 1990-02-14 Low loss porcelain capacitor

Country Status (1)

Country Link
JP (1) JP2693249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061508B1 (en) * 2013-09-05 2020-01-02 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same

Also Published As

Publication number Publication date
JPH03236211A (en) 1991-10-22

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
KR0161348B1 (en) Non-reduced dielectric ceramic compositions
JP2004238251A (en) Dielectric ceramic composition and ceramic electronic component
JP2693249B2 (en) Low loss porcelain capacitor
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS6256361A (en) Dielectric ceramic composition
JPH0670944B2 (en) Low loss porcelain capacitor
JP3064518B2 (en) Dielectric porcelain composition
JPS6048895B2 (en) Grain boundary insulated semiconductor porcelain capacitor
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JPH05846B2 (en)
JP3064519B2 (en) Dielectric porcelain composition
JPH04363012A (en) Ceramic capacitor
JPH04368709A (en) Nonreducing dielectric porcelain composition material
JPS6248368B2 (en)
JP2822720B2 (en) Dielectric porcelain composition
JPS6211443B2 (en)
JPH0332009A (en) Capacitor and manufacture thereof
JPS6133251B2 (en)
JPH08183658A (en) Dielectric porcelain composition
JPH0818865B2 (en) Barium titanate-based semiconductor porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080905

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090905

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13