JPH07331396A - Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production - Google Patents

Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production

Info

Publication number
JPH07331396A
JPH07331396A JP6237081A JP23708194A JPH07331396A JP H07331396 A JPH07331396 A JP H07331396A JP 6237081 A JP6237081 A JP 6237081A JP 23708194 A JP23708194 A JP 23708194A JP H07331396 A JPH07331396 A JP H07331396A
Authority
JP
Japan
Prior art keywords
amorphous alloy
iron
flux density
magnetic flux
embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6237081A
Other languages
Japanese (ja)
Inventor
Fumio Kogiku
史男 小菊
Masao Yukimoto
正雄 行本
Seiji Okabe
誠司 岡部
Nobuisa Shiga
信勇 志賀
Michiharu Ozawa
三千晴 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6237081A priority Critical patent/JPH07331396A/en
Publication of JPH07331396A publication Critical patent/JPH07331396A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the iron loss properties of an Fe-B-Si amorphous alloy without causing the embrittlement of the material. CONSTITUTION:The molten metal of an alloy having a compsn. shown by the chemical formula: FeXBYSizMna; where 75<=X<= 82at%, 7<=Y<=15at%, 7<=Z<=17at% and 0.2<=a<0.5at% is subjected to rapid solidification in a CO2 atmosphere contg. 1 to 4 % H2. Thus, the amorphous allay having <=0.6mum surface roughness and excellent in magnetic properties can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気特性に優れかつ
耐脆化特性にも優れた鉄基非晶質合金およびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based amorphous alloy having excellent magnetic properties and embrittlement resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】特開昭54−148122号公報、同55−9460号
公報及び同57−137451号公報に開示されているように、
Fe−B−Si系等の溶融合金を単ロール法等に従い、高速
で回転する冷却ロールの表面に射出して 105〜106 ℃/
s程度の冷却速度で急冷凝固させると、板厚が数十μm
程度で、原子の配列が無秩序ないわゆる非晶質合金薄帯
が得られる。このような非晶質合金薄帯は、磁化され易
く、鉄損が低く、いわゆる磁気特性に優れることから、
トランス用鉄心材料として一部実用化されるに至ってい
る。
As disclosed in JP-A-54-148122, JP-A-55-9460 and JP-A-57-137451,
A molten alloy such as Fe-B-Si is injected onto the surface of a cooling roll rotating at a high speed according to a single roll method or the like, and the temperature is 10 5 to 10 6 ° C /
When rapidly solidified at a cooling rate of about s, the plate thickness is several tens of μm
To a degree, so-called amorphous alloy ribbons with disordered atomic arrangement are obtained. Such an amorphous alloy ribbon is easily magnetized, has a low iron loss, and is excellent in so-called magnetic properties,
It has been partially put into practical use as an iron core material for transformers.

【0003】しかしながら、かようなFe−B−Si3元系
非晶質合金薄帯は、ある程度低い鉄損値は得られるもの
の、その改善効果には限度があり、3元系ではそれ以上
低い鉄損は期待できないという問題があった。
However, although such a Fe-B-Si ternary amorphous alloy ribbon can obtain a somewhat low iron loss value, its improvement effect is limited, and in the ternary system, it is lower than that. There was a problem that no loss could be expected.

【0004】そこで、上記の3元系非晶質合金に、第4
成分として種々の元素の添加が試みられている。例え
ば、特公平1-54422号公報には、鉄損が低くかつ絶縁被
膜処理性に優れた鉄基非晶質合金として、Fe−B−Si系
にMn, Ni等を 0.5〜3at%添加したものが提案されてい
る。しかしながら、Mnを 0.5at%以上添加すると、材料
の脆化という新たな問題が生じた。また、磁束密度の低
下が実用上問題となった。
Therefore, in addition to the above-mentioned ternary amorphous alloy,
Attempts have been made to add various elements as components. For example, in Japanese Examined Patent Publication No. 1-54422, an iron-based amorphous alloy having low iron loss and excellent insulating coating processability is added to Fe—B—Si system with 0.5 to 3 at% of Mn, Ni and the like. Things have been proposed. However, when Mn is added at 0.5 at% or more, a new problem of material embrittlement occurs. In addition, the decrease in magnetic flux density has been a practical problem.

【0005】また特開昭62−192560号公報には、Fe−B
−Si系にCr, Mo, Ta, Mn, Ni, Co,V,NbおよびWのう
ちから選んだ1種または2種以上を0.05〜5at%含有さ
せ、さらに圧延等の処理により表面粗さを調整した非晶
質合金が提案されている。しかしながら、特開昭62−19
2560号公報では、材料の脆化に考慮が払われておらず、
たとえ製板後に圧延等の処理によって表面粗さを調整し
たとしても、脆化の低減に役立つかは疑問であり、また
少なくともかかる表面粗さ調整処理を別途に加えること
は工業的に極めて非能率なだけでなく、製造コストの面
でも不利も大きい。
Further, JP-A-62-192560 discloses Fe-B.
-Si system contains 0.05 to 5 at% of one or more selected from Cr, Mo, Ta, Mn, Ni, Co, V, Nb and W, and further the surface roughness by treatment such as rolling. Conditioned amorphous alloys have been proposed. However, JP-A-62-19
In the 2560 publication, no consideration is given to the embrittlement of the material,
Even if the surface roughness is adjusted by a process such as rolling after plate making, it is doubtful whether it will help reduce embrittlement, and it is industrially very inefficient to add such a surface roughness adjustment process separately. Not only that, but also in terms of manufacturing cost.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、磁気特性に優れるのはいう
までもなく、耐脆化特性に優れた鉄基非晶質合金を、そ
の有利な製造方法と共に提案することを目的とする。
The present invention advantageously solves the above problems and, needless to say, is excellent in magnetic properties, and an iron-based amorphous alloy excellent in embrittlement resistance is The aim is to propose together with its advantageous manufacturing method.

【0007】[0007]

【課題を解決するための手段】前述したとおり、Fe−B
−Si系鉄基非晶質合金の鉄損の改善には、該合金中にMn
を少量添加することが有効であるが、Mnの添加は磁束密
度の低下を招き、また材料の脆化を助長するという不利
を伴う。そこで発明者らは、この不利を克服すべく、鋭
意検討を重ねたところ、以下の知見を得た。 (1) Mn含有量が 0.2at%以上、 0.5at%未満であれば、
磁束密度をさほど低下させることなしに鉄損が改善でき
る。 (2) 溶湯の急冷凝固処理を還元性雰囲気中とくに少量の
H2を含む CO2雰囲気中で行うと、大気中で行った時より
も薄帯の表面粗さが大幅に改善されると共に、薄帯表面
の酸化状態も併せて改質される結果、割れの起点となる
クラックが生じにくくなり、材料の脆化が効果的に抑制
される。 (3) 表面粗さが改善されると、表面の凹凸に起因して生
じる磁極による反磁界が減少するので、磁束密度が向上
する。 (4) 従って、急冷凝固処理を(H2+CO2)雰囲気中で行っ
て薄帯の表面性状を改善してやれば、Mn添加に伴う磁束
密度の低下や脆化の進行といった不利は、完全に解消さ
れる。 この発明は、上記の知見に立脚するものである。
[Means for Solving the Problems] As described above, Fe-B
-To improve the iron loss of a Si-based iron-based amorphous alloy, Mn
Although it is effective to add a small amount of Mn, the addition of Mn causes a decrease in magnetic flux density and also has the disadvantage of promoting brittleness of the material. Therefore, the inventors have made extensive studies in order to overcome this disadvantage, and have obtained the following findings. (1) If the Mn content is 0.2 at% or more and less than 0.5 at%,
Iron loss can be improved without significantly reducing the magnetic flux density. (2) The rapid solidification process of the molten metal is performed in a reducing atmosphere, especially in a small amount.
When performed in a CO 2 atmosphere containing H 2 , the surface roughness of the ribbon is significantly improved compared to when it is performed in the air, and the oxidation state of the ribbon surface is also modified, resulting in cracking. The cracks that are the starting points of the are less likely to occur, and the embrittlement of the material is effectively suppressed. (3) When the surface roughness is improved, the demagnetizing field due to the magnetic poles caused by the unevenness of the surface is reduced, so that the magnetic flux density is improved. (4) Therefore, if the rapid solidification treatment is performed in the (H 2 + CO 2 ) atmosphere to improve the surface properties of the ribbon, the disadvantages such as the decrease in magnetic flux density and the progress of embrittlement due to the addition of Mn are completely eliminated. To be done. The present invention is based on the above findings.

【0008】すなわちこの発明は、 化学式:FeX Y SiZ Mna ここで、75≦X≦82 at % 7≦Y≦15 at % 7≦Z≦17 at % 0.2≦a<0.5 at% で示される組成になり、かつ表面粗さが中心線平均粗さ
Raで 0.6μm 以下であることを特徴とする磁気特性およ
び耐脆化特性に優れた鉄基非晶質合金(第1発明)であ
る。
Namely the present invention has the formula: Fe X B Y Si Z Mn a where at 75 ≦ X ≦ 82 at% 7 ≦ Y ≦ 15 at% 7 ≦ Z ≦ 17 at% 0.2 ≦ a <0.5 at% The composition is as shown, and the surface roughness is the centerline average roughness.
It is an iron-based amorphous alloy (first invention) excellent in magnetic properties and embrittlement resistance, characterized in that Ra is 0.6 μm or less.

【0009】またこの発明は、 化学式:FeX Y SiZ Mna ここで、75≦X≦82 at % 7≦Y≦15 at % 7≦Z≦17 at % 0.2≦a<0.5 at% で示される組成になる合金溶湯を、急冷凝固して非晶質
合金を製造するに際し、該急冷凝固処理を1〜4%のH2
を含む CO2雰囲気下で行うことを特徴とする磁気特性お
よび耐脆化特性に優れた鉄基非晶質合金の製造方法(第
2発明)である。
[0009] The present invention has the formula: Fe X B Y Si Z Mn a where at 75 ≦ X ≦ 82 at% 7 ≦ Y ≦ 15 at% 7 ≦ Z ≦ 17 at% 0.2 ≦ a <0.5 at% When a molten alloy having the composition shown is rapidly solidified to produce an amorphous alloy, the rapid solidification treatment is carried out by adding 1 to 4% H 2
A method for producing an iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance (second invention), which is characterized in that it is carried out in a CO 2 atmosphere containing iron.

【0010】以下、この発明を完成するに至った実験結
果に基づき、この発明を具体的に説明する。図1に、大
気中または CO2とH2 の組成比を変化させた種々の雰囲
気中で急冷凝固処理後、 320〜400 ℃の磁場中で熱処理
を施して得たFe78-a13Si9 Mna 組成の鉄基非晶質合金
の、Mn量と平均鉄損W13/50 (周波数:50 Hz 、磁束密
度:1.3 Tのときにおける鉄損値)との関係について調
べた結果を示す。また図2には、同じ組成の鉄基非晶質
合金の、Mn量と磁束密度B10(1000 A/mの磁界における
磁束密度)の関係について調べた結果を示す。なお、図
2中で、Mn量に対して磁束密度がばらついている(従っ
て図中に帯で示される)のは、表面粗さの影響のためで
ある。図1より、Fe−B−Si3元系合金にMnを適量添加
することによって、低鉄損が得られることがわかる。ま
た図2より、Mn添加に伴って磁束密度は低下する傾向に
あるものの、表面性状が良好であればその分磁束密度が
向上するので、実際には磁束密度の低下はほとんどない
ことがわかる。
The present invention will be described in detail below based on the experimental results that have led to the completion of the present invention. Fig. 1 shows the Fe 78-a B 13 Si obtained by rapid solidification treatment in the atmosphere or various atmospheres in which the composition ratio of CO 2 and H 2 is changed, followed by heat treatment in a magnetic field of 320 to 400 ° C. shows the results of examining the relationship between (1.3 iron loss value at the time of T frequency:: 50 Hz, magnetic flux density) of 9 Mn a iron-based amorphous alloy having a composition, mean and Mn weight iron loss W 13/50 . In addition, FIG. 2 shows the results of an examination of the relationship between the amount of Mn and the magnetic flux density B 10 (magnetic flux density in a magnetic field of 1000 A / m) in an iron-based amorphous alloy having the same composition. In FIG. 2, the magnetic flux density varies with the amount of Mn (hence the band is shown in the figure) because of the influence of the surface roughness. From FIG. 1, it can be seen that low iron loss can be obtained by adding an appropriate amount of Mn to the Fe-B-Si ternary alloy. Further, from FIG. 2, it is understood that although the magnetic flux density tends to decrease with the addition of Mn, the magnetic flux density is improved if the surface quality is good, so that the magnetic flux density practically hardly decreases.

【0011】また同様に、Fe81-a12Si7 Mna 組成の鉄
基非晶質合金における、Mn量と平均鉄損W13/50 および
磁束密度B10との関係について調べた結果をそれぞれ、
図3,図4に示す。図4中における磁束密度のばらつき
は、表面粗さの影響によるものである。図3,4より明
らかなように、この場合もMnを適量添加することによっ
て、低鉄損、高磁束密度が得られている。またとくに、
この合金組成のようにFeを80%を超えて多量に含有させ
た場合には、より高い磁束密度が得られるという利点も
ある。
Similarly, in the iron-based amorphous alloy of Fe 81-a B 12 Si 7 Mn a composition, the results of investigation on the relationship between the amount of Mn and the average iron loss W 13/50 and the magnetic flux density B 10 are shown. Each,
Shown in FIGS. The variation in magnetic flux density in FIG. 4 is due to the influence of surface roughness. As is clear from FIGS. 3 and 4, low iron loss and high magnetic flux density were obtained also in this case by adding an appropriate amount of Mn. And especially,
When Fe is contained in a large amount exceeding 80% like this alloy composition, there is also an advantage that a higher magnetic flux density can be obtained.

【0012】しかしながら、かようなFe81-a12Si7 Mn
a 組成の溶鋼の急冷凝固処理を大気中で行った場合に
は、図5中に破線で示すように、Mn量が 0.1at%から臨
界曲げ高さに反応があらわれ、Mn量の増加に伴ってその
値は大きくなる。すなわち、脆化が進行する。ここに臨
界曲げ高さとは、150 mm長さの合金薄帯をロール接触面
を外側にして中央部で曲げていった時に薄帯が割れる直
前の曲げ内側両表面間の距離をいい、材料の脆化程度の
指標の一つである。ここに、臨界曲げ高さが0mmのと
き、密着曲げが可能であるという。これに対し、急冷凝
固処理を3%のH2を含む CO2雰囲気中で行った場合に
は、同じく図5に実線で示すように、得られる非晶質合
金の臨界曲げ高さ曲線は大幅に下方に移行し、脆化が効
果的に改善されていることが判る。
However, such Fe 81-a B 12 Si 7 Mn
When the rapid solidification treatment of molten steel of a composition is performed in the atmosphere, as shown by the broken line in Fig. 5, a reaction occurs from the Mn amount of 0.1 at% to the critical bending height, and as the Mn amount increases, The value will increase. That is, embrittlement proceeds. Here, the critical bending height means the distance between the inner surfaces of the bend just before the ribbon breaks when the alloy ribbon of 150 mm length is bent at the center with the roll contact surface facing outward. It is one of the indicators of the degree of embrittlement. It is said that contact bending is possible when the critical bending height is 0 mm. On the other hand, when the rapid solidification treatment is performed in the CO 2 atmosphere containing 3% of H 2 , the critical bending height curve of the obtained amorphous alloy is significantly increased as shown by the solid line in FIG. It can be seen that the brittleness is effectively improved by shifting downward to No.

【0013】このような製板雰囲気の違いによる薄帯性
状の差異は、表面性状に良く現れていて、大気中で製板
した場合における薄帯のロール面の表面粗さはRaで 0.8
〜1.2 μm であるのに対し、3%のH2を含む CO2雰囲気
中で製板した場合におけるそれは 0.4〜0.6 μm であ
り、曲げた時にクラックの起点となる凹凸が極めて少な
く、それだけ割れにくくなっていることが判明した。そ
れに加えて、(H2+CO2)雰囲気としたことによって、薄
帯表面の酸化状態が改質され、より一層脆化が改善され
ていることも判明した。ここに、(H2+CO2)雰囲気中で
急冷凝固処理を行うことによって、表面粗度が改善され
る理由は、まだ明確に解明されたわけではないが、主要
成分がCO2 という比重が大きく、輻射能が高いガスであ
ることに加え、弱還元性であり、溶湯の表面の酸化を抑
制し表面張力が低下せず、湯溜りがくずれにくくなるの
でロールと溶湯の間に巻き込むガスが低下すること、ま
た溶湯中のMn量増加による溶湯の粘度および溶湯表面に
生成するスラグの粘度の低下との相互作用によるものと
考えられる。
The difference in the ribbon properties due to the difference in the plate-making atmosphere is well shown in the surface texture, and the surface roughness of the roll surface of the ribbon when the plate is made in the atmosphere is 0.8.
While it is ~ 1.2 μm, it is 0.4-0.6 μm when the plate is made in a CO 2 atmosphere containing 3% H 2 , and there are very few irregularities that cause cracks when bent, and it is difficult to crack. It turned out that it has become. In addition, it was also found that by setting the atmosphere to be (H 2 + CO 2 ), the oxidation state of the ribbon surface was modified and the embrittlement was further improved. The reason why the surface roughness is improved by performing the rapid solidification treatment in the (H 2 + CO 2 ) atmosphere has not been clarified yet, but the main component is CO 2, which has a large specific gravity. In addition to being a gas with high emissivity, it is weakly reducing and suppresses oxidation of the surface of the molten metal so that the surface tension does not decrease and the pool does not collapse easily, so the amount of gas caught between the roll and the molten metal decreases. It is considered that this is due to the interaction between the increase of Mn content in the melt and the decrease of the viscosity of the melt and the viscosity of slag formed on the surface of the melt.

【0014】図2および図4において、Mn添加量が 0.3
at%の場合における磁束密度のRa依存性について調べた
結果を図6に示す。同図より明らかなように、薄帯の表
面粗さが改善されるに従って磁束密度は向上し、とくに
Raが 0.6μm 以下の範囲でその効果は著しい。そこで、
この発明では、薄帯の表面粗さにつき、中心線平均粗さ
Raで 0.6μm以下の範囲に限定したのである。
In FIGS. 2 and 4, the amount of Mn added is 0.3.
FIG. 6 shows the result of examining the Ra dependence of the magnetic flux density in the case of at%. As is clear from the figure, the magnetic flux density increases as the surface roughness of the ribbon improves,
The effect is remarkable when Ra is 0.6 μm or less. Therefore,
In the present invention, the surface roughness of the ribbon is the center line average roughness.
Ra was limited to the range of 0.6 μm or less.

【0015】[0015]

【作用】次に、この発明において、合金の成分組成を上
記の範囲に限定した理由について説明する。 Fe:75〜82at%(以下単に%で示す) Feは、磁性材料としての性質を決定する上で重要な元素
である。このFe含有量が75%未満では、磁束密度が低い
ので実用的でなく、一方82%を超えると、鉄損が増加
し、また熱的安定性も劣化するので、Fe含有量は75〜82
%の範囲に限定した。より好ましい含有量範囲は80超〜
82%である。
Next, the reason why the composition of the alloy is limited to the above range in the present invention will be explained. Fe: 75 to 82 at% (hereinafter simply expressed as%) Fe is an important element in determining the properties as a magnetic material. When the Fe content is less than 75%, the magnetic flux density is low, which is not practical. On the other hand, when the Fe content exceeds 82%, the iron loss increases and the thermal stability deteriorates.
It was limited to the range of%. More preferable content range is over 80 ~
82%.

【0016】B:7〜15% Bは、非晶質化を容易とする有用元素であるが、含有量
が7%に満たないと、アモルファス化しにくくなり、一
方15%を超えると、磁束密度が下がり、キュリー温度も
低下するので、B含有量は7〜15%の範囲に限定した。
より好ましい含有量範囲は9〜13%である。
B: 7 to 15% B is a useful element for facilitating the amorphization, but if the content is less than 7%, it becomes difficult to amorphize, while if it exceeds 15%, the magnetic flux density is increased. And the Curie temperature also decrease, so the B content is limited to the range of 7 to 15%.
A more preferable content range is 9 to 13%.

【0017】Si:7〜17% Siは、材料の非晶質化を促進すると共に、キュリー点の
熱的安定性に有用な元素であるが、含有量が7%に満た
ないと、キュリー温度が低く実用的でなく、一方17%を
超えると鉄損が増大するので、Si含有量は7〜17%の範
囲に限定した。より好ましい含有量範囲は7〜10%であ
る。
Si: 7 to 17% Si is an element that promotes the amorphization of the material and is useful for the thermal stability of the Curie point, but if the content is less than 7%, the Curie temperature is Is low and not practical, and if it exceeds 17%, the iron loss increases, so the Si content was limited to the range of 7 to 17%. A more preferable content range is 7 to 10%.

【0018】Mn:0.2 %以上、 0.5%未満 Mnは、材料の鉄損低減に有効な元素であるが、含有量が
0.2%未満では鉄損の改善効果に乏しく、一方 0.5%以
上ではMn添加量の増加に伴って磁束密度の低下を招くと
同時に脆化も高まるので、Mn量は 0.2%以上、 0.5%未
満の範囲に限定した。
Mn: 0.2% or more and less than 0.5% Mn is an element effective in reducing iron loss of the material, but its content is
If it is less than 0.2%, the effect of improving the iron loss is poor, while if it is more than 0.5%, the magnetic flux density decreases with the increase of the Mn addition amount, and at the same time, the embrittlement increases, so the Mn content should be 0.2% or more and less than 0.5%. Limited to the range.

【0019】さて上記の成分組成範囲に調整した溶鋼を
急冷凝固処理することによって非晶質合金が得られる
が、その製造工程中とくに急冷凝固処理を大気中で行う
と材料の脆化を生じる。この材料の脆化は、例えば巻き
トランス製作時に破断等のトラブルの原因となる。この
ようなトラブル防止には材料の臨界曲げ高さが小さいほ
ど効果があり、密着曲げ可能なものが最善である。例え
ば、密着曲げ可能なものの剪断不良発生率はゼロであ
り、臨界曲げ高さが0.10mmであるものの剪断不良発生率
は 0.2%、また臨界曲げ高さが0.25mmであるもののトラ
ブル発生率は 0.8%であった。そこで、この発明では、
急冷凝固処理をH2を1〜4%の範囲で含む CO2雰囲気中
で行うことにより、表面粗さをRaで 0.6μm 以下にする
と共に、薄帯表面の酸化を軽減することによって、材料
の脆化を効果的に防止し、併せて磁束密度を改善するの
である。
An amorphous alloy can be obtained by subjecting the molten steel adjusted to the above composition range to a rapid solidification treatment. However, if the rapid solidification treatment is performed in the atmosphere during the manufacturing process, the material becomes brittle. Embrittlement of this material causes troubles such as breakage when manufacturing a winding transformer. The smaller the critical bending height of the material is, the more effective it is in preventing such troubles. For example, the shear failure occurrence rate of those that can be closely bent is zero, the shear failure occurrence rate is 0.2% even when the critical bending height is 0.10 mm, and the trouble occurrence rate is 0.8% when the critical bending height is 0.25 mm. %Met. So, in this invention,
By carrying out the rapid solidification treatment in a CO 2 atmosphere containing H 2 in the range of 1 to 4%, the surface roughness Ra is 0.6 μm or less, and the oxidation of the ribbon surface is reduced, so that the material It effectively prevents embrittlement and also improves the magnetic flux density.

【0020】ここに、急冷凝固時における雰囲気の主要
成分を CO2ガスとしたのは、安価に得られる不活性ガス
であるのに加え、3元素気体であるため、輻射能が高
く、また比重も大きいので、ガス巻き込みによる表面粗
さの低減に効果的に働くとの理由による。また、この C
O2ガス中に混入すべきH2ガス量を1〜4%の範囲に限定
したのは、H2ガス量が1%に満たないと十分な還元性雰
囲気が得られないことから、表面粗さRaを 0.6μm 以下
とすることができないだけでなく、表面酸化の軽減も不
十分となり、一方4%を超えると爆発の危険性など取扱
い上の困難性が増す上に、水素量が多くなると水素が表
面から侵入し脆くなるからである。かくして、脆化のお
それなしに、磁束密度が高く、かつ鉄損の低く非晶質合
金薄帯を得ることができる。
The main component of the atmosphere during the rapid solidification is CO 2 gas, which is an inert gas that can be obtained at a low cost and is a three-element gas, so that it has a high emissivity and a high specific gravity. Since it is also large, it is effective in reducing the surface roughness due to gas entrainment. Also this C
The amount of H 2 gas that should be mixed in O 2 gas is limited to the range of 1 to 4% because the surface roughness of the surface roughness is not sufficient if the amount of H 2 gas is less than 1%. Not only can Ra be less than 0.6 μm, but also the reduction of surface oxidation will be insufficient. On the other hand, if it exceeds 4%, the danger of explosion and other handling difficulties will increase, and if the amount of hydrogen increases. This is because hydrogen penetrates from the surface and becomes brittle. Thus, an amorphous alloy ribbon having a high magnetic flux density and a low iron loss can be obtained without fear of embrittlement.

【0021】[0021]

【実施例】【Example】

実施例1 表1に示すような種々の成分組成に溶製した合金溶湯
を、真空排気後3%H2を含む CO2ガスで置換した雰囲気
槽内で高速で回転するCuロールの表面に射出し、厚み:
25μm 、幅:10mmの非晶質合金薄帯とした後、 320〜42
0 ℃、1時間の磁場中焼鈍を施した。かくして得られた
鉄基非晶質合金薄帯の、鉄損値、磁束密度およびロール
接触面の表面粗さについて測定した結果を、表1に併記
する。
Example 1 Molten alloy melts having various component compositions as shown in Table 1 were injected on the surface of a Cu roll rotating at a high speed in an atmosphere tank in which CO 2 gas containing 3% H 2 was substituted after evacuation. And thickness:
After forming an amorphous alloy ribbon with a width of 25 μm and a width of 10 mm, 320 to 42
Annealing was performed in a magnetic field at 0 ° C. for 1 hour. Table 1 also shows the results of measurement of the iron loss value, magnetic flux density, and surface roughness of the roll contact surface of the iron-based amorphous alloy ribbon thus obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、この発明に従い
得られた非晶質合金薄帯はいずれも、低い鉄損値と高い
磁束密度が得られている。またいずれも、臨界曲げ試験
では密着曲げが可能で、耐脆化の面でも良好であった。
As is clear from Table 1, all the amorphous alloy ribbons obtained according to the present invention have a low iron loss value and a high magnetic flux density. In addition, in both cases, the critical bending test allowed close bending and was also good in terms of embrittlement resistance.

【0024】実施例2 急冷凝固雰囲気以外は、実施例1と同様にしてFe80.6
12Si7Mn0.4組成の鉄基非晶質合金(厚み:25μm )を製
造した。得られた各薄帯のロール接触面の表面粗さおよ
び臨界曲げ高さの急冷凝固時における雰囲気依存性なら
びに磁気特性について調べた結果を、表2に示す。
Example 2 Fe 80.6 B was prepared in the same manner as in Example 1 except for the rapidly solidified atmosphere.
An iron-based amorphous alloy of 12 Si 7 Mn 0.4 composition (thickness: 25 μm) was produced. Table 2 shows the results of an investigation of the surface roughness and the critical bending height of the roll contact surface of each of the obtained ribbons, on the atmosphere dependence and magnetic properties during rapid solidification.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように、急冷凝固時の雰
囲気の違いによって、薄帯の表面粗さおよび臨界曲げ高
さは変化し、この発明を満足する雰囲気で製造した場合
にはいずれも、中心線平均粗さRaは 0.5μm と小さく、
また密着曲げが可能で耐脆化性も良好であった。また、
この発明に従い得られた薄帯はいずれも、高磁束密度で
低鉄損の優れた磁気特性が得られた。これに対し、雰囲
気が不適切な場合はいずれも、中心線平均粗さRaは 0.6
μmを超え、またRaが大きくなるに従って臨界曲げ高さ
も高くなり、脆化が進行した。
As is clear from Table 2, the surface roughness and the critical bending height of the ribbon change depending on the difference in the atmosphere during rapid solidification, and when produced in an atmosphere satisfying the present invention, The centerline average roughness Ra is as small as 0.5 μm,
Further, it was possible to perform tight bending, and the embrittlement resistance was good. Also,
All of the thin strips obtained according to the present invention had excellent magnetic characteristics such as high magnetic flux density and low iron loss. On the other hand, when the atmosphere is inappropriate, the centerline average roughness Ra is 0.6
The critical bending height also increased as the thickness exceeded μm and Ra increased, and embrittlement proceeded.

【0027】[0027]

【発明の効果】かくしてこの発明によれば、Fe−B−Si
系非晶質合金の鉄損を、磁束密度の低下を招くことなし
に、改善することができる。またこの発明では、急冷凝
固処理を少量のH2を含む CO2雰囲気中で行うことによ
り、Mn添加に伴う材料の脆化を効果的に軽減して、トラ
ンス組み立て時におけるトラブルを防止することができ
る。
Thus, according to the present invention, Fe-B-Si
The iron loss of the amorphous alloy can be improved without lowering the magnetic flux density. Further, in the present invention, by carrying out the rapid solidification treatment in a CO 2 atmosphere containing a small amount of H 2 , it is possible to effectively reduce the embrittlement of the material due to the addition of Mn, and prevent troubles during transformer assembly. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe78-a13Si9 Mna 組成の鉄基非晶質合金の、
Mn量と平均鉄損W13/50 との関係を示したグラフであ
る。
FIG. 1 shows an iron-based amorphous alloy having a composition of Fe 78-a B 13 Si 9 Mn a ,
It is a graph showing the relationship between the amount of Mn and the average iron loss W 13/50 .

【図2】Fe78-a13Si9 Mna 組成の鉄基非晶質合金の、
Mn量と磁束密度B10との関係を示したグラフである。
FIG. 2 shows an iron-based amorphous alloy having a composition of Fe 78-a B 13 Si 9 Mn a ,
6 is a graph showing the relationship between the amount of Mn and the magnetic flux density B 10 .

【図3】Fe81-a12Si7 Mna 組成の鉄基非晶質合金の、
Mn量と平均鉄損W13/50 との関係を示したグラフであ
る。
FIG. 3 shows an iron-based amorphous alloy having a composition of Fe 81-a B 12 Si 7 Mna,
It is a graph showing the relationship between the amount of Mn and the average iron loss W 13/50 .

【図4】Fe81-a12Si7 Mna 組成の鉄基非晶質合金の、
Mn量と磁束密度B10との関係を示したグラフである。
FIG. 4 shows an iron-based amorphous alloy having a composition of Fe 81-a B 12 Si 7 Mna,
6 is a graph showing the relationship between the amount of Mn and the magnetic flux density B 10 .

【図5】Fe81-a12Si7 Mna 組成の鉄基非晶質合金の、
急冷凝固時における雰囲気の違いによる臨界曲げ高さ
を、Mn量との関係で示したグラフである。
FIG. 5 shows an iron-based amorphous alloy having a composition of Fe 81-a B 12 Si 7 Mn a ,
It is the graph which showed the critical bending height by the difference of atmosphere at the time of rapid solidification in relation to the amount of Mn.

【図6】Fe77.713Si9Mn0.3組成およびFe80.712Si7M
n0.3組成の鉄基非晶質合金の、中心部平均粗さと磁束密
度との関係を示したグラフである。
FIG. 6 Fe 77.7 B 13 Si 9 Mn 0.3 composition and Fe 80.7 B 12 Si 7 M
6 is a graph showing the relationship between the average roughness of the central part and the magnetic flux density of an iron-based amorphous alloy having an n 0.3 composition.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡部 誠司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼研究所内 (72)発明者 志賀 信勇 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼研究所内 (72)発明者 小沢 三千晴 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Okabe, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Steel Research Laboratory, Kawasaki Steel Co., Ltd. (72) Nobuyuki Shiga, 1 Kawasaki-cho, Chuo-ku, Chiba-shi (72) Inventor Mitsuharu Ozawa 2-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Kawasaki Steel Mfg. Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学式:FeX Y SiZ Mna ここで、75≦X≦82 at % 7≦Y≦15 at % 7≦Z≦17 at % 0.2≦a<0.5 at% で示される組成になり、かつ表面粗さが中心線平均粗さ
Raで 0.6μm 以下であることを特徴とする磁気特性およ
び耐脆化特性に優れた鉄基非晶質合金。
1. A chemical formula: Fe X BY Si Z Mn a where 75 ≦ X ≦ 82 at% 7 ≦ Y ≦ 15 at% 7 ≦ Z ≦ 17 at% 0.2 ≦ a <0.5 at% And the surface roughness is the centerline average roughness.
An iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance characterized by Ra of 0.6 μm or less.
【請求項2】化学式:FeX Y SiZ Mna ここで、75≦X≦82 at % 7≦Y≦15 at % 7≦Z≦17 at % 0.2≦a<0.5 at% で示される組成になる合金溶湯を、急冷凝固して非晶質
合金を製造するに際し、該急冷凝固処理を1〜4%のH2
を含む CO2雰囲気下で行うことを特徴とする磁気特性お
よび耐脆化特性に優れた鉄基非晶質合金の製造方法。
2. A chemical formula: Fe X BY Si Z Mn a where 75 ≦ X ≦ 82 at% 7 ≦ Y ≦ 15 at% 7 ≦ Z ≦ 17 at% 0.2 ≦ a <0.5 at% When an amorphous alloy is produced by rapid solidification of the molten alloy to form an amorphous alloy, the rapid solidification treatment is performed by adding 1 to 4% H 2
A method for producing an iron-based amorphous alloy having excellent magnetic properties and embrittlement resistance, which is characterized in that it is carried out in a CO 2 atmosphere containing iron.
JP6237081A 1994-04-14 1994-09-30 Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production Pending JPH07331396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6237081A JPH07331396A (en) 1994-04-14 1994-09-30 Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-75833 1994-04-14
JP7583394 1994-04-14
JP6237081A JPH07331396A (en) 1994-04-14 1994-09-30 Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production

Publications (1)

Publication Number Publication Date
JPH07331396A true JPH07331396A (en) 1995-12-19

Family

ID=26416993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6237081A Pending JPH07331396A (en) 1994-04-14 1994-09-30 Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production

Country Status (1)

Country Link
JP (1) JPH07331396A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787814A1 (en) * 1996-01-31 1997-08-06 Kawasaki Steel Corporation Low boron amorphous alloy and process for producing same
JPH09268354A (en) * 1996-01-31 1997-10-14 Kawasaki Steel Corp Low boron amorphous alloy excellent in magnetic property and its production
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
EP1485512A2 (en) * 2002-02-11 2004-12-15 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
US7517415B2 (en) 2003-06-02 2009-04-14 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US7763125B2 (en) 2003-06-02 2010-07-27 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
JP2010240692A (en) * 2009-04-06 2010-10-28 Nippon Steel Corp Amorphous alloy ribbon
JP2013209681A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Iron-based amorphous alloy thin strip
US9051630B2 (en) 2005-02-24 2015-06-09 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities
JPWO2017090402A1 (en) * 2015-11-26 2018-09-13 日立金属株式会社 Fe-based amorphous alloy ribbon
US10519534B2 (en) 2013-07-30 2019-12-31 Jfe Steel Corporation Iron-based amorphous alloy thin strip
USRE47863E1 (en) 2003-06-02 2020-02-18 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787814A1 (en) * 1996-01-31 1997-08-06 Kawasaki Steel Corporation Low boron amorphous alloy and process for producing same
JPH09268354A (en) * 1996-01-31 1997-10-14 Kawasaki Steel Corp Low boron amorphous alloy excellent in magnetic property and its production
US6273967B1 (en) 1996-01-31 2001-08-14 Kawasaki Steel Corporation Low boron amorphous alloy and process for producing same
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
US7067020B2 (en) 2002-02-11 2006-06-27 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
EP1485512A4 (en) * 2002-02-11 2005-08-31 Univ Virginia Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
EP1485512A2 (en) * 2002-02-11 2004-12-15 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
US7517415B2 (en) 2003-06-02 2009-04-14 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US7763125B2 (en) 2003-06-02 2010-07-27 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
USRE47863E1 (en) 2003-06-02 2020-02-18 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US9051630B2 (en) 2005-02-24 2015-06-09 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities
JP2010240692A (en) * 2009-04-06 2010-10-28 Nippon Steel Corp Amorphous alloy ribbon
JP2013209681A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Iron-based amorphous alloy thin strip
US10519534B2 (en) 2013-07-30 2019-12-31 Jfe Steel Corporation Iron-based amorphous alloy thin strip
JPWO2017090402A1 (en) * 2015-11-26 2018-09-13 日立金属株式会社 Fe-based amorphous alloy ribbon

Similar Documents

Publication Publication Date Title
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
JP4310480B2 (en) Amorphous alloy composition
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
EP2130936A1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
KR20090113314A (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
CN101194039A (en) Thin ribbon of amorphous iron alloy
JPH07331396A (en) Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JP6077445B2 (en) Ferromagnetic amorphous alloy ribbons and their manufacture
JP2006312777A (en) Rapidly cooled and solidified thin strip having excellent soft magnetic characteristics
JP3432661B2 (en) Fe-based amorphous alloy ribbon
CN106906431A (en) A kind of Fe-based amorphous alloy and preparation method thereof
JPH09268354A (en) Low boron amorphous alloy excellent in magnetic property and its production
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
US5522947A (en) Amorphous iron based alloy and method of manufacture
JPH09143640A (en) Wide amorphous alloy foil for power transformer iron core
JP3124690B2 (en) Iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance and method for producing the same
JP2541383B2 (en) High silicon steel sheet with excellent soft magnetic properties
KR100360762B1 (en) Iron Amorphous Alloy Strip for Winding Trans
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP3366681B2 (en) Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability
JPH02225621A (en) Production of high permeability magnetic material
JPH11229096A (en) Nonoriented silicon steel sheet and its production
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2908723B2 (en) Iron-based amorphous alloy ribbon for winding transformer
KR100358592B1 (en) Iron amorphous alloy with excellent magnetic properties and excellent fracture resistance and its manufacturing method