JPH0154620B2 - - Google Patents

Info

Publication number
JPH0154620B2
JPH0154620B2 JP56116909A JP11690981A JPH0154620B2 JP H0154620 B2 JPH0154620 B2 JP H0154620B2 JP 56116909 A JP56116909 A JP 56116909A JP 11690981 A JP11690981 A JP 11690981A JP H0154620 B2 JPH0154620 B2 JP H0154620B2
Authority
JP
Japan
Prior art keywords
capacity
temperature
compressor
cooling
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56116909A
Other languages
Japanese (ja)
Other versions
JPS5818047A (en
Inventor
Hiroya Kono
Atsushi Hasegawa
Hisao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP56116909A priority Critical patent/JPS5818047A/en
Publication of JPS5818047A publication Critical patent/JPS5818047A/en
Publication of JPH0154620B2 publication Critical patent/JPH0154620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は負荷状況に応じて稼働容量を変えるこ
とができる特に車両空調用に好適な可変容量圧縮
機の運転制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a variable capacity compressor, which is particularly suitable for vehicle air conditioning, and is capable of changing its working capacity depending on load conditions.

従来、車両用冷房装置における可変容量圧縮機
の運転制御方法として、ダクト内に配設したエバ
ポレータにより熱交換を終えて圧縮機に吸入され
る冷媒ガスの圧力、すなわち吸入ガス圧力を圧力
センサにより検出し、運転時間の経過とともに前
記吸入ガス圧力が降下して設定値以下になると、
制御器から圧縮機の容量切換え機構へ容量ダウン
信号を出力するようにしたものがあつた。(同一
出願人による特開昭55−160187号) ところが、前述した制御方法には、容量制御域
が限られているため、除湿等小容量でも冷房能力
が過剰のときは、ダンパを開いてヒータによる加
熱量を多くして冷し過ぎを加熱するという余分な
仕事をし、動力損失を大きくするという欠陥があ
つた。
Conventionally, as a method for controlling the operation of a variable capacity compressor in a vehicle cooling system, a pressure sensor detects the pressure of refrigerant gas that is sucked into the compressor after heat exchange by an evaporator installed in a duct, that is, the suction gas pressure. However, if the suction gas pressure falls below the set value as the operating time passes,
There was one in which a capacity down signal was output from the controller to the capacity switching mechanism of the compressor. (Japanese Patent Application Laid-open No. 55-160187 by the same applicant) However, the above-mentioned control method has a limited capacity control range, so when the cooling capacity is excessive even with a small capacity such as dehumidification, the damper is opened and the heater is turned off. The defect was that the amount of heating by the engine was increased, which caused extra work to be done to heat up an area that was too cold, increasing power loss.

又、最近出願人は車室温度が設定値になつたと
き容量切換えを行うようにした制御方法を提案し
ているが、前述した動力損失が大きくなるほか、
エパポレータの温度と無関係に制御されるので、
エバポレータのフロスト(霜付き)が生じる危険
性があつた。
In addition, the applicant has recently proposed a control method in which the capacity is switched when the cabin temperature reaches a set value, but in addition to increasing the power loss mentioned above,
Since it is controlled independently of the evaporator temperature,
There was a risk of frost forming on the evaporator.

本発明の目的は、冷房負荷が大きいときにはエ
バポレータの出口空気温度、ヒータ等の加熱手段
により加熱されてダクトの吹出口から吹き出され
る吹出空気温度と前記出口空気温度の温度差又は
冷房室内空気温度と設定冷房室温度との温度差の
いずれか一つが設定値になつたとき、圧縮機の容
量を冷房能力の高い大容量域で切換制御し、冷房
負荷が小さいときには、吸入ガス圧力、吸入ガス
温度、吸入ガスの過熱度、吐出ガスの過熱度又は
前記出口空気温度のいずれか一つが設定値になつ
たとき、圧縮機の容量を冷房能力の低い小容量域
で切換制御することにより、冷房負荷に応じて圧
縮機を効率的に運転して動力損失を軽減すること
ができとともに、エバポレータのフロストを防止
することができ、さらにダンパの調節回数を少な
くすることができる冷房装置おける可変容量圧縮
機の運転制御方法を提供することにある。
The purpose of the present invention is to reduce the temperature difference between the outlet air temperature of the evaporator, the temperature of the outlet air heated by a heating means such as a heater, and the outlet air temperature when the cooling load is large, or the temperature of the air in the cooling room. When one of the temperature differences between the temperature and the set cooling room temperature reaches the set value, the compressor capacity is switched and controlled in a large capacity range with high cooling capacity, and when the cooling load is small, the suction gas pressure and suction gas When any one of the temperature, the degree of superheating of the suction gas, the degree of superheating of the discharged gas, or the outlet air temperature reaches a set value, the capacity of the compressor is switched and controlled in a small capacity range with low cooling capacity. Variable capacity compression in air conditioners allows the compressor to be operated efficiently according to the load to reduce power loss, prevent evaporator frosting, and reduce the number of damper adjustments. The purpose of this invention is to provide a method for controlling the operation of a machine.

以下、本発明を車両空調用可変容量圧縮機の運
転制御方法に具体化した第一〜第四実施例を図面
について説明する。
Hereinafter, first to fourth embodiments in which the present invention is embodied as an operation control method for a variable capacity compressor for vehicle air conditioning will be described with reference to the drawings.

まず、各実施例の制御方法に使用される車両冷
房装置の概要を第1図について総括的に説明する
と、図中1はエンジン、2はこのエンジン1によ
り、駆動される可変容量圧縮機であつて、この実
施例では稼動容量を四段階以上無段階(例えば、
大容量域で二段階、小容量域で二段階)に容量切
換えを行なうことができる圧縮機を用いている。
First, a general overview of the vehicle cooling system used in the control method of each embodiment will be explained with reference to FIG. Therefore, in this embodiment, the operating capacity is set in four or more stages (for example,
The compressor uses a compressor that can switch capacity (two stages in a large capacity area and two stages in a small capacity area).

前記圧縮機2の吐出フランジ4と吸入フランジ
5には、冷凍サイクルを構成するコンデンサ6、
レシーバ7、エキスパンシヨンバルブ8及びエバ
ポレータ9が直列に接続されている。
At the discharge flange 4 and suction flange 5 of the compressor 2, a condenser 6, which constitutes a refrigeration cycle, is installed.
A receiver 7, an expansion valve 8 and an evaporator 9 are connected in series.

一方、ダクト10内には、フアン11、前記エ
バポレータ9、ダンパ12及びエンジン1の冷却
水を利用したヒータ13が順次配設され、前記ダ
ンパ12を回動調節することによりダクト10の
吹出口14から吹き出される空気の温度を所望温
度に調節可能である。
On the other hand, inside the duct 10, a fan 11, the evaporator 9, a damper 12, and a heater 13 using the cooling water of the engine 1 are sequentially arranged. The temperature of the air blown out can be adjusted to a desired temperature.

前記エバポレータ9とダンパ12の間、すなわ
ちエバポレータ9の出口には、そこを通過する空
気の温度(以下エバポレータの出口空気温度Te
又は単に出口温度Teという)を検出する温度セ
ンサ15が配設されている。この温度センサ15
と前記容量切換機構3との間には、制御器16が
接続されていて、本実施例ではこの制御器16の
温度比較判別回路(図示略)により予め定められ
た設定温度Te2(例えば5℃)と温度センサ1
5により検出されたエバポレータ9の出口空気温
度Teとを比較判別し、この出口温度Teが前記設
定値Te2になつたとき、前記制御器16の動作
回路(図示略)から前記容量切換機構3に対し大
容量域で容量ダウン信号を出力し、反対に前記出
口温度Teが前記設定値Te2よりも高い設定値Te
1(例えば10℃)となつたとき、容量切換機構3
に対し、大容量域で容量アツプ信号を出力するよ
うにしている。
Between the evaporator 9 and the damper 12, that is, at the outlet of the evaporator 9, the temperature of the air passing there (hereinafter referred to as the evaporator outlet air temperature Te)
A temperature sensor 15 is provided to detect the outlet temperature Te. This temperature sensor 15
A controller 16 is connected between the controller 16 and the capacity switching mechanism 3, and in this embodiment, a temperature comparison/discrimination circuit (not shown) of the controller 16 sets a predetermined set temperature Te2 (for example, 5° C. ) and temperature sensor 1
When the outlet air temperature Te of the evaporator 9 detected by 5 is compared with the outlet air temperature Te of the evaporator 9, and when the outlet temperature Te reaches the set value Te2, an operation circuit (not shown) of the controller 16 sends a signal to the capacity switching mechanism 3. On the other hand, a capacity down signal is output in a large capacity area, and conversely, the outlet temperature Te is a set value Te higher than the set value Te2.
1 (for example, 10℃), the capacity switching mechanism 3
In contrast, a capacity up signal is output in the large capacity area.

前記ダクト10の吹出口14内にはそこを通過
する空気の温度(以下ダクトの吹出空気温度Tf
又は単に吹出温度Tfという)を検出する温度セ
ンサ17が配置されており、この温度センサ17
により検出された信号は前記制御器16に入力さ
れ、この制御器の比較判別回路により吹出空気温
度Tfと前記出口空気温度Teの温度差△Tfeと、
予め定めた設定温度差△Tfe2(例えば5℃)と
を比較判別し、温度差△Tfeが設定値△Tfe2に
なつたとき、制御器16から大容量域で容量ダウ
ン信号を出力し、反対に前記設定値△Tfe2より
も小さい設定値△Tfe1(例えば3℃)になつた
とき、大容量域で容量アツプ信号を出力するよう
にしている。
The temperature of the air passing through the outlet 14 of the duct 10 (hereinafter referred to as the duct outlet air temperature Tf
A temperature sensor 17 is arranged to detect the temperature (or simply referred to as the blowout temperature Tf), and this temperature sensor 17
The signal detected by
A predetermined set temperature difference △Tfe2 (for example, 5°C) is compared and determined, and when the temperature difference △Tfe reaches the set value △Tfe2, the controller 16 outputs a capacity down signal in the large capacity area, and vice versa. When the set value ΔTfe1 (for example, 3° C.) is smaller than the set value ΔTfe2, a capacity up signal is output in the large capacity region.

一方、車室内の直射日光、風等のあたらない適
当箇所には、車室内空気温度Tr(以下単に車室温
度Trという)を検出するための温度センサ18
が配設されており、この温度センサ18により検
出された信号は前記制御器16に入力され、同制
御器の比較判別回路により予め設定された設定車
室温度Tc(例えば25℃)との温度差△Trcが設定
温度差△Trc2(例えば2℃)になつたとき、制
御器16から大容量域で容量ダウン信号を出力
し、反対に前記設定値△Trc2よりも大きい設定
値△Trc1(例えば5℃)になつたとき、大容量
域で容量アツプ信号を出力するようにしている。
On the other hand, a temperature sensor 18 for detecting the cabin air temperature Tr (hereinafter simply referred to as cabin temperature Tr) is installed at an appropriate location in the cabin that is not exposed to direct sunlight, wind, etc.
The signal detected by this temperature sensor 18 is input to the controller 16, and the comparison circuit of the controller compares the temperature with the preset cabin temperature Tc (for example, 25°C). When the difference △Trc reaches the set temperature difference △Trc2 (for example, 2°C), the controller 16 outputs a capacity down signal in the large capacity range, and conversely, the set value △Trc1 (for example, 5°C), a capacity up signal is output in the large capacity range.

又、前記エバポレータ9と吸入フランジ5を結
ぶ管路の途中には、圧縮機へ吸入されるガスの圧
力及び温度を検出する圧力センサ19と温度セン
サ20が設けられている。この圧力センサ19に
より検出された吸入ガス圧力Psは、前記制御器
16に入力され同圧力Psが制御器16の比較判
別回路により予め設定された設定圧力Ps2(例
えば0.5Kg/cm)になると、制御器16から小容
量域で容量ダウン信号を出力し、反対に前記設定
値Ps2よりも大きい設定値Ps1(例えば3Kg/
cm)になると、小容量域で容量アツプ信号を出力
するようにしている。同様にして温度センサ20
により検出された吸入ガス温度Tsが設定温度Ts
2(例えば0℃)になると、制御器16から小容
量で容量ダウン信号を出力し、反対に前記設定値
Ts2よりも大きい設定値Ts1(例えば10℃)に
なると、小容量域で容量アツプ信号を出力するよ
うにしている。
Furthermore, a pressure sensor 19 and a temperature sensor 20 are provided in the middle of the pipe connecting the evaporator 9 and the suction flange 5 to detect the pressure and temperature of the gas sucked into the compressor. The suction gas pressure Ps detected by the pressure sensor 19 is input to the controller 16, and when the same pressure Ps reaches a set pressure Ps2 (for example, 0.5 Kg/cm) preset by the comparison/discrimination circuit of the controller 16, The controller 16 outputs a capacity down signal in the small capacity area, and conversely outputs a set value Ps1 larger than the set value Ps2 (for example, 3Kg/
cm), a capacity up signal is output in the small capacity range. Similarly, the temperature sensor 20
The intake gas temperature Ts detected by is the set temperature Ts
2 (for example, 0°C), the controller 16 outputs a small capacity down signal, and conversely, the set value
When the set value Ts1 (for example, 10° C.) is greater than Ts2, a capacitance up signal is output in the small capacitance region.

さらに、前記制御器16は前記吸入ガス温度
Ts及び吸入ガス圧力Psによつて決定されるモリ
エル(P−i)線図における吸入状態点の過熱度
Tshが、予め制御器16により記憶された設定過
熱度Tsh2(例えば5℃)になつたとき、制御器
16から小容量域で容量ダウン信号を出力し、反
対に前記設定値Tsh2よりも大きい設定値Tsh1
(例えば15℃)になつたとき、小容量域で容量ア
ツプ信号を出力する機能を有している。さらに、
制御器16には前述した吸入状態の過熱度Tshと
同様に吐出フランジ4とコンデンサ6を結ぶ管路
に接続した圧力・温度センサ(図示略)によつて
検出された吐出ガス圧力Pd、温度Tdにより決定
される吐出状態点の過熱度Tdhが設定値Tdh2,
Tdh1になつたとき、小容量域で容量ダウン(ア
ツプ)信号を出力する機能を有している。
Furthermore, the controller 16 controls the suction gas temperature.
Degree of superheating at the suction state point in the Mollier (P-i) diagram determined by Ts and suction gas pressure Ps
When Tsh reaches the set superheat degree Tsh2 (for example, 5°C) stored in advance by the controller 16, the controller 16 outputs a capacity down signal in the small capacity range, and conversely, the set value Tsh2 is set higher than the set value Tsh2. Value Tsh1
(for example, 15°C), it has a function to output a capacity up signal in a small capacity range. moreover,
The controller 16 stores the discharge gas pressure Pd and temperature Td detected by a pressure/temperature sensor (not shown) connected to the pipe connecting the discharge flange 4 and the condenser 6, as well as the superheat degree Tsh in the suction state described above. The degree of superheating Tdh at the discharge state point determined by is the set value Tdh2,
It has a function to output a capacity down (up) signal in a small capacity area when Tdh1.

次に、前記のように構成した車両用冷房装置を
もとに本発明の制御方法の第一実施例を第2図に
ついて説明する。
Next, a first embodiment of the control method of the present invention will be described with reference to FIG. 2 based on the vehicle cooling system configured as described above.

この実施例は前記出口温度Teと、吸入ガス圧
力Psが予め定められた設定値になつたと制御器
16により判断された場合を示しており、具体的
には冷房負荷が大きいときには出口温度Teと設
定値Te1,Te2により圧縮機を大容量域で交互
に切換制御し、冷房負荷が小さいときには、吸入
ガス圧力Psと設定値Ps1,Ps2により圧縮機を
小容量域で切換制御するようにしている。
This embodiment shows a case where the controller 16 determines that the outlet temperature Te and the suction gas pressure Ps have reached predetermined set values. Specifically, when the cooling load is large, the outlet temperature Te and The compressor is switched and controlled alternately in a large capacity range using set values Te1 and Te2, and when the cooling load is small, the compressor is switched and controlled in a small capacity range using the suction gas pressure Ps and set values Ps1 and Ps2. .

今、冷房装置の起動スイツチ(図示略)により
電磁クラツチがONされると、圧縮機は全容量で
駆動される。吐出フランジ4から吐出された圧縮
冷媒ガスはコンデンサ6、レシーバ7及びエキス
パンシヨンバルブ8を経てエバポレータ9へと送
られ、ここでフアン11により強制移送される空
気によつて熱交換された後、吸入フランジ5から
圧縮機内に吸い込まれる。エバポレータ9の出口
温度Teは、運転時間hの経過に従つて次第に低
くなつていくが、クラツチがONされて圧縮機が
100%稼動されてからしばらくの間は、車室内の
温度がまだ高いため冷房負荷が大きく熱交換が効
率的に行なわれて出口温度Teは急激に降下する。
その後、運転時間の経過にともなつて車室内温度
が低下し熱交換効率が低下してくると出口温度
Teの下降も緩やかになつていき、同出口温度Te
が設定値Te2になると、制御器16から容量ダ
ウン信号が出力されて容量切換機構3により圧縮
機が大容量域で容量ダウンされる。
Now, when the electromagnetic clutch is turned on by a start switch (not shown) of the air conditioner, the compressor is driven at full capacity. The compressed refrigerant gas discharged from the discharge flange 4 is sent to the evaporator 9 via the condenser 6, the receiver 7 and the expansion valve 8, where it is heat exchanged with the air forcibly transferred by the fan 11. It is sucked into the compressor through the suction flange 5. The outlet temperature Te of the evaporator 9 gradually decreases as the operating time h passes, but when the clutch is turned on, the compressor
For a while after 100% operation, the temperature inside the vehicle is still high, so the cooling load is large and heat exchange is performed efficiently, causing the outlet temperature Te to drop rapidly.
After that, as the operating time passes, the temperature inside the vehicle decreases and the heat exchange efficiency decreases, and the outlet temperature increases.
The decline in Te also becomes gradual, and the same exit temperature Te
When it reaches the set value Te2, the controller 16 outputs a capacity down signal, and the capacity switching mechanism 3 reduces the capacity of the compressor in the large capacity range.

こうして容量ダウンしても圧縮機の冷房能力が
やや大きい場合には、出口温度Te及び吸入ガス
圧力Psが第2図実線で示すように緩やかに降下
していき、圧力Psが設定値Ps2になると制御器
16から小容量で容量ダウン信号が出力されて圧
縮機が最小容量で運転される。その後、車室温度
が上昇して出口温度Te及び吸入ガス圧力Psが上
昇し、この圧力Psが設定値Ps1になると小容量
域で容量アツプされるが、出口温度Teは設定値
Te1よりも低いので圧縮機は小容量域の容量ア
ツプ状態で稼動され、それ以降は、設定値Ps2,
Ps1によつて小容量域での容量アツプ・ダウン
が交互に行なわれる。
Even if the capacity is reduced in this way, if the cooling capacity of the compressor is somewhat large, the outlet temperature Te and the suction gas pressure Ps will gradually drop as shown by the solid line in Figure 2, and when the pressure Ps reaches the set value Ps2. A capacity down signal is output from the controller 16 at a small capacity, and the compressor is operated at the minimum capacity. After that, the cabin temperature rises and the outlet temperature Te and intake gas pressure Ps rise, and when this pressure Ps reaches the set value Ps1, the capacity is increased in the small capacity range, but the outlet temperature Te remains at the set value.
Since it is lower than Te1, the compressor is operated in the capacity up state in the small capacity range, and after that, the set value Ps2,
Ps1 alternately raises and lowers the capacity in the small capacity area.

反対に、圧縮機が小容量域の容量アツプ状態で
冷房能力が不足する場合には、第2図二点鎖線で
示すように出口温度Te、吸入圧力Psが上昇し、
温度Teが設定値Te1になると制御器16から容
量アツプ信号が出力され、大容量域の容量ダウン
状態に切換制御される。その後、設定値Te2,
Te1により大容量域での容量切換えが交互に行
なわれる。
On the other hand, if the compressor is in a capacity-up state in the small capacity range and the cooling capacity is insufficient, the outlet temperature Te and suction pressure Ps will rise, as shown by the two-dot chain line in Figure 2.
When the temperature Te reaches the set value Te1, a capacity up signal is output from the controller 16, and switching control is performed to a capacity down state in the large capacity range. After that, the set value Te2,
Capacity switching in the large capacity area is performed alternately by Te1.

このように本発明第一実施例においては、冷房
負荷が小さいときには吸入圧力Ps及び設定値Ps
1,Ps2によつて圧縮機を小容量域で交互に容
量切換制御するようにしたので、冷し過ぎを過熱
するという余分な仕事を少なくして圧縮機を効率
のよい状態で運転し、動力損失を少なくすること
ができ、又、エバポレータ9を通る吸入ガス圧力
Psを検出するようにしているので、エバポレー
タが0℃以下になる前に圧縮機の容量を最小にし
てフロストを防止することができる。
In this way, in the first embodiment of the present invention, when the cooling load is small, the suction pressure Ps and the set value Ps
1. Ps2 is used to control the capacity of the compressor alternately in the small capacity range, so the extra work of overheating the cold is reduced, the compressor is operated in an efficient state, and the power is increased. Loss can be reduced, and the suction gas pressure passing through the evaporator 9 can be reduced.
Since Ps is detected, the capacity of the compressor can be minimized to prevent frosting before the temperature of the evaporator drops below 0°C.

さらに、車室温度が搭乗者に適した温度になり
冷房負荷が小さくなつてからは冷え過ぎを防止す
るためにダンパ12が回動されてヒータ13によ
る加熱量を多くするが、このとき本発明では出口
温度Teと無関係に吸入ガス圧力Psにより圧縮機
を小容量域で切換制御することにより、出口温度
Teを前記設定値Te2よりも高くして吹出温度Tf
と出口温度Teの温度差△Tfeを小さくでき、従
つて、それだけダンパの調節による車室温度の調
節が行ない易く、ダンパ調節回数を少なくするこ
とができる。
Further, after the cabin temperature reaches a temperature suitable for the passengers and the cooling load becomes small, the damper 12 is rotated to increase the amount of heating by the heater 13 in order to prevent excessive cooling. In this case, the outlet temperature can be controlled by switching the compressor in a small capacity range using the suction gas pressure Ps, regardless of the outlet temperature Te.
The blowout temperature Tf is set by setting Te higher than the set value Te2.
The temperature difference ΔTfe between the output temperature Te and the outlet temperature Te can be made smaller, and therefore, it is easier to adjust the cabin temperature by adjusting the damper, and the number of times the damper needs to be adjusted can be reduced.

なお、この第一実施例においては、ガス不足状
態の場合エバポレータの冷房能力が低下して出口
温度Teが設定値Te2よりも高く大容量運転とな
つているため、吸入ガス圧力Psの下がり方が著
しく、この結果同圧力Psの異常降下を検出する
ことにより、ガス不足を検出し易いという利点も
ある。このことは、吸入ガス圧力Psと吸入ガス
温度Tsによつて決定される吸入ガスの過熱度
Tshにより圧縮機を小容量域で切換制御するよう
にした後述する第四実施例についてもいえること
で、この場合には過熱度Tshの異常上昇を検出す
ることによりガス不足を知ることができる。
In this first embodiment, in the case of gas shortage, the cooling capacity of the evaporator is reduced and the outlet temperature Te is higher than the set value Te2, resulting in large capacity operation, so the way the suction gas pressure Ps decreases is As a result, there is an advantage that gas shortage can be easily detected by detecting an abnormal drop in the same pressure Ps. This means that the degree of superheating of the suction gas is determined by the suction gas pressure Ps and the suction gas temperature Ts.
This also applies to the fourth embodiment described later in which the compressor is switched and controlled in a small capacity range using Tsh, and in this case, gas shortage can be detected by detecting an abnormal increase in the degree of superheat Tsh.

次に、本発明の制御方法の第二実施例を第3図
を中心に説明する。
Next, a second embodiment of the control method of the present invention will be described with reference to FIG.

この実施例は吹出温度Tfと出口温度Teの温度
差△Tfeと、吸入ガス温度Tsが予め設定された設
定値になつたと制御器16により判断された場合
を示しており、具体的には冷房負荷が大きいとき
には吹出温度Tfと出口温度Teの温度差△Tfe及
び設定値△Tfe1,△Tfe2によつて圧縮機を大
容量域で容量切換制御し、冷房負荷が小さいとき
には吸入ガス温度Ts及び設定値Ts1,Ts2によ
つて小容量域で容量切換制御するようにしてい
る。冷房負荷の大きい運転初期ではダンパ12が
閉じられているので、前記温度差△Tfeが小さ
く、又吸入温度Tsも高いために圧縮機は大容量
域の容量アツプ状態で運転される。冷房が進んで
車室温度が適温になると、冷え過ぎを防止するた
めダンパ12を開いて一部の空気をヒータ13で
過熱して吹出温度Tfを上昇させる。すると、温
度差△Tfeが大きくなり、これが設定値△Tfe2
になると圧縮機が大容量域の容量ダウン状態に切
換えられ、冷房能力が低下する。
This embodiment shows a case where the controller 16 determines that the temperature difference △Tfe between the outlet temperature Tf and the outlet temperature Te and the suction gas temperature Ts have reached preset values. When the load is large, the compressor is controlled to switch capacity in a large capacity range using the temperature difference △Tfe between the outlet temperature Tf and the outlet temperature Te and the set values △Tfe1, △Tfe2, and when the cooling load is small, the intake gas temperature Ts and the setting are controlled. The values Ts1 and Ts2 are used to control capacity switching in a small capacity range. Since the damper 12 is closed at the beginning of operation when the cooling load is large, the temperature difference ΔTfe is small, and the suction temperature Ts is also high, so the compressor is operated in an increased capacity state in the large capacity range. When cooling progresses and the cabin temperature reaches an appropriate temperature, the damper 12 is opened to prevent excessive cooling, and a portion of the air is heated by the heater 13 to raise the blowout temperature Tf. Then, the temperature difference △Tfe increases, and this becomes the set value △Tfe2
When this happens, the compressor is switched to a reduced capacity state in the large capacity range, and the cooling capacity is reduced.

圧縮機が大容量域の容量ダウン状態に切換られ
ても冷房能力がやや過剰の場合は、第3図実線で
示すように吸入温度Tsが降下し、この温度Tsが
設定値Ts2になると、制御器16から小容量域
での容量ダウン状態へ切換える信号が出力され圧
縮機が最小容量で運転される。その後、吸入温度
Tsが上昇して設定値Ts1になると、制御器16
から小容量域で容量アツプ信号が出力されるが、
温度差△Tfeが設定値△Tfe1になつていないの
で、圧縮機は小容量域の容量アツプ状態で運転さ
れる。以下同様にして設定値Ts1,Ts2により
圧縮機の小容量域での容量切換制御が交互に行わ
れる。
If the cooling capacity is slightly excessive even when the compressor is switched to the capacity down state in the large capacity range, the suction temperature Ts will drop as shown by the solid line in Figure 3, and when this temperature Ts reaches the set value Ts2, the control will start. The compressor 16 outputs a signal for switching to a capacity down state in the small capacity region, and the compressor is operated at the minimum capacity. Then the suction temperature
When Ts increases to the set value Ts1, the controller 16
A capacity up signal is output in the small capacity area, but
Since the temperature difference ΔTfe has not reached the set value ΔTfe1, the compressor is operated in a capacity-up state in the small capacity range. Thereafter, similarly, the capacity switching control in the small capacity region of the compressor is performed alternately using the set values Ts1 and Ts2.

反対に、圧縮機が小容量域で容量アツプされた
が、これでは冷房能力が不足するときには、第3
図二点鎖線で示すように出口温度Teが上昇して
温度差△Tfeが小さくなつていき、△Tfeが設定
値△Tfe1になると制御器16から容量アツプ信
号が出力され、圧縮機は大容量域の容量アツプ状
態に切換えられる。以下同様に設定値△Tfe2,
△Tfe1により大容量域で容量切換えが交互に行
なわれる。
On the other hand, the capacity of the compressor has been increased in the small capacity range, but when the cooling capacity is insufficient, the third
As shown by the two-dot chain line in the figure, the outlet temperature Te increases and the temperature difference △Tfe becomes smaller. When △Tfe reaches the set value △Tfe1, a capacity up signal is output from the controller 16, and the compressor has a large capacity. The area is switched to capacity up state. Similarly, the setting value △Tfe2,
Capacity switching is performed alternately in the large capacity region by ΔTfe1.

このように本発明第二実施例においては、冷房
負荷が小さいときには吸入温度Ts及び設定値Ts
2,Ts1により圧縮機を小容量域で容量切換制
御するようにしたので、前記第一実施例のように
動力損失を少なくすることができるとともに、ダ
ンパの調節回数を減らすことができ、さらにエバ
ポレータのフロストを防止することができる。
In this way, in the second embodiment of the present invention, when the cooling load is small, the suction temperature Ts and the set value Ts
2. Since the capacity of the compressor is controlled by Ts1 in a small capacity range, power loss can be reduced as in the first embodiment, the number of damper adjustments can be reduced, and the evaporator can prevent frosting.

次に、本発明制御方法の第三実施例を第4図に
ついて説明する。
Next, a third embodiment of the control method of the present invention will be described with reference to FIG.

この実施例は車室温度Trと設定温度Tcの温度
△Trcによつて圧縮機を大容量域で容量切換制御
を行ない、吸入ガス温度Tsによつて圧縮機を小
容量域で容量切換制御するようにしており、前記
温度差△Trcが大きい冷房初期には圧縮機は全容
量で運転され、冷房が進んで温度差△Trcが小さ
くなり設定値△Trc2以下になると、制御器16
から大容量域での容量ダウン信号が出力され、圧
縮機が大容量域の容量ダウン状態で運転される。
この状態で冷房能力がやや大きいときには、第4
図実線で示すように車室温度Tr及び吸入ガス温
度Tsは次第に降下していき、吸入ガス温度Tsが
設定値Ts2になると制御器16から小容量域で
の容量ダウン状態へ切換信号が出力され圧縮機が
最小容量で運転される。その後吸入ガス温度Ts
が上昇して設定値Ts1になると温度差△Trcが
設定値△Trc1になつていないため、圧縮機が小
容量域の容量アツプ状態で稼働され、以後設定値
Ts1,Ts2により小容量域での容量切換制御が
交互に行われる。
In this embodiment, the capacity switching of the compressor is controlled in a large capacity range based on the temperature △Trc of the cabin temperature Tr and the set temperature Tc, and the capacity switching of the compressor is controlled in a small capacity range based on the intake gas temperature Ts. The compressor is operated at full capacity in the early stages of cooling when the temperature difference △Trc is large, and when the temperature difference △Trc becomes smaller and becomes less than the set value △Trc2 as the cooling progresses, the controller 16
A capacity down signal in the large capacity area is output from the compressor, and the compressor is operated in a capacity down state in the large capacity area.
In this state, if the cooling capacity is slightly large, the fourth
As shown by the solid line in the diagram, the cabin temperature Tr and the intake gas temperature Ts gradually decrease, and when the intake gas temperature Ts reaches the set value Ts2, the controller 16 outputs a switching signal to the capacity down state in the small capacity range. The compressor is operated at minimum capacity. Then the suction gas temperature Ts
increases and reaches the set value Ts1, the temperature difference △Trc has not reached the set value △Trc1, so the compressor is operated in a capacity-up state in the small capacity range, and from then on the set value
Capacity switching control in the small capacity region is performed alternately by Ts1 and Ts2.

反対に、車室温度TRが低下して圧縮機が小容
量域の容量アツプ状態で冷房能力が不足する場合
は、第4図二点鎖線で示すように車室温度Trが
次第に上昇して温度差△Trcが設定値△Trc1に
なると圧縮機が大容量域での容量アツプ状態に切
換えられ、以後、吸入ガス温度Tsと無関係に設
定値△Trc1,△Trc2によつて大容量域で容量
切換えが交互に行なわれる。
On the other hand, if the cabin temperature TR decreases and the compressor is in a capacity-up state in the small capacity range and the cooling capacity is insufficient, the cabin temperature Tr will gradually rise and the temperature will decrease as shown by the two-dot chain line in Figure 4. When the difference △Trc reaches the set value △Trc1, the compressor is switched to the capacity up state in the large capacity range, and thereafter, the capacity is switched in the large capacity range by the set values △Trc1 and △Trc2, regardless of the suction gas temperature Ts. are performed alternately.

この第三実施例は車室温度Trと、吸入ガス温
度Tsが予め設定された設定値になつたと制御器
16により判断された場合を示しており、具体的
には車室温度Trと設定温度Tcの温度差△Trcに
よつて大容量域で容量のダウン・アツプ制御を行
い、一方吸入ガス温度Tsによつて小容量域で容
量のダウン・アツプ制御を行なうようにしたの
で、温度コントロールスイツチ(図示略)により
設定車室温度Tcあるいは設定値△Trc1,△Trc
2を変えて車室温度を容易に調節することができ
るという特徴があるが、そのほかの効果は前記第
一実施例と同様である。
This third embodiment shows a case where the controller 16 determines that the cabin temperature Tr and the intake gas temperature Ts have reached preset values. Specifically, the cabin temperature Tr and the set temperature are determined by the controller 16. The temperature difference △Trc in Tc controls the capacity down or up in the large capacity range, while the intake gas temperature Ts controls the capacity down or up in the small capacity range. (not shown) to set cabin temperature Tc or set value △Trc1, △Trc
This embodiment has a feature that the temperature of the vehicle interior can be easily adjusted by changing the temperature of the vehicle, but other effects are the same as those of the first embodiment.

次に、本発明制御方法の第四実施例を第5図に
ついて説明する。
Next, a fourth embodiment of the control method of the present invention will be described with reference to FIG.

この実施例では出口温度Teと、吸入ガスの過
熱度Tshが予め設定された設定値になつたと制御
器16により判断された場合を示しており、具体
的には出口温度Teと設定値Te1,Te2により大
容量域で容量切換えを行ない、吸入ガスの過熱度
Tshと設定値Tsh1,Tsh2により小容量域で容
量切換制御するようにしている。冷房運転が開始
され出口温度Teが下がつて設定値Te2になる
と、全容量から大容量域での容量ダウン状態に切
換えられる。この状態で冷房能力が大きいと、出
口温度Te及び過熱度Tshが下がり、Tshが設定値
Tsh2になると、小容量域での容量ダウン状態に
切換えられ、圧縮機が最小容量で運転される。そ
の後、過熱度Tshが上昇し設定値Tsh1になると
圧縮機は小容量域での容量アツプ状態に切換えら
れる。以下、設定値Tsh1,Tsh2により小容量
域で容量切換制御が行なわれる。
This embodiment shows a case where the controller 16 determines that the outlet temperature Te and the suction gas superheat degree Tsh have reached preset values. Specifically, the outlet temperature Te and the set value Te1, Capacity switching is performed in a large capacity range using Te2, and the superheat degree of suction gas is
Capacity switching is controlled in a small capacity area using Tsh and set values Tsh1 and Tsh2. When the cooling operation is started and the outlet temperature Te decreases to the set value Te2, the state is switched from full capacity to a reduced capacity state in the large capacity range. If the cooling capacity is large in this state, the outlet temperature Te and superheat degree Tsh will decrease, and Tsh will be the set value.
When Tsh2 is reached, the state is switched to a capacity down state in the small capacity range, and the compressor is operated at the minimum capacity. Thereafter, when the degree of superheat Tsh increases and reaches the set value Tsh1, the compressor is switched to a capacity up state in a small capacity range. Thereafter, capacity switching control is performed in the small capacity area using the set values Tsh1 and Tsh2.

反対に小容量域での容量アツプ状態では冷房能
力が不足するときには、第5図二点鎖線のように
出口温度Teが上昇し設定値Te1になると圧縮機
は大容量域での容量アツプ状態に切換えられ、そ
の後の設定値Te1,Te2により大容量で容量切
換えが交互に行なわれる。
On the other hand, when the cooling capacity is insufficient in the increased capacity state in the small capacity region, the outlet temperature Te rises as shown by the two-dot chain line in Figure 5, and when it reaches the set value Te1, the compressor enters the increased capacity state in the large capacity region. The capacitance is switched, and the capacitance is alternately switched between large capacitances and the subsequent set values Te1 and Te2.

この第四実施例の効果も前記第一実施例と同様
である。
The effects of this fourth embodiment are also similar to those of the first embodiment.

なお、上述した各実施例では、冷房負荷が大き
いときにおいて、出口温度Te、吹出温度Tfと出
口温度Teの温度差△Tfe及び車室温度Trと設定
温度Tcの温度差Trcのうちの特定の一つが制御
器16によつて予め設定された設定値になつたと
判別された場合を示し、冷房負荷が小さいときに
おいては、吸入ガス圧力Ps、吸入ガス温度Ts及
び吸入ガスの過熱度Tshのうちの特定の一つが制
御器16によつて予め設定された設定値になつた
と判別された場合を示したが、本発明は上述した
各実施例の組み合わせに限定されるものではな
く、任意の組み合わせを実行可能である。という
のは、前述した〜及び〜の測定値のう
ち、どの値が予め設定された設定値になるかは圧
縮機の運転状況によつて様々に変わるので、その
変化によつて前述した組み合わせも任意に変わる
からである。
In each of the above-mentioned embodiments, when the cooling load is large, a specific one of the outlet temperature Te, the temperature difference △Tfe between the outlet temperature Tf and the outlet temperature Te, and the temperature difference Trc between the cabin temperature Tr and the set temperature Tc is This indicates a case where it is determined that one has reached a preset value set by the controller 16, and when the cooling load is small, one of the suction gas pressure Ps, suction gas temperature Ts, and suction gas superheat degree Tsh Although the case is shown in which it is determined that a specific one has become a preset value by the controller 16, the present invention is not limited to the combinations of the above-mentioned embodiments, and can be applied to any combination. is possible. This is because, among the measured values of ~ and ~ mentioned above, which value becomes the preset set value varies depending on the operating conditions of the compressor. This is because it changes arbitrarily.

以上詳述したように本発明は、きめの細かい制
御を正確に行うことができるので、冷房負荷に応
じて圧縮機を効率的に運転して動力損失を軽減す
ることができるとともに、エバポレータのフロス
トを防止することができ、さらにダンパの調節回
数を少なくすることができる効果がある。
As described in detail above, the present invention allows fine-grained control to be performed accurately, so the compressor can be efficiently operated according to the cooling load to reduce power loss, and the evaporator frost can be reduced. This has the effect of being able to prevent this and further reduce the number of times the damper needs to be adjusted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御方法に使用される冷房装
置を車両空調用に具体化した一実施例を示す略体
平面図、第2図〜第5図はそれぞれ本発明の制御
方法の第一〜第四実施例を説明するグラフであ
る。 可変容量圧縮機……2、容量切換機構……3、
ヒータ……13、温度センサ……15,17,1
8,20、制御器……16、圧力センサ……1
9、エバポレータの出口空気温度……Te、ダク
トの吹出空気温度……Tf、車室内空気温度……
Tr、設定車室温度……Tc、吸入ガス圧力……
Ps、温度……Ts、吐出ガス圧力……Pd、温度…
…Td、吸入(吐出)ガスの過熱度……Tsh,
Tdh、温度差……△Tfe,△Trc、設定温度……
Te1,Te2,Ts1,Ts2、設定圧力……Ps1,
Ps2、設定温度差……△Tfe1,△Tfe2,△
Trc1,△Trc2。
FIG. 1 is a schematic plan view showing an embodiment of a cooling device used in the control method of the present invention for vehicle air conditioning, and FIGS. 2 to 5 are the first embodiment of the control method of the present invention. - It is a graph explaining a fourth example. Variable capacity compressor...2, Capacity switching mechanism...3,
Heater...13, Temperature sensor...15, 17, 1
8, 20, Controller...16, Pressure sensor...1
9. Evaporator outlet air temperature...Te, duct outlet air temperature...Tf, vehicle interior air temperature...
Tr, set cabin temperature...Tc, intake gas pressure...
Ps, temperature...Ts, discharge gas pressure...Pd, temperature...
...Td, degree of superheating of intake (discharge) gas...Tsh,
Tdh, temperature difference...△Tfe, △Trc, set temperature...
Te1, Te2, Ts1, Ts2, set pressure...Ps1,
Ps2, set temperature difference...△Tfe1, △Tfe2, △
Trc1, △Trc2.

Claims (1)

【特許請求の範囲】 1 容量切換機構により冷房負荷に応じて容量す
なわち冷房能力を切換調節し得る可変容量圧縮機
から圧縮ガスを冷凍サイクルに送つて冷房作用を
行わせた後、熱交換を終えたガスを再び前記圧縮
機に吸入するようにした冷房方法において、 エバポレータの出口空気温度Te ヒータ等の加熱手段により加熱されたダクト
の吹出空気温度Tfと前記出口空気温度Teの温
度差ΔTfe 被冷房室内空気温度Trと設定室内空気温度
Tcの温度差ΔTrc 上記〜とこの〜にそれぞれ対応して予
め設定された設定値とを比較判別手段により比較
判別し、前記〜のいずれか一つが設定値にな
つたとき、動作手段により前記容量切換機構を作
動させて圧縮機の容量を冷房能力の高い大容量域
で切換制御し、 圧縮機の吸入ガス圧力Ps 圧縮機の吸入ガス温度Ts 前記吸入ガス圧力Ps及び温度Tsによつて決
定される吸入ガスの過熱度Tsh 圧縮機の吐出ガス圧力Pd及び吐出ガス温度
ΔTdによつて決定される吐出ガスの過熱度
Tdh エバポレータの出口空気温度Te 上記〜とこの〜にそれぞれ対応して予
め設定された設定値とを比較判別手段により比較
判別し、前記〜のいずれか一つが前記設定値
になつたとき、動作手段により前記容量切換機構
を作動させて圧縮機の容量を冷房能力の低い小容
量域で切換制御させることを特徴とする冷房装置
における可変容量圧縮機の運転制御方法。
[Scope of Claims] 1 Compressed gas is sent to the refrigeration cycle from a variable capacity compressor whose capacity, or cooling capacity, can be switched and adjusted according to the cooling load using a capacity switching mechanism to perform a cooling action, and then heat exchange is completed. In the cooling method in which the compressed gas is sucked into the compressor again, the temperature difference ΔTfe between the outlet air temperature Te of the evaporator and the outlet air temperature Tf of the duct heated by a heating means such as a heater is Tfe. Indoor air temperature Tr and set indoor air temperature
Temperature difference ΔTrc of Tc The above ~ and this ~ are compared and determined by a preset value corresponding to each ~, and when any one of the ~ above reaches the set value, the operating means causes the above capacitance to be determined. The switching mechanism is operated to switch and control the capacity of the compressor in a large capacity range with high cooling capacity, and the suction gas pressure Ps of the compressor and the suction gas temperature Ts of the compressor are determined by the suction gas pressure Ps and temperature Ts. Degree of superheating of the suction gas Tsh Degree of superheating of the discharged gas determined by the discharge gas pressure Pd and discharge gas temperature ΔTd of the compressor
Tdh Evaporator outlet air temperature Te The above ~ and this ~ are respectively compared and determined by a preset set value, and when any one of the ~ above reaches the set value, the operating means A method for controlling the operation of a variable capacity compressor in a cooling device, characterized in that the capacity switching mechanism is actuated to control the capacity of the compressor in a small capacity range where cooling capacity is low.
JP56116909A 1981-07-25 1981-07-25 Method of controlling operation of capacity-variable compressor used in space-cooling apparatus Granted JPS5818047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56116909A JPS5818047A (en) 1981-07-25 1981-07-25 Method of controlling operation of capacity-variable compressor used in space-cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116909A JPS5818047A (en) 1981-07-25 1981-07-25 Method of controlling operation of capacity-variable compressor used in space-cooling apparatus

Publications (2)

Publication Number Publication Date
JPS5818047A JPS5818047A (en) 1983-02-02
JPH0154620B2 true JPH0154620B2 (en) 1989-11-20

Family

ID=14698640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116909A Granted JPS5818047A (en) 1981-07-25 1981-07-25 Method of controlling operation of capacity-variable compressor used in space-cooling apparatus

Country Status (1)

Country Link
JP (1) JPS5818047A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843340A (en) * 1981-09-09 1983-03-14 Nippon Denso Co Ltd Control method for cooling cycle
US4526516A (en) * 1983-02-17 1985-07-02 Diesel Kiki Co., Ltd. Variable capacity wobble plate compressor capable of controlling angularity of wobble plate with high responsiveness
JPS6022515A (en) * 1983-07-18 1985-02-05 Diesel Kiki Co Ltd Air conditioner of vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080056U (en) * 1973-11-20 1975-07-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528999U (en) * 1978-08-17 1980-02-25

Also Published As

Publication number Publication date
JPS5818047A (en) 1983-02-02

Similar Documents

Publication Publication Date Title
EP0410570A2 (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
CN101074795B (en) Air conditioner and method of controlling the same
JPH0474210B2 (en)
JPH0154620B2 (en)
JPS5830A (en) Operation control for variable capacity compressor in cooling apparatus
KR100484801B1 (en) Heating driving method of air conditioner
JPS59112156A (en) Method of controlling compressor for air-conditioning of car
JPS5819639A (en) Method of operating and controlling variable-capacity compressor in a refrigerating system
JPH036431B2 (en)
JP3526393B2 (en) Air conditioner
JPS6071838A (en) Air conditioner
JPH0331660A (en) Multichamber type air conditioner
JP3401873B2 (en) Control device for air conditioner
JPS6358725B2 (en)
KR100471439B1 (en) A controller and control method of the air-conditioner
JPH0665940B2 (en) Refrigerant control method for heat pump type air conditioner
JPH0719575A (en) Air conditioner
KR100300581B1 (en) Cold and heat cycle controll method
JPH0120604Y2 (en)
JPH04363536A (en) Operation control method for air-conditioner
JPH08313097A (en) Air conditioner
JPH01139968A (en) Refrigerant heating type air conditioner
JPH0123701B2 (en)
JPH05322350A (en) Refrigerant controller for multi-room type air conditioner
JPH03158664A (en) Air conditioner