JPH0151761B2 - - Google Patents

Info

Publication number
JPH0151761B2
JPH0151761B2 JP55122785A JP12278580A JPH0151761B2 JP H0151761 B2 JPH0151761 B2 JP H0151761B2 JP 55122785 A JP55122785 A JP 55122785A JP 12278580 A JP12278580 A JP 12278580A JP H0151761 B2 JPH0151761 B2 JP H0151761B2
Authority
JP
Japan
Prior art keywords
light
measured
reflected light
reflected
reference position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55122785A
Other languages
Japanese (ja)
Other versions
JPS5746105A (en
Inventor
Yasuo Sakai
Shozo Ogata
Mitsuo Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP12278580A priority Critical patent/JPS5746105A/en
Publication of JPS5746105A publication Critical patent/JPS5746105A/en
Publication of JPH0151761B2 publication Critical patent/JPH0151761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、研削表面の連続して変化する幾何学
的な形状変化である“うねり”(これは微小角度
の変化としても考えることができる)すなわち例
えば圧延ロール表面などの研削ひびりを光てこに
より測定する光学式ひびり測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to reduce waviness, which is a continuously changing geometric shape change (which can also be thought of as a small angular change) of a grinding surface, such as a rolling roll surface. This invention relates to an optical crack measurement method for measuring grinding cracks using an optical lever.

研削表面などの被測定面に小断面積の光をほぼ
垂直に当てつつ被測定面を移動させ、この被測定
面からの反射光の反射角度の変化からびびりを検
出するものとして特公昭52−1307号公報に示され
たものが提案されている。この検出装置は、第1
図に示すように、適当な線光源1からの光を絞り
2を通してコンデンサーレンズ3により集束さ
せ、この線光源1の像を縮少してピンホール5の
位置に結像させ、この像をコンデンサーレンズ6
によつて被測定面11に結ばせるようになつてい
る。ただし、コンデンサーレンズ6のすぐあと
に、第2図に拡大して示すような例えば略長方形
のスリツト7aを有するスリツト板7があつて、
その長手方向を研削方向(第1図および第2図に
おいて上下方向)に対し直角な方向に向けて、対
物レンズ9の集点位置に置いてある。4は光の熱
雑音を取除くための水槽、10は光束光量を一層
効果的に被測定面11に入反射させるための円筒
レンズ、8および20は半透明鏡で観察窓23に
て入射光束の位置を確認すると共にコンデンサー
レンズ21にて入射光束を光電素子22に当てて
入射光量を検知し、図示しないコントローラによ
り線光源1の光量を所定値に保つためのものであ
る。
To detect chatter from changes in the angle of reflection of the light reflected from the surface, the surface to be measured is moved while shining light of a small cross-sectional area almost perpendicularly onto the surface to be measured, such as a ground surface. The one shown in Publication No. 1307 has been proposed. This detection device has a first
As shown in the figure, light from a suitable linear light source 1 is passed through an aperture 2 and focused by a condenser lens 3, the image of this linear light source 1 is reduced and formed at the position of a pinhole 5, and this image is passed through the condenser lens. 6
It is designed to be connected to the surface to be measured 11 by. However, immediately after the condenser lens 6, there is a slit plate 7 having, for example, a substantially rectangular slit 7a as shown enlarged in FIG.
It is placed at the focal point position of the objective lens 9 with its longitudinal direction perpendicular to the grinding direction (vertical direction in FIGS. 1 and 2). 4 is a water tank for removing thermal noise of light; 10 is a cylindrical lens for more effectively reflecting the amount of light flux into the surface to be measured 11; 8 and 20 are semi-transparent mirrors that reflect the incident light flux at observation window 23; This is to confirm the position of the linear light source 1, detect the amount of incident light by directing the incident light beam onto the photoelectric element 22 using the condenser lens 21, and maintain the amount of light from the linear light source 1 at a predetermined value by a controller (not shown).

被測定面11からの反射光は、前記円筒レンズ
10、対物レンズ9を介して半透明鏡8により第
1図において下方へ向けられ、較正装置12によ
り前記スリツト7aの両端の円弧状部分に相当す
る端部をカツトされ、反射鏡13を経て、コンデ
ンサーレンズ14により集束され、半透明鏡15
により第1図において下方へ向けられ、その全体
が常に光電素子16に当り、また半透明鏡15を
通過して直進した反射光は、プリズム17にて2
分され、光電素子18,19にそれぞれ当るよう
になつている。前記プリズム17はその先端の稜
線が研削方向に対して直角方向に配置され、かつ
この稜線は反射光が被測定面11から垂直に反射
しているとき、反射光を第1図において2等分す
る位置に置かれている。この反射光が2分される
位置すなわちプリズム17の先端の稜線の位置を
基準位置という。
The reflected light from the surface 11 to be measured is directed downward in FIG. The end is cut off, passes through a reflecting mirror 13, is focused by a condenser lens 14, and is focused by a semi-transparent mirror 15.
The reflected light, which is directed downward in FIG.
The photoelectric elements 18 and 19 are arranged so as to correspond to the photoelectric elements 18 and 19, respectively. The ridgeline at the tip of the prism 17 is arranged in a direction perpendicular to the grinding direction, and this ridgeline divides the reflected light into two equal parts in FIG. 1 when the reflected light is vertically reflected from the surface to be measured 11. is placed in a position to do so. The position where this reflected light is divided into two, ie, the position of the ridgeline at the tip of the prism 17, is called a reference position.

しかして、前記のように被測定面11の照射個
所が入射光に対して垂直であれば、光電素子1
8,19はそれぞれ等しい反射光量を受けるが、
被測定面11の照射個所が傾いていると、反射光
が傾くため、前記光電素子18,19に当る反射
光量が変化する。この変化から被測定面11の幾
何学的うねりを検知するものである。
Therefore, if the irradiation point on the surface to be measured 11 is perpendicular to the incident light as described above, the photoelectric element 1
8 and 19 each receive the same amount of reflected light, but
If the irradiation point on the surface to be measured 11 is tilted, the reflected light will be tilted, and the amount of reflected light hitting the photoelectric elements 18 and 19 will change. The geometric waviness of the surface to be measured 11 is detected from this change.

第3図は、第1図に示した装置の光路を短縮し
て、その原理を示した図で、第1図と同一部分に
は同一符号を用いてある。なお、同図は測定方向
(同図において左右方向)に2hの巾の光を被測定
面11に投射し、被測定面11から距離l(ただ
し、うねりによる変化分は無視する)の位置に隣
接させて設置した光電素子18,19にて反射光
を受けるようにしてある。この図から明らかなよ
うに、光電素子18,19がそれぞれ受光する光
量は、光電素子18と19の境界すなわち前述し
た基準位置に当る反射光がどの位置の入射光かを
求めれば、この位置すなわち第3図において(x
+q)位置にて2分される入射光の割合α:βと
して知ることができる。
FIG. 3 is a diagram illustrating the principle of the apparatus shown in FIG. 1 by shortening its optical path, and the same parts as in FIG. 1 are denoted by the same reference numerals. In addition, in the figure, a light with a width of 2h is projected onto the surface to be measured 11 in the measurement direction (horizontal direction in the figure), and the light is projected at a distance l from the surface to be measured 11 (however, the change due to waviness is ignored). The reflected light is received by photoelectric elements 18 and 19 placed adjacent to each other. As is clear from this figure, the amount of light received by each of the photoelectric elements 18 and 19 can be determined by determining at which position the reflected light that hits the boundary between the photoelectric elements 18 and 19, that is, the reference position mentioned above, is incident. In Figure 3, (x
+q) It can be known as the ratio α:β of the incident light divided into two at the position.

いま、被測定面11の幾何学的うねりの曲線を
y=f(ξ)とし、xおよび(x+q)位置にお
けるこの曲線とξ軸(測定方向と平行な軸)との
なす角をそれぞれθおよびφとすると、近似的に
次式が成立する。
Now, let the curve of the geometric waviness of the surface to be measured 11 be y=f(ξ), and the angles formed between this curve and the ξ axis (axis parallel to the measurement direction) at the x and (x+q) positions are θ and θ, respectively. When φ is assumed, the following equation approximately holds true.

tanφtanθ+qd2y/dx2 ………(1) q2l tanφであるから、これを(1)式に代入し
てqを求めると、 q2l/1−2ld2y/dx2・tanθ となり、tanθ=dy/dxであるから q2l/1−2ld2y/dx2・dy/dx ………(2) この(2)式から明らかなようにqの基本式はdy/dx であり、前記曲線の微分値にほぼ比例している。
ただし、(2)式中、2lは倍率、 1/1−2ld2y/dx2 は測定精度である。
tanφtanθ+qd 2 y/dx 2 ………(1) Since q2l tanφ, substituting this into equation (1) to find q yields q2l/1−2ld 2 y/dx 2・tanθ, and tanθ=dy /dx, so q2l/1−2ld 2 y/dx 2・dy/dx ………(2) As is clear from equation (2), the basic formula for q is dy/dx, and the differential of the above curve It is almost proportional to the value.
However, in formula (2), 2l is the magnification, and 1/1-2ld 2 y/dx 2 is the measurement accuracy.

したがつて、前記qを積分すれば、前記曲線す
なわち被測定面11の幾何学的うねりを求めるこ
とができ、このqは前記α:βとの関係すなわち
光電素子18,19の受光量の関係から求められ
るので、これらの光電素子18,19の検出値か
らqを算出してこれを積分すれば幾何学的うねり
が求められることになる。
Therefore, by integrating the above-mentioned q, it is possible to obtain the above-mentioned curve, that is, the geometric waviness of the surface to be measured 11, and this q can be determined by the above-mentioned relationship α:β, that is, the relationship between the amount of light received by the photoelectric elements 18 and 19. Therefore, by calculating q from the detection values of these photoelectric elements 18 and 19 and integrating it, the geometric waviness can be found.

なお、qは(α−h)または(h−β)とし
て、いずれか一方の光電素子18または19から
の受光量のみからも求められるが、測定精度を高
めるために、両光電素子18,19の受光量の差
から求める方が好ましい。この関係は次のように
して求められる。
Note that q can be determined as (α-h) or (h-β) from only the amount of light received from either one of the photoelectric elements 18 or 19, but in order to improve measurement accuracy, both photoelectric elements 18 and 19 It is preferable to calculate it from the difference in the amount of light received. This relationship can be found as follows.

2h=α+β ………(3) いま t=α−β ………(4) とおくと (4)式からβ=α−tであるから、これを(3)式に
代入して整理すると、 α−h=t/2=q ………(5) また(4)式からα=β+tであるから、これを(3)
式に代入して整理すると、 h−β=t/2=q ………(6) となり、受光範囲の差tの1/2としてqを求める
ことができる。
2h=α+β ………(3) Now t=α−β ………(4) From equation (4), β=α−t, so if we substitute this into equation (3) and rearrange it, we get , α−h=t/2=q……(5) Also, from equation (4), α=β+t, so this can be expressed as (3)
Substituting into the equation and rearranging, h-β=t/2=q (6), and q can be found as 1/2 of the difference t in the light receiving range.

しかしながら、前述した説明は、被測定面11
に光沢むらがなく、反射率が常に一定の場合に成
立するものであり、実際の研削面は幾何学的うね
りとは別に光沢むらが多く存在するため、前記の
ように光電素子18,19の検出値に基ずいて積
分しても正しい幾何学的うねりを求めることはで
きない。
However, the above explanation does not apply to the surface to be measured 11.
This is true when there is no unevenness in gloss and the reflectance is always constant.In actual ground surfaces, there are many unevenness in gloss apart from geometric undulations, so as mentioned above, the photoelectric elements 18 and 19 Correct geometric waviness cannot be determined by integrating based on detected values.

本発明は、前記の光沢むらがあつてもこれを考
慮に入れて正しい幾何学的うねりを求め得るよう
にした光学的びびり測定方法を提供するものであ
る。
The present invention provides an optical chatter measuring method that takes into consideration the unevenness of gloss and determines correct geometric waviness.

以下前述した第3図ないし同図に対応させて画
いた被測定面11の光沢度V=H(ξ)を示す第
4図を用いて本発明を詳細に説明する。第4図に
示すように、第3図に示す被測定面11に光沢む
らが存在したとすると、光電素子18の受光量
Vαと他方の光電素子19の受光量Vβは次の(7)、
(8)式で表わされる。
Hereinafter, the present invention will be explained in detail using FIG. 4, which shows the glossiness V=H(ξ) of the surface to be measured 11, which is drawn in correspondence with FIGS. 3 and 3 described above. As shown in FIG. 4, if uneven gloss exists on the surface to be measured 11 shown in FIG.
Vα and the amount of light received by the other photoelectric element 19, Vβ, are as follows (7):
It is expressed by equation (8).

Vα=∫(x+q) (x-h)H(ξ)dξ ………(7) Vβ=∫(x+h) (x+q)H(ξ)dξ ………(8) すなわち、第3図に示す入射光のうちαで示す
範囲の光が被測定面11で反射されて光電素子1
8に入る光量は、第4図に右上りの斜線部で示す
面積Vαとなり、他方入射光のうちβで示す範囲
の光が被測定面11で反射されて光電素子19に
入る光量は、第4図に右下りの斜線部で示す面積
Vβとなる。
Vα=∫ (x+q) (xh) H(ξ)dξ ………(7) Vβ=∫ (x+h) (x+q) H(ξ)dξ ………(8) That is, the third Of the incident light shown in the figure, light in the range indicated by α is reflected by the surface to be measured 11 and the photoelectric element 1
The amount of light that enters the photoelectric element 19 is the area Vα shown by the hatched area on the upper right in FIG. The area indicated by the diagonal line on the lower right in Figure 4
It becomes Vβ.

しかして、前記光沢度V=H(ξ)は、第1図
に示した光電素子16の出力または光電素子1
8,19の出力の和Uから後述するようにして求
められ、上記(7)、(8)式中、Vα、Vβ、hは既知の
値であるため、同(7)または(8)式から求めるべきx
位置におけるqの値を知ることができる。
Therefore, the glossiness V=H(ξ) is the output of the photoelectric element 16 shown in FIG.
It is obtained from the sum U of the outputs of 8 and 19 as described later, and in the above equations (7) and (8), Vα, Vβ, and h are known values, so the equation (7) or (8) x to be found from
The value of q at the position can be known.

このqは、第4図から明らかなように光沢度を
加算して求めたものであるため、該qをξ軸方向
の各x位置にて求めたq(ξ)を積分すれば、光
沢むらを有する被測定面11であつても幾何学的
うねりを正しく求めることができる。
As is clear from Figure 4, this q is obtained by adding the glossiness, so by integrating q(ξ) obtained at each x position in the ξ-axis direction, the unevenness of gloss can be determined. Even if the surface to be measured 11 has a geometric waviness, it is possible to accurately determine the geometric waviness.

なお、前記VαおよびVβは、それぞれの光電素
子18,19から直接取出してもよいが、前述し
た場合と同様にVαとVβの差Tと和(全反射光量
であるから光電素子16の出力でもよい)Uとか
ら求めることが好ましい。これらは次の(9)、(10)式
の関係があるため、同式から(11)、(12)式として求め
られる。
Incidentally, the above Vα and Vβ may be taken out directly from the respective photoelectric elements 18 and 19, but as in the case described above, the difference T and the sum of Vα and Vβ (since it is the amount of total reflection light, the output of the photoelectric element 16 is also taken out). It is preferable to find it from U). Since these are related by the following equations (9) and (10), they can be obtained from the same equations as equations (11) and (12).

T=Vα−Vβ ………(9) U=Vα+Vβ ………(10) Vα=U+T/2 ………(11) Vβ=U−T/2 ………(12) しかして、前記光沢度V=H(ξ)は、あらか
じめ光沢むらや幾何学的うねりのない例えばブロ
ツクゲージの平面に光を当て、このときの全反射
光量をUとし、光の巾を2hとしたときは、 2hV=U ………(13) なる関係が成立するので、 全反射光量Uに1/2hを掛け合せることによ
つて求められる。
T=Vα−Vβ……(9) U=Vα+Vβ……(10) Vα=U+T/2……(11) Vβ=U−T/2……(12) Therefore, the above glossiness V=H(ξ) is given by shining light onto a flat surface of a block gauge, for example, which has no uneven gloss or geometric undulations, and when the amount of total reflected light at this time is U and the width of the light is 2h, then 2hV= U......(13) Since the following relationship holds true, it can be found by multiplying the amount of total reflected light U by 1/2h.

なお、光沢むらが存在する場合には、そのとき
の全反射光量Uに1/2hを掛け合せれば、光を
当てている2h巾の範囲内の平均の光沢度が求め
られる。このように光の巾が広いと光沢度が平準
化されてしまい、修正係数を掛け合せることなど
により修正する必要が生じ、正確な光沢度が求め
られないので、前記光の巾の2hはできるだけ狭
い方がよい。しかしながら、光電素子18,19
にて被測定面11の傾きを検知するための光の巾
は、この傾きによつて反射光が傾いても常に光電
素子18,19にまたがつて反射光が当るように
しなければならないため、被測定面11の精度が
悪い場合にはあまり狭くできないので、別々の光
学系にて同期させつつ検出するようにしてもよ
い。しかし、本発明は、一般に圧延ロールの表面
のようにきわめてわずかで機械的な測定では測定
できないような幾何学的うねりの測定を対象とし
ているため、敢えて別々の光学系を用いなくても
実用上差支えない。
In addition, when uneven gloss exists, by multiplying the total reflected light amount U at that time by 1/2h, the average glossiness within the 2h width range where the light is irradiated can be determined. If the width of the light is wide in this way, the glossiness will be leveled out, and it will be necessary to correct it by multiplying by a correction coefficient, etc., and accurate glossiness cannot be obtained. Narrower is better. However, the photoelectric elements 18, 19
The width of the light for detecting the inclination of the surface to be measured 11 must be such that even if the reflected light is tilted due to this inclination, the reflected light always hits the photoelectric elements 18 and 19. If the precision of the surface to be measured 11 is poor, it may not be possible to narrow it down very much, so detection may be performed in synchronization using separate optical systems. However, since the present invention generally targets the measurement of geometric waviness such as the surface of a rolling roll, which is extremely slight and cannot be measured by mechanical measurement, it is not practical to use a separate optical system. No problem.

なお、前述した(7)または(8)式からqを求める具
体的計算例を次に示す。第4図に示すように、x
位置を中心として±hの2hのピツチで読込んだ
光沢度Vの値をVi、Vi+1とし、計算を簡単にす
るため、2h間は直線近似とすると、(x+q)位
置における光沢度Vは下式で表わされる。
A specific calculation example for determining q from the above-mentioned equation (7) or (8) is shown below. As shown in Figure 4, x
Let the value of the glossiness V read at a 2h pitch of ±h centering on the position be Vi, V i+1 , and to simplify the calculation, assume a straight line approximation between 2h, then the glossiness at the (x+q) position is V is expressed by the following formula.

V′=Vi+(Vi+1−Vi)h+q/2h ………(14) また前記x位置における測定時の面積Vαは下
式で表わされる。
V′=Vi+(V i+1 −Vi)h+q/2h (14) Furthermore, the area Vα during measurement at the x position is expressed by the following formula.

Vα1/2(h+q)(Vi+V′) ………(15) 上記(14)式を(15)式に代入して整理する
と、下式となる。
Vα1/2(h+q)(Vi+V') (15) Substituting the above equation (14) into equation (15) and rearranging it, the following equation is obtained.

Aq2+2Bq+CO ………(16) たゞし A=Vi+1−Vi B=h(Vi+Vi+1) C=(3Vi+Vi+1)h2−4hVα この(16)式から妥当な1つの根qを求めると
下式となる。
Aq 2 +2Bq+CO……(16) A=V i+1 −Vi B=h(Vi+V i+1 ) C=(3Vi+V i+1 )h 2 −4hVα From this equation (16), a valid 1 is obtained. Finding the root q of q gives the following formula.

q−B+√B2−AC/A ………(17) このようにして各x位置におけるqすなわちq
(ξ)を求めてこれを積分すれば、被測定面11
の幾何学的うねりy=f(ξ)が得られる。
q−B+√B 2 −AC/A ………(17) In this way, q at each x position, that is, q
(ξ) and integrate it, the surface to be measured 11
The geometric waviness y=f(ξ) is obtained.

以上述べたように本発明によれば、被測定面に
光沢むらがあつてもそれに関係なく該被測定面の
幾何学的うねりをより正しく検出することができ
る。
As described above, according to the present invention, even if the surface to be measured has uneven gloss, the geometric undulations of the surface to be measured can be detected more accurately regardless of the unevenness of gloss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用する光学式びびり測定装
置の1例を示す光学系配置を示した説明図、第2
図はスリツト板の1例を示す拡大正面図、第3図
は第1図に示した光学式びびり測定装置の光路を
短縮して示す原理図、第4図は被測定面の光沢度
と光電素子の受光量との関係を示すグラフであ
る。 1……線光源、2……絞り、3,6,14,2
1……コンデンサーレンズ、4……水槽、5……
ピンホール、7……スリツト板、7a……スリツ
ト、8,15,20……半透明鏡、9……対物レ
ンズ、10……円筒レンズ、11……被測定面、
12……較正装置、13……反射鏡、16,1
8,19,22……光電素子、17……プリズ
ム、23……観察窓。
FIG. 1 is an explanatory diagram showing an optical system arrangement showing one example of an optical chatter measuring device applied to the present invention, and FIG.
The figure is an enlarged front view showing an example of a slit plate, Figure 3 is a principle diagram showing the shortened optical path of the optical chatter measuring device shown in Figure 1, and Figure 4 shows the glossiness of the surface to be measured and the photovoltaic It is a graph showing the relationship with the amount of light received by the element. 1...Line light source, 2...Aperture, 3, 6, 14, 2
1...Condenser lens, 4...Aquarium, 5...
Pinhole, 7... Slit plate, 7a... Slit, 8, 15, 20... Semi-transparent mirror, 9... Objective lens, 10... Cylindrical lens, 11... Surface to be measured,
12...Calibration device, 13...Reflector, 16,1
8, 19, 22...photoelectric element, 17...prism, 23...observation window.

【特許請求の範囲】[Claims]

1 芯筒にシートをロール状に巻取つてなるロー
ルシートの残長を測定するに際し、 1回転以上離れた任意の2点の各点における外
周長を、各点付近で2回転以上回転させて得られ
る外周長の合計より求め、 更に前記芯筒の外周長により、任意の1点から
芯筒の外周に至るまでのターン数を算出し、 前記算出済みのロールシートの任意の1点にお
ける外周長と芯筒の外周長とを夫々対向する平行
2辺の長さとし、かつ前記算出済のターン数を高
さの関数とする台形を想定し、 この台形の面積を求めることによつて、前記任
意の1点から芯筒外周までのロールシートの残長
を算出する ことを特徴とするロールシートの残長測定方法。
1. When measuring the remaining length of a rolled sheet wound around a core tube, measure the outer circumference at each point at any two points separated by at least one rotation, and rotate the sheet at least two times around each point. Calculate the number of turns from an arbitrary point to the outer circumference of the core cylinder using the outer circumference length of the core cylinder, and calculate the outer circumference at any one point of the calculated roll sheet. Assuming a trapezoid in which the length and the outer circumference of the core tube are the lengths of two opposing parallel sides, and the calculated number of turns is a function of the height, and by finding the area of this trapezoid, A method for measuring the remaining length of a roll sheet, comprising calculating the remaining length of the roll sheet from an arbitrary point to the outer periphery of a core cylinder.

Claims (1)

【特許請求の範囲】 1 被測定面にほぼ垂直に略矩形の小断面積の光
を当てつつ前記被測定面を測定方向(ξ軸)へ移
動させ、被測定面からの前記光の全反射光量Uを
検出して光沢度V=H(ξ)を求めると共に、光
学系の基準位置にて前記光またはこの光と同様に
被測定面に当てた別の光の反射光を測定方向に2
分して少なくともいずれか一側の反射光量Vαま
たはVβを検出し、 Vα=∫(x+q) (x-h)H(ξ)dξ または Vβ=∫(x+h) (x+q)H(ξ)dξ からξ軸方向の各x位置におけるqの値すなわち
q(ξ)を求め、次いで前記q(ξ)を積分して前
記被測定面の幾何学的うねりを求めることを特徴
とする光学式びびり測定方法。 ただし、上式中hは前記の2分される光の測定
方向の巾の1/2、qは前記基準位置にて2分され
る反射光の被測定面上における分岐位置と前記x
位置との距離。 2 反射光が被測定面から垂直に反射するときこ
の反射光を2等分するように基準位置を定め、こ
の基準位置にて2分された反射光量の差Tを検出
し、この差Tと全反射光量Uから下式によりVα
またはVβを求めるようにした特許請求の範囲第
1項記載の化学式びびり測定方法。 Vα=U+T/2、Vβ=U−T/2
[Scope of Claims] 1. The surface to be measured is moved in the measurement direction (ξ-axis) while applying light of a small cross-sectional area of a substantially rectangular shape almost perpendicularly to the surface to be measured, and the light is totally reflected from the surface to be measured. The amount of light U is detected to determine the glossiness V=H (ξ), and at the reference position of the optical system, the reflected light of the above-mentioned light or another light similarly applied to the surface to be measured is 2 times in the measurement direction.
Vα=∫ (x+q) (xh) H(ξ)dξ or Vβ=∫ (x+h) (x+q) H( ξ) An optical system characterized by determining the value of q at each x position in the ξ-axis direction from dξ, that is, q(ξ), and then integrating the q(ξ) to determine the geometric waviness of the surface to be measured. Chattering measurement method. However, in the above formula, h is 1/2 of the width in the measurement direction of the light that is divided into two, and q is the branch position on the surface to be measured of the reflected light that is divided into two at the reference position and the x
distance from location. 2. Set a reference position so as to divide the reflected light into two equal parts when the reflected light is reflected perpendicularly from the surface to be measured, detect the difference T between the amounts of reflected light divided into two at this reference position, and calculate this difference T and From the total reflected light amount U, Vα is calculated by the following formula.
or the chemical formula chatter measuring method according to claim 1, wherein Vβ is determined. Vα=U+T/2, Vβ=U-T/2
JP12278580A 1980-09-04 1980-09-04 Optical chatter measurement Granted JPS5746105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12278580A JPS5746105A (en) 1980-09-04 1980-09-04 Optical chatter measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12278580A JPS5746105A (en) 1980-09-04 1980-09-04 Optical chatter measurement

Publications (2)

Publication Number Publication Date
JPS5746105A JPS5746105A (en) 1982-03-16
JPH0151761B2 true JPH0151761B2 (en) 1989-11-06

Family

ID=14844545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12278580A Granted JPS5746105A (en) 1980-09-04 1980-09-04 Optical chatter measurement

Country Status (1)

Country Link
JP (1) JPS5746105A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036644B2 (en) * 2008-07-03 2012-09-26 住友重機械工業株式会社 Surface inspection method and chatter mark inspection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065254A (en) * 1973-10-09 1975-06-02
JPS521307A (en) * 1975-06-24 1977-01-07 Nissan Motor Co Ltd Gas engine
JPS521307U (en) * 1975-06-23 1977-01-07
JPS5948324A (en) * 1982-09-07 1984-03-19 Taihei Mach Works Ltd Device for orienting cut chips of lumber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065254A (en) * 1973-10-09 1975-06-02
JPS521307U (en) * 1975-06-23 1977-01-07
JPS521307A (en) * 1975-06-24 1977-01-07 Nissan Motor Co Ltd Gas engine
JPS5948324A (en) * 1982-09-07 1984-03-19 Taihei Mach Works Ltd Device for orienting cut chips of lumber

Also Published As

Publication number Publication date
JPS5746105A (en) 1982-03-16

Similar Documents

Publication Publication Date Title
JP3197529B2 (en) Non-contact measurement method of wheel alignment characteristics and its measurement device
US6987832B2 (en) Calibration and alignment of X-ray reflectometric systems
US5531087A (en) Metal sheet bending machine
JPS6379004A (en) Light probe for measuring shape
JPS63500119A (en) Instruments for measuring surface morphology
JPH01195305A (en) Measurement of thickness for container
CN103344416A (en) Volume holographic transmission grating diffraction efficiency tester
CN110360960A (en) A kind of verticality measuring method and device
JP2618377B2 (en) Apparatus with F-theta corrected telecentric objective for non-contact measurement
CN103245488B (en) A kind of broadband large scale plane raster diffraction efficiency measurer
JPH0151761B2 (en)
JP4547526B2 (en) Microscope Farcus Control Device and Control Method
CN100437023C (en) Device and method for measuring the thickness of a transparent sample
CN115112049A (en) Three-dimensional shape line structured light precision rotation measurement method, system and device
US6771363B1 (en) Device and method for determining a bending angle of a sheet and the use thereof for the angle-bending of sheets
Wang Long-range optical triangulation utilising collimated probe beam
JPS60142204A (en) Dimension measuring method of object
JP3192461B2 (en) Optical measuring device
JPS632322B2 (en)
RU2180428C2 (en) Applied instrument to measure geometric parameters of cylindrical surface of large-sized parts
CN115542672A (en) Focusing and leveling device and photoetching machine
JPH03186709A (en) Optical shape measuring method
Wang et al. Optical triangulation: A dual‐channel configuration
JPS62115315A (en) Laser displacement gauge
JPS5876711A (en) Method and device for measuring surface roughness of rotary body