JPH0154422B2 - - Google Patents

Info

Publication number
JPH0154422B2
JPH0154422B2 JP59255811A JP25581184A JPH0154422B2 JP H0154422 B2 JPH0154422 B2 JP H0154422B2 JP 59255811 A JP59255811 A JP 59255811A JP 25581184 A JP25581184 A JP 25581184A JP H0154422 B2 JPH0154422 B2 JP H0154422B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
iron
iron loss
composition
based amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59255811A
Other languages
Japanese (ja)
Other versions
JPS61136660A (en
Inventor
Nobuyuki Morito
Shinji Kobayashi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59255811A priority Critical patent/JPS61136660A/en
Publication of JPS61136660A publication Critical patent/JPS61136660A/en
Publication of JPH0154422B2 publication Critical patent/JPH0154422B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、鉄基非晶質合金に関し、とくに軟
磁性、鉄損特性および絶縁被膜処理特性にすぐ
れ、積みまたは巻きトランス用の鉄心材料に使用
してとりわけ好適なものである。 (従来の技術) Fe―B系およびFe―B―Si系などの溶融合金
を、単ロール法や双ロール法などにより、105
106℃/S程度の冷却速度で急冷凝固させると、
板厚20〜50μm程度で無秩序な原子配列をもつい
わゆる非晶質合金薄帯が得られる。 かかる非晶質合金薄帯は、現在、トランスやモ
ーターなどの鉄心材料として主に使用されている
けい素鋼板の有用な競合材料として注目を浴びて
いる。 ことに電力トランス用としてアライド社から市
販されているR2605S2 Fe78B13Si9合金はその代
表的なものであり、すぐれた低鉄損が報告されて
いる。しかしながらボロンは高価な元素であるこ
とから、これに起因したFe―B―Si合金の高価
格が、その商業化を妨げていた。 従つて上掲したFe78B13Si9非晶質合金と同程度
の磁気特性および熱安定性を維持しながら、しか
もボロン量を抑えることができれば、コスト低減
による工業的意義は極めて大きいわけである。 かかる考え方のもとに、特開昭58−210150号公
報ではFe73〜80B4〜10Si14〜17組成のものが、また特
開昭59−6354号公報ではFe75〜79B8〜10Si11〜17組成
のものがそれぞれ提案された。 (発明が解決しようとする問題点) しかしながら上掲した各組成になるFe―B―
Si合金においては、鉄損は極めて低く、熱安定性
においても優れた性能を示すものの、後述するよ
うに絶縁被膜処理性に関して問題を残していた。 近時、非晶質合金薄帯製造技術の向上に伴い、
表面粗度などの表面性状が改善され、占積率は著
しく向上したが、一方で層間抵抗の低下を招く結
果となつた。 従来の非晶質合金薄帯では、合金自身の高い電
気抵抗に加え表面粗度が大きかつたため、比較的
高い層間抵抗の維持が容易であり、従つて層間絶
縁のための被膜は不要とされていた。しかしなが
ら最近の表面性状改善による層間抵抗の低下に伴
い、層間絶縁被膜の付与が必要になつてきた。 かかる絶縁被膜の付与手段としては、湿式法や
電解法が考えられるが、超急冷法による薄帯製造
においては、表面層の酸化が不可避であつて表面
には酸化膜が形成されるため、湿式法によつてク
ロム酸塩やりん酸塩の絶縁被膜を被成しようとし
てもしばしば液はじきが発生したり、他方電解法
においては均一な電解が行ない難く極めて不均一
な絶縁被膜しか形成できない、というところに問
題を残していたのである。 この発明は、上記諸問題を有利に解決するもの
で、超低鉄損および良好な熱安定性を維持しつ
つ、B量を効果的に低減させて低コスト化を実現
し、加えて絶縁被膜処理性も併せて改善した非晶
質合金を提案することを目的とする。 (問題点を解決するための手段) すなわちこの発明は、トランス用鉄心材料とし
ての鉄基非晶質合金であつて、 化学式:FexMnaBySiz ここでx:75〜80at% y:7〜13at% z:9〜15at% a:0.5〜3at% で示される組成、また 化学式:FexMnaNibBySiz ここでx:75〜80at% y:7〜13at% z:9〜15at% a:0.5〜3at% b:0.5〜3at% で示される組成からなる鉄損が低くかつ絶縁被膜
処理性にすぐれた鉄基非晶質合金である。 以下この発明を由来するに至つた実験結果に基
づき、この発明を具体的に説明する。 さて発明者らは、Fe―B―Si三元系とくにこ
の三元系の低B側における鉄損と成分組成との関
係を究明すべく、鉄損の組成依存性に関する綿密
な実験を行つたところ、第1図に示す結果を得
た。 同図から明らかなように、Fe:75〜78at%の
範囲においては、B量を8〜10at%に低減したと
しても、鉄損の劣化はほとんどないか、またあつ
ても極く僅かであることが判明した。ここにB量
の低減は、鉄損の若干の劣化をもたらすとはい
え、そのコスト低下を考慮すれば、工業的にはむ
しろメリツトと言える。 次に、熱安定性と組成との関係を明らかにすべ
く、FexB9Si91-x組成合金のFe含有量を種々に変
化させて結晶化温度との関係について調べた。 その結果、第2図に示したように、鉄損の低い
組成域は好都合なことに結晶化温度の高い領域と
重複することが見出された。 しかしながら単なるFe―B―Si系では、組成
をいかように調整しても非晶質合金薄帯製造時
に、強固なB―Si―Oを基本とする酸化物が形成
されるため、絶縁被膜処理時における液はじきや
不均一電解を回避できず、それ故良質の絶縁被膜
の形成は望み得ない。 そこで酸化膜の改質を目的として、合金中に各
種元素の添加を試みたところ、Mnの添加がとり
わけ有効であることが究明されたのである。 第3図に、第4成分として1at%のMnを加えた
Fe77Mn1B9Si13組成の溶湯を、高速で回転する水
冷銅合金ロール表面に射出し、急冷凝固させて得
た非晶質合金薄帯につき、イオンマイクロアナラ
イザーを用いて、表面近傍での各元素の深さ方向
分布について調べた結果を示す。 同図より明らかなように、表面酸化膜中に著し
いMnの濃縮が認められたが、かかるMnの濃縮
によつて酸化膜が改質され、その結果絶縁被膜の
形成処理液を塗布した際の液はじきが抑制され、
また電解処理時における不均一な電流の流れが抑
えられて、均質な絶縁被膜の形成がもたらされる
ものと考えられる。 かような酸化膜の改善による良質の絶縁被膜の
形成という観点からは、少なくとも0.5at%のMn
量を必要とする。一方Mn量が3at%を超えると、
飽和磁束密度の低下が無視できなくなるので、
Mn量は0.5〜3at%より好ましくは0.5〜2at%の範
囲にする必要がある。またかかるMn添加によつ
て、結晶化温度も約5〜15℃上昇することも判明
した。 ここに基本成分であるFe、bおよびSiについ
ては、前掲第1図に示したように、Fe―B―Si
系における鉄損の低い領域が、Fe:75〜80at%、
B:7〜14at%およびSi:9〜15at%であるの
で、FeおよびSiについては上記の範囲で、一方
Bについては低含有量の方がコストの上で有利で
あるので、B量は7〜13at%より好ましくは8〜
10at%の範囲でそれぞれ含有させることにした。 なおかかる組成域における結晶化温度は、周辺
の組成域のそれよりも高く、従つて熱安定性に関
しても好ましいことが確認されている。 ところで発明者らはさらに、磁気特性を損うこ
となしに熱安定性の一層の向上を図るべく、効果
的な添加元素を模索したところ、Niの共存が極
めて有効であることの知見を得た。すなわち1at
%程度のNi添加により、約20℃の結晶化温度の
上昇が見られたのである。 ここにNiの添加量は、熱安定性の上からは少
なくとも0.5at%以上が必要である。しかしなが
らこの発明の非晶質合金は、トランスを主用途と
することから、高い飽和磁束密度が要求されると
ころ、Niの多量添加は磁束密度の低下をもたら
すので、上限を3at%に限定した。 (実施例) 表1に示した種々の成分組成に溶製した合金溶
湯を、高速で回転する水冷式のCu―Be合金ロー
ル表面に射出して、厚み25μm、幅20mmの非晶質
合金薄帯を作成した。ついで湿式法によつて厚み
約0.5μmのクロム酸塩―コロイド状シリカ系の絶
縁被膜の被成を施して、液はじき性を判定したの
ち、380℃、1時間の磁場中焼鈍を行つてから、
磁気特性を測定した。 得られた結果を表1に示す。 なお一部の試料については結晶化温度Txも測
定し、その結果を表1に併記した。
(Industrial Application Field) The present invention relates to an iron-based amorphous alloy, which has particularly excellent soft magnetism, iron loss characteristics, and insulation coating treatment characteristics, and is particularly suitable for use as an iron core material for laminated or wound transformers. It is. (Prior art) Molten alloys such as Fe-B and Fe-B-Si are melted using a single roll method or a twin roll method.
When rapidly solidified at a cooling rate of about 10 6 °C/S,
A so-called amorphous alloy ribbon with a disordered atomic arrangement with a thickness of about 20 to 50 μm can be obtained. Such amorphous alloy ribbon is currently attracting attention as a useful competitive material to silicon steel sheets, which are mainly used as core materials for transformers, motors, and the like. In particular, the R2605S2 Fe 78 B 13 Si 9 alloy commercially available from Allied Corporation for power transformers is a typical example, and has been reported to have excellent low core loss. However, since boron is an expensive element, the resulting high cost of Fe--B--Si alloys has hindered its commercialization. Therefore, if it is possible to suppress the amount of boron while maintaining the same magnetic properties and thermal stability as the Fe 78 B 13 Si 9 amorphous alloy mentioned above, the industrial significance of reducing costs would be extremely large. be. Based on this idea, JP-A-58-210150 discloses a composition of Fe 73-80 B 4-10 Si 14-17 , and JP-A-59-6354 discloses a composition of Fe 75-79 B 8- 10 Si 11-17 compositions were proposed, respectively. (Problem to be solved by the invention) However, Fe―B― with each of the above compositions
Although Si alloys have extremely low iron loss and exhibit excellent thermal stability, they still have problems with the processability of insulating coatings, as described below. Recently, with the improvement of amorphous alloy ribbon manufacturing technology,
Although the surface properties such as surface roughness were improved and the space factor was significantly improved, this resulted in a decrease in interlayer resistance. In conventional amorphous alloy ribbons, in addition to the high electrical resistance of the alloy itself, it also had a large surface roughness, so it was easy to maintain a relatively high interlayer resistance, and therefore no coating was required for interlayer insulation. was. However, with the recent reduction in interlayer resistance due to improvements in surface properties, it has become necessary to provide an interlayer insulating film. Possible methods for applying such an insulating film include a wet method and an electrolytic method. However, in the production of ribbons using the ultra-rapid cooling method, oxidation of the surface layer is unavoidable and an oxide film is formed on the surface. Even if an insulating film of chromate or phosphate is attempted to be formed using the electrolytic method, liquid repellency often occurs, and on the other hand, with the electrolytic method, it is difficult to achieve uniform electrolysis and only an extremely non-uniform insulating film can be formed. However, there remained a problem. This invention advantageously solves the above problems, and while maintaining ultra-low iron loss and good thermal stability, it effectively reduces the amount of B and achieves cost reduction. The purpose of this study is to propose an amorphous alloy with improved processability. (Means for solving the problem) That is, the present invention is an iron-based amorphous alloy as a core material for a transformer, and has the chemical formula: Fe x Mn a B y Si z where x: 75 to 80 at% y : 7-13at% z: 9-15at% a: 0.5-3at% Chemical formula: Fe x Mn a Ni b B y Si z where x: 75-80at% y: 7-13at% z : 9 to 15 at% a: 0.5 to 3 at% b: 0.5 to 3 at% This is an iron-based amorphous alloy with low iron loss and excellent insulating coating processing properties. This invention will be specifically explained below based on the experimental results that led to this invention. In order to investigate the relationship between iron loss and component composition in the Fe-B-Si ternary system, especially on the low B side of this ternary system, the inventors conducted detailed experiments on the compositional dependence of iron loss. However, the results shown in FIG. 1 were obtained. As is clear from the figure, in the range of Fe: 75 to 78 at%, even if the amount of B is reduced to 8 to 10 at%, there is almost no deterioration in iron loss, or even if there is, it is very small. It has been found. Although reducing the amount of B causes a slight deterioration in iron loss, it can be said to be an industrial advantage if the cost reduction is taken into account. Next, in order to clarify the relationship between thermal stability and composition, we varied the Fe content of the Fe x B 9 Si 91-x composition alloy and investigated the relationship with crystallization temperature. As a result, as shown in FIG. 2, it was found that the composition region with low iron loss advantageously overlaps with the region with high crystallization temperature. However, with a simple Fe-B-Si system, no matter how the composition is adjusted, a strong B-Si-O-based oxide is formed during the production of the amorphous alloy ribbon, so the insulation coating treatment Liquid repellency and non-uniform electrolysis cannot be avoided, and therefore it is impossible to form a high-quality insulating film. Therefore, they tried adding various elements to the alloy for the purpose of modifying the oxide film, and discovered that the addition of Mn was particularly effective. In Figure 3, 1 at% Mn was added as the fourth component.
A molten metal with a composition of Fe 77 Mn 1 B 9 Si 13 was injected onto the surface of a water-cooled copper alloy roll rotating at high speed, and the amorphous alloy ribbon obtained by rapid solidification was analyzed near the surface using an ion microanalyzer. The results of investigating the depth distribution of each element are shown below. As is clear from the figure, a significant concentration of Mn was observed in the surface oxide film, but the oxide film was modified by the concentration of Mn, and as a result, when the insulating film forming treatment solution was applied, Liquid repellency is suppressed,
It is also believed that non-uniform current flow during electrolytic treatment is suppressed, resulting in the formation of a homogeneous insulating film. From the viewpoint of forming a high-quality insulating film by improving the oxide film, at least 0.5 at% Mn
Requires quantity. On the other hand, when the Mn content exceeds 3at%,
Since the decrease in saturation magnetic flux density cannot be ignored,
The amount of Mn needs to be in the range of 0.5 to 3 at%, more preferably 0.5 to 2 at%. It has also been found that the addition of Mn causes the crystallization temperature to rise by about 5 to 15°C. Regarding the basic components Fe, b and Si, as shown in Figure 1 above, Fe-B-Si
The region with low iron loss in the system is Fe: 75 to 80at%,
Since B: 7 to 14 at% and Si: 9 to 15 at%, Fe and Si are within the above ranges, while low B contents are more advantageous in terms of cost, so the B content is 7 to 15 at%. ~13 at%, preferably 8~
It was decided to contain each in a range of 10at%. It has been confirmed that the crystallization temperature in this composition range is higher than that in the surrounding composition range, and therefore it is preferable in terms of thermal stability. By the way, the inventors further searched for effective additive elements in order to further improve thermal stability without impairing magnetic properties, and found that the coexistence of Ni was extremely effective. . i.e. 1at
The crystallization temperature was increased by approximately 20°C by adding approximately 20% Ni. The amount of Ni added here needs to be at least 0.5 at% or more from the viewpoint of thermal stability. However, since the amorphous alloy of the present invention is mainly used in transformers, a high saturation magnetic flux density is required, and since adding a large amount of Ni causes a decrease in the magnetic flux density, the upper limit is limited to 3 at%. (Example) Molten alloys prepared with various compositions shown in Table 1 were injected onto the surface of a water-cooled Cu-Be alloy roll rotating at high speed to form an amorphous alloy thin film with a thickness of 25 μm and a width of 20 mm. I created an obi. Next, a chromate-colloidal silica-based insulating coating with a thickness of approximately 0.5 μm was applied using a wet method, and the liquid repellency was determined, followed by annealing in a magnetic field at 380°C for 1 hour. ,
The magnetic properties were measured. The results obtained are shown in Table 1. The crystallization temperature T x of some of the samples was also measured, and the results are also listed in Table 1.

【表】 ×…液はじき 大
表1に示した結果からも明らかなように、この
発明に従い成分調整を行つた非晶質合金はいずれ
も、鉄損が低く、熱安定性にも優れ、しかも絶縁
被膜処理性も良好であつた。 (発明の効果) かくしてこの発明によれば、Fe―B―Si三元
系非晶質合金の超低鉄損を維持しつつ、B量を効
果的に低減して低コスト化を実現できるのみなら
ず、熱安定性および絶縁被膜処理性の大幅な向上
も併せて達成できる。
[Table] ×...Liquid repellency Large As is clear from the results shown in Table 1, all amorphous alloys whose composition has been adjusted according to the present invention have low iron loss, excellent thermal stability, and Insulating coating treatment properties were also good. (Effect of the invention) Thus, according to this invention, it is possible to effectively reduce the amount of B and realize cost reduction while maintaining the ultra-low core loss of the Fe--B--Si ternary amorphous alloy. In addition, significant improvements in thermal stability and insulating coating processability can also be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe―B―Si三元系における鉄損の組
成依存性を示した図、第2図は、Fe―B―Si三
元系における結晶化温度および鉄損のFe濃度依
存性を示したグラフ、第3図は、Fe―Mn―B―
Si系非晶質合金薄帯の表面近傍における各元素の
深さ方向分布状況を示した図である。
Figure 1 shows the composition dependence of iron loss in the Fe-B-Si ternary system, and Figure 2 shows the dependence of crystallization temperature and iron loss on Fe concentration in the Fe-B-Si ternary system. The graph shown in Figure 3 is Fe―Mn―B―
FIG. 2 is a diagram showing the depth distribution of each element near the surface of a Si-based amorphous alloy ribbon.

Claims (1)

【特許請求の範囲】 1 トランス用鉄心材料としての鉄基非晶質合金
であつて、 化学式:FexMnaBySiz ここでx:75〜80at% y:7〜13at% z:9〜15at% a:0.5〜3at% で示される組成になることを特徴とする鉄損が低
くかつ絶縁被膜処理性にすぐれた鉄基非晶質合
金。 2 トランス用鉄心材料としての鉄基非晶質合金
であつて、 化学式:FexMnaNibBySiz ここでx:75〜80at% y:7〜13at% z:9〜15at% a:0.5〜3at% b:0.5〜3at% で示される組成になることを特徴とする鉄損が低
くかつ絶縁被膜処理性にすぐれた鉄基非晶質合
金。
[Claims] 1. An iron-based amorphous alloy as a core material for a transformer, which has the following chemical formula: Fe x Mn a B y Si z where x: 75 to 80 at% y: 7 to 13 at% z: 9 An iron-based amorphous alloy having a composition of ~15at% a:0.5~3at% and having a low iron loss and excellent insulating coating processability. 2 An iron-based amorphous alloy as a core material for transformers, chemical formula: Fe x Mn a Ni b B y Si z where x: 75-80 at% y: 7-13 at% z: 9-15 at% a : 0.5 to 3 at% b: 0.5 to 3 at% An iron-based amorphous alloy with low iron loss and excellent insulating coating processing properties.
JP59255811A 1984-12-05 1984-12-05 Amorphous iron alloy having small iron loss and superior suitability to treatment with insulating film Granted JPS61136660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255811A JPS61136660A (en) 1984-12-05 1984-12-05 Amorphous iron alloy having small iron loss and superior suitability to treatment with insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255811A JPS61136660A (en) 1984-12-05 1984-12-05 Amorphous iron alloy having small iron loss and superior suitability to treatment with insulating film

Publications (2)

Publication Number Publication Date
JPS61136660A JPS61136660A (en) 1986-06-24
JPH0154422B2 true JPH0154422B2 (en) 1989-11-17

Family

ID=17283951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255811A Granted JPS61136660A (en) 1984-12-05 1984-12-05 Amorphous iron alloy having small iron loss and superior suitability to treatment with insulating film

Country Status (1)

Country Link
JP (1) JPS61136660A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351033A (en) * 1992-10-01 1994-09-27 Sensormatic Electronics Corporation Semi-hard magnetic elements and method of making same
US6273967B1 (en) 1996-01-31 2001-08-14 Kawasaki Steel Corporation Low boron amorphous alloy and process for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357119A (en) * 1976-11-05 1978-05-24 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy excellent in heat resistance and strength
JPS5933183A (en) * 1982-08-19 1984-02-22 Ricoh Co Ltd Two-color heat-sensitive recording material
JPS618903A (en) * 1984-06-25 1986-01-16 Kawasaki Steel Corp Characteristics of amorphous alloy thin belt and improvement of dieing workability thereof
JPS6113606A (en) * 1984-06-29 1986-01-21 Kawasaki Steel Corp Method for improvement of characteristics of amorphous thin strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357119A (en) * 1976-11-05 1978-05-24 Tohoku Daigaku Kinzoku Zairyo Amorphous alloy excellent in heat resistance and strength
JPS5933183A (en) * 1982-08-19 1984-02-22 Ricoh Co Ltd Two-color heat-sensitive recording material
JPS618903A (en) * 1984-06-25 1986-01-16 Kawasaki Steel Corp Characteristics of amorphous alloy thin belt and improvement of dieing workability thereof
JPS6113606A (en) * 1984-06-29 1986-01-21 Kawasaki Steel Corp Method for improvement of characteristics of amorphous thin strip

Also Published As

Publication number Publication date
JPS61136660A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
KR100601413B1 (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP4771215B2 (en) Magnetic core and applied products using it
EP2261385A1 (en) Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core
KR20090113314A (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
KR20020041292A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP AND CORE PRODUCED USING THE SAME
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2009293099A (en) Highly corrosion-resistant amorphous alloy
JP2008231534A5 (en)
EP2612334B1 (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP4636365B2 (en) Fe-based amorphous alloy ribbon and magnetic core
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JPS6362579B2 (en)
JPH07331396A (en) Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JP3366681B2 (en) Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability
JP5645108B2 (en) Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
JPH0154422B2 (en)
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JPS6335688B2 (en)
JPS5834162A (en) Manufacture of amorphous alloy having high magnetic aging resistance and its thin strip
JP3500062B2 (en) Fe-based amorphous alloy ribbon with ultra-thin oxide layer
JPH1180908A (en) Magnetic alloy excellent in surface property and magnetic core using it
JP3124690B2 (en) Iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance and method for producing the same
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JPH08283919A (en) Iron-base amorphous alloy foil and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees