JPS632322B2 - - Google Patents

Info

Publication number
JPS632322B2
JPS632322B2 JP14799780A JP14799780A JPS632322B2 JP S632322 B2 JPS632322 B2 JP S632322B2 JP 14799780 A JP14799780 A JP 14799780A JP 14799780 A JP14799780 A JP 14799780A JP S632322 B2 JPS632322 B2 JP S632322B2
Authority
JP
Japan
Prior art keywords
measured
inner diameter
measurement
outer diameter
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14799780A
Other languages
Japanese (ja)
Other versions
JPS5772003A (en
Inventor
Yoshiki Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14799780A priority Critical patent/JPS5772003A/en
Publication of JPS5772003A publication Critical patent/JPS5772003A/en
Publication of JPS632322B2 publication Critical patent/JPS632322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、ある波長(可視光であることは要し
ない)に対して実効的に透明な管状の被測定物に
おいてその内径が外径に比較して半分以下程度で
ありかつ内径自体の値も小さい場合に特に有効な
非接触高精度な内径測定方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a tube-shaped object to be measured that is effectively transparent to a certain wavelength (not necessarily visible light) and whose inner diameter is about half or less than the outer diameter. The present invention relates to a non-contact, highly accurate inner diameter measurement method that is particularly effective when the inner diameter itself is small.

上記のような透明管では、普通外径値よりはむ
しろ内径値の方がその性能・使用用途区分に対し
てより大きな意味を持つことが多いが、内径値が
小さい場合にはその内径測定が非常に難しかつ
た。
For transparent tubes such as those mentioned above, the inner diameter value usually has a greater meaning in terms of performance and usage classification than the outer diameter value, but if the inner diameter value is small, the inner diameter measurement is more important than the outer diameter value. It was very difficult.

従来、この種の被測定物の内径測定方法として
は、基準外径の金属性芯棒を被測定物の管内に挿
入して測定するという方法があつた。これは、被
被測定対象となるものの内径値ばらつき範囲を測
定精度から決めた一定ピツチで等分し、それぞれ
の値を外径値として存するような複数の基準芯棒
をあらかじめ用意して、被測定物内径にそれら各
種外径値の芯棒を挿入した時に通すことのできた
芯棒外径の最大値DLと通せなかつた芯棒外径の
最少値DHを見つけ、被測定物内径はDLを越えDH
未満の範囲内であると判定するというものであ
る。しかし上記の方法では内径値をある範囲内に
存在するということしかわからず、精度を高めよ
うとするならば基準芯棒の外径ピツチを細かくす
る必要がある。またこの方法によつて測定される
値は、第1図aおよびbに示すような変形断面を
持つ被測定物の場合では内径プロフアイルに対す
る最大内接円直径を示すこととなり、被測定物の
内径プロフアイルが管軸方向についても異なる場
合ではそれらの各断面における最大内接円直径の
うちで最小のものだけを測定することになる。測
定に際しても、作業者の経験と主観に依る部分が
大きく測定作業に必要な労力も大きい。さらに、
基準芯棒の製作に対しては外径精度や真直度を厳
しく制限する必要があり、その保管にも注意を要
する。
Conventionally, as a method for measuring the inner diameter of this type of object to be measured, there has been a method in which a metal core rod having a standard outer diameter is inserted into a tube of the object to be measured. This is done by dividing the variation range of the inner diameter value of the object to be measured into equal parts at a fixed pitch determined from the measurement accuracy, and preparing in advance a plurality of reference core rods with each value as the outer diameter value. When inserting core rods with various outer diameter values into the inner diameter of the object to be measured, find the maximum value D L of the outer diameter of the core rod that could pass through and the minimum value D H of the outer diameter of the core rod that could not be passed through, and find the inner diameter of the object to be measured. D H over D L
It is determined that the value is within a range less than or equal to However, with the above method, it is only possible to know that the inner diameter value exists within a certain range, and if the accuracy is to be improved, it is necessary to make the outer diameter pitch of the reference core rod finer. In addition, in the case of an object to be measured with a deformed cross section as shown in Figure 1 a and b, the value measured by this method indicates the maximum inscribed circle diameter for the inner diameter profile, and the value measured by this method indicates the maximum inscribed circle diameter for the inner diameter profile. If the inner diameter profiles also differ in the tube axis direction, only the smallest of the maximum inscribed circle diameters in each cross section is measured. Measurement also depends largely on the experience and subjectivity of the operator, and the labor required for the measurement work is also large. moreover,
When manufacturing a reference core rod, it is necessary to strictly limit the outer diameter accuracy and straightness, and care must be taken when storing it.

以上述べたように、従来行なわれている基準芯
棒を用いた測定方法では時間と労力を必要とする
のに対して測定値の精度や信頼度が低いという欠
点がある。
As described above, the conventional measurement method using a reference core rod requires time and labor, and has the disadvantage that the accuracy and reliability of the measured values are low.

他方、非接触型の内径測定方法としては、現在
実用化されている外径測定機を用いて内径を測定
するという方法が考えられる。以下にその測定原
理を第2図を用いて簡単に説明する。
On the other hand, as a non-contact inner diameter measuring method, a method of measuring the inner diameter using an outer diameter measuring machine that is currently in practical use can be considered. The measurement principle will be briefly explained below using FIG. 2.

第2図はこうしたものの一例として、レーザを
用いた外径測定機の従来構成を示した図である。
FIG. 2 is a diagram showing a conventional configuration of an outer diameter measuring device using a laser as an example of such a device.

被測定物11は不透明な円筒状物体であり、音
さ偏向器12レンズ13によつてレーザ発振器1
4から発射されたレーザビームは平行スポツトと
して被測定物11をその中心軸と直交する方向に
走査する。
The object to be measured 11 is an opaque cylindrical object, and the laser oscillator 1 is
The laser beam emitted from 4 scans the object 11 as a parallel spot in a direction perpendicular to its central axis.

走査光は集光レンズ15によつて光電素子16
に受光されるが、走査光が被測定物に当たる場合
受光部での出力レベルが低下し、従つてその出力
波形は受光部出力を縦軸、走査時間を横軸にとる
と第3図のようになる。同図における出力レベル
の立ち下がりから立ち上がりまでの時間Tにレー
ザスポツトの走査スピードVをかけた値TVがす
なわち外径値を表わすというのがこの装置の測定
原理である。ここで測定物としてガラス管等を用
いて同じようにレーザスポツトを走査させた場
合、走査光が内壁と交わる直前と直後の受光部光
電素子の出力レベルに何らかの変化が生じると予
想される。そこで、2回出現するべきこの変化点
を抽出し、その変化点間の時間差と内径値とがあ
る種の相関関係をもつことが発見されたならば、
内径測定機として使用できることになる。しかし
この場合、被測定物自体が走査光に対してレンズ
効果を及ぼすことが考えられ、変化点間の時間差
と内径値との間の関係式は現在のところ解明され
ていない。また、外径測定の場合と比較して出力
レベル変化の度合いも小さく、変化点抽出はかな
り困難であると予想される。
The scanning light is transmitted to a photoelectric element 16 by a condensing lens 15.
However, when the scanning light hits the object to be measured, the output level at the light receiving section decreases, and the output waveform is as shown in Figure 3, with the light receiving section output on the vertical axis and the scanning time on the horizontal axis. become. The measuring principle of this device is that the value TV obtained by multiplying the time T from the fall to the rise of the output level in the figure by the scanning speed V of the laser spot represents the outer diameter value. If a glass tube or the like is used as the object to be measured and the laser spot is scanned in the same way, it is expected that some change will occur in the output level of the light receiving photoelectric element immediately before and after the scanning light intersects with the inner wall. Therefore, if we extract this change point that should appear twice and discover that there is a certain correlation between the time difference between the change points and the inner diameter value,
This means that it can be used as an inner diameter measuring device. However, in this case, it is thought that the object to be measured itself exerts a lens effect on the scanning light, and the relational expression between the time difference between changing points and the inner diameter value has not been elucidated at present. Furthermore, the degree of change in the output level is also small compared to the case of outer diameter measurement, and it is expected that extracting the change point will be quite difficult.

本発明は、従来行われていた芯棒による接触型
の測定方法に対して、測定位置および方向の設定
確認が容易であり、単純な構成と測定作業によつ
て非接触かつ高精度高信頼性である内径測定方法
を提供するものである。
Compared to the conventional contact measurement method using a core rod, the present invention allows easy confirmation of measurement position and direction settings, and provides non-contact, high accuracy and high reliability through simple configuration and measurement work. The present invention provides a method for measuring an inner diameter.

本発明は、被測定物である透明管を、これを透
過し得る波長を含む平行光線中に配し、この透過
光を撮像系に導いて結像させ、被測定物の蔭とし
て生ずる2つの暗部中に輝く2本の輝線の間隔を
像上で計測し、別に用意した被測定物の前記波長
における屈折率と前記計測値とから所望の内径を
間接的に測定することを特徴とする透明管内径測
定方法である。ここで透明という言葉は被測定物
と光源ならびに撮像系との間に存在する関係を表
わし、光源から発射された光に対して、被測定物
はそれを透過し、撮像系はその光量変化をたとえ
ば電気信号のような信号出力の変化として出力で
きるものであれば、被測定物は光源に対して透明
であるということにする。
In the present invention, a transparent tube, which is an object to be measured, is placed in a parallel beam of light that includes a wavelength that can pass through the transparent tube, and this transmitted light is guided to an imaging system to form an image. Transparent, characterized in that the distance between two bright lines shining in a dark area is measured on the image, and the desired inner diameter is indirectly measured from the refractive index at the wavelength of a separately prepared object to be measured and the measured value. This is a method for measuring the inner diameter of a pipe. The word transparent here refers to the relationship that exists between the object to be measured, the light source, and the imaging system; the object to be measured transmits the light emitted from the light source, and the imaging system detects changes in the amount of light. For example, if the object to be measured can be output as a change in signal output such as an electric signal, it is assumed that the object to be measured is transparent to the light source.

次に本発明の構成と測定原理を第4図、第5図
第6図、第7図ならびに第8図を用いて詳細に説
明する。
Next, the configuration and measurement principle of the present invention will be explained in detail using FIGS. 4, 5, 6, 7, and 8.

第4図は本発明の一実施例の斜視図である。被
測定物はガラス管21であり、被測定物保持部2
2によつて鉛直に固定されている。平行光源23
としてはタングステンランプとレンズ系を用いて
おり、被測定物の中心軸上で測定しようとする位
置および方向から照明する。撮像系には撮像用ビ
ジコンカメラ24と撮像レンズ系25を用い、光
源と反対側から測定箇所を撮像するように配置す
る。上記撮像系は、焦点位置合わせが可能なよう
にガイドを持つた撮像系保持部26の上に載せて
ある。27は撮像用ビジコンカメラの映像信号を
見るためのモニタである。
FIG. 4 is a perspective view of one embodiment of the present invention. The object to be measured is a glass tube 21, and the object to be measured holder 2
It is fixed vertically by 2. Parallel light source 23
The method uses a tungsten lamp and a lens system, and illuminates the object from the position and direction on the central axis of the object to be measured. The imaging system includes an imaging vidicon camera 24 and an imaging lens system 25, which are arranged so as to image the measurement location from the side opposite to the light source. The imaging system is placed on an imaging system holder 26 that has a guide to enable focus alignment. 27 is a monitor for viewing the video signal of the imaging vidicon camera.

第5図は測定位置におけるガラス管断面図で、
平行光線群の進路を書いてある。これらの平行光
線群は、31および32のように被測定物の外測
を通過するもの(A群)と、33および34のよ
うに被測定物内に入射はするが内壁とは交わらず
に再び外へ出て行くもの(B群)、35および3
6のように被測定物内に入射後内壁で全反射して
外へ出て行くもの(C群)、そして37,38,
39のように被測定物内径内を通過するもの(D
群)の4つに分類される。同図中40で示す位置
に撮像系の焦点を合せた時、モニタ27上には第
6図に示すような映像が映し出される。ここで5
1および52は被測定物の外径線を意味し、その
外側の明部は上記A群の光線群によるものであ
る。53は上記D群の光線群によつて生じる明部
である。そして、上記明部53よりも幅が狭く、
周囲とのコントラストも高い輝線54および55
が上記C群の光線群の像として映し出される。こ
の輝線が現われる理由は以下の通りである。入射
光線群のうちでC群として分類されるものは第5
図の41,42で示す内壁上の点のごく近傍にお
いて内壁と交わるものに限定されている。従つて
C群の光線は全反射後、あたかも点41,42の
位置に点光源を置いたかのように進んでいく。そ
して、被測定物外経円周を屈折面として考えると
被測定物外径半径をR、屈折率をNとして、第7
図で示すような記号を用いた時の球面屈折の公式 n/S−n′/S′=n−n′/γ、α=nS′/n
′S n:入射側屈折率、S:物点距離 n′:出射側屈折率、S′:像点距離 γ:屈折面半径、α:倍率 に S=−R、γ=R、n=N、n′=1 を代入すると S′=−R、α=−N となる。すなわち、第8図に示すように、第5図
41および42の虚像が被測定物中心軸からN倍
の距離のところにできることになる。このような
原理により、撮像系の焦点位置を第4図40の位
置に合わせた時には内径像がN倍に拡大されて結
像される。実際に測定するときは、モニター画面
上でこの2本の輝線が最も細くかつ鮮明になるよ
うにすれば、焦点位置合わせが完了したことにな
る。
Figure 5 is a cross-sectional view of the glass tube at the measurement position.
The paths of parallel rays are shown. These parallel ray groups include those that pass through the outer surface of the object to be measured (group A), as shown in 31 and 32, and those that enter the object to be measured, as shown in 33 and 34, but do not intersect with the inner wall. Those going out again (group B), 35 and 3
As shown in 6, after entering the object to be measured, it is totally reflected on the inner wall and goes out (group C), and 37, 38,
39, which passes through the inner diameter of the object to be measured (D
It is classified into four groups. When the imaging system is focused at the position indicated by 40 in the figure, an image as shown in FIG. 6 is displayed on the monitor 27. here 5
Reference numerals 1 and 52 refer to the outer diameter line of the object to be measured, and the bright areas outside thereof are due to the light rays of group A described above. Reference numeral 53 indicates a bright area generated by the light ray group of the D group. The width is narrower than the bright part 53,
Bright lines 54 and 55 with high contrast with the surroundings
is projected as an image of the C group of rays. The reason why this bright line appears is as follows. Among the incident rays, those classified as group C are the fifth
It is limited to those that intersect with the inner wall in the very vicinity of points 41 and 42 on the inner wall in the figure. Therefore, after total reflection, the light rays of group C proceed as if point light sources were placed at the positions of points 41 and 42. Considering the outer circumference of the object to be measured as a refractive surface, the outer radius of the object to be measured is R, the refractive index is N, and the seventh
Formula for spherical refraction using symbols as shown in the figure: n/S-n'/S'=n-n'/γ, α=nS'/n
'S n: refractive index on the incident side, S: object point distance n': refractive index on the exit side, S': image point distance γ: radius of refracting surface, α: magnification S = -R, γ = R, n = N , n'=1, S'=-R, α=-N. That is, as shown in FIG. 8, the virtual images 41 and 42 in FIG. 5 are created at a distance N times from the center axis of the object to be measured. Based on this principle, when the focal position of the imaging system is adjusted to the position shown in FIG. 4, the inner diameter image is enlarged N times and formed. During actual measurement, focus alignment is complete when these two bright lines are the thinnest and clearest on the monitor screen.

撮像レンズ系の倍率がm、モニター撮像素子間
倍率がMならば、被測定物内径dとモニター上で
の輝線間距離Dとの間には、 D=N・m・M・d という関係が存在するから、モニター上で測定す
る位置における輝線間距離を測定すれば被測定物
の内径が計算によつて求められる。
If the magnification of the imaging lens system is m and the magnification between the monitor image sensors is M, then the relationship between the inner diameter of the object to be measured d and the distance between the bright lines D on the monitor is as follows: D=N・m・M・d Therefore, by measuring the distance between the bright lines at the measurement position on the monitor, the inner diameter of the object to be measured can be calculated.

次に、被測定物の内径と外径が同心でない場合
について述べる。まず、第9図に示すように光軸
と直交する方向に偏心している場合、輝線は同じ
方向にずれるだけで倍率は変化しない。
Next, a case where the inner diameter and outer diameter of the object to be measured are not concentric will be described. First, as shown in FIG. 9, in the case of eccentricity in the direction perpendicular to the optical axis, the bright lines are only shifted in the same direction and the magnification does not change.

第10図aおよびbに示すように光軸方向に偏
心している場合、倍率はnではなくなる。光線の
進行方向に偏心している時の倍率をα+〓、反対方
向に偏心している時の倍率をα-〓とすると α+〓=nγ/γ+(n−1)δ、 α-〓=nγ/γ−(n−1)δ γ:被測定物外径半径 n:被測定物屈折率 δ:偏心量 となる。そこで180゜反対方向から測定して得られ
るデータ2個を平均してこの倍率補正を行う。
When eccentric in the optical axis direction as shown in FIGS. 10a and 10b, the magnification is no longer n. If the magnification when the ray is eccentric in the traveling direction is α + 〓, and the magnification when it is eccentric in the opposite direction is α - 〓, then α + 〓 = nγ / γ + (n - 1) δ, α - 〓 = nγ /γ-(n-1)δ γ: outer diameter radius of the object to be measured n: refractive index of the object to be measured δ: amount of eccentricity. Therefore, this magnification correction is performed by averaging two pieces of data obtained by measuring from 180° opposite directions.

平均化した時の倍率と演算に使用する倍率nと
の差をeとおけば、eは次の式で与えられる。
Letting e be the difference between the magnification when averaging and the magnification n used for calculation, e is given by the following formula.

e=α+〓+α-〓/2−n=n{(n−1)δ)2/γ2
−{(n−1)δ}2 例えば、γ=5(mm)、n=1.5、δ=0.1(mm)
の時、e=2.76×10-3となり、測定精度と比較し
て十分小さい。一般的に言つて、内外径が偏心し
ている被測定物に対しても、上に述べたような補
正によつて充分精度を保証できることになる。
e=α + 〓+α - 〓/2-n=n{(n-1)δ) 22
-{(n-1)δ} 2 For example, γ=5 (mm), n=1.5, δ=0.1 (mm)
When , e=2.76×10 -3 , which is sufficiently small compared to the measurement accuracy. Generally speaking, even for objects to be measured whose inner and outer diameters are eccentric, sufficient accuracy can be guaranteed by the above-mentioned correction.

本発明においては、第6図に示すように輝部像
が暗部内に出現することが必要であり、そのため
円筒管外径と内径の比は屈折率倍以上であること
が前提条件となる。
In the present invention, as shown in FIG. 6, it is necessary that the bright area image appear in the dark area, and therefore, it is a prerequisite that the ratio of the outer diameter to the inner diameter of the cylindrical tube is at least twice the refractive index.

以上述べたように、本発明による測定法によれ
ば、従来行われていた測定法では不可能だつた測
定位置および方向の設定・確認が可能であるから
任意の位置での任意の方向から見たときの内径が
測定できる。また、測定作業に関しても大巾な労
力削減が期待できる。
As described above, according to the measurement method according to the present invention, it is possible to set and confirm the measurement position and direction, which was impossible with conventional measurement methods. The inner diameter can be measured when the In addition, a significant reduction in labor can be expected in measurement work.

本発明の実施例では、被測定物がガラス管の場
合についてのみ述べたが、被測定物の材質として
は他にプラスチツク等の半透明物質についても同
様な測定方法で対処できる。
In the embodiments of the present invention, only the case where the object to be measured is a glass tube has been described, but the same measurement method can also be applied to other translucent materials such as plastics as the material of the object to be measured.

更にまた、以上の説明では円筒管を例に説明し
てきたが、4角、6角、8角等の他の断面形状の
場合についても若干の配慮を加えることによつて
同等の測定が可能である。
Furthermore, although the above explanation has been given using a cylindrical pipe as an example, equivalent measurements can be made for other cross-sectional shapes such as square, hexagonal, and octagonal shapes with some consideration. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは被測定物断面における最大
内接円の説明図、第2図は従来のレーザ外径測定
機の構成図、第3図は上記測定機による円筒状被
測定物測定の時の出力レベルグラフ、第4図は本
発明一実施例の斜視図、第5図は光線群軌跡の説
明図、第6図は一実施例におけるモニター画面図
第7図は球面屈折公式の説明図、第8図、第9図
ならびに第10図aおよびbは本発明の測定原理
の説明図である。なお図に符した記号はそれぞれ
次のものを示す。 1……被測定物外径、2……最大内接円、11
……被測定物、12……音さ偏向器、13……レ
ンズ、14……レーザ発振器、15……集光レン
ズ、16……光電素子、21……ガラス管、22
……被測定物保持部、23……平行光源、24…
…撮像用ビジコンカメラ、25……撮像レンズ
系、26……撮像系保持部、27……モニター、
31,32,33,34,35,36,37,3
8,39……光線軌跡、40……焦点位置、4
1,42……全反射中心点、51,52……被測
定物外径像、53……明部、54,55……輝
線、60……屈折面、61……物点、62……像
点、70……点41の虚像、71……点42の虚
像。
Figures 1 a and b are explanatory diagrams of the maximum inscribed circle in the cross section of the object to be measured, Figure 2 is a configuration diagram of a conventional laser outer diameter measuring machine, and Figure 3 is a diagram of the measurement of a cylindrical workpiece using the above measuring machine. Fig. 4 is a perspective view of an embodiment of the present invention, Fig. 5 is an explanatory diagram of the trajectory of a group of rays, Fig. 6 is a monitor screen diagram in one embodiment, Fig. 7 is an explanation of the spherical refraction formula. 8, 9, and 10a and 10b are illustrations of the measurement principle of the present invention. The symbols in the figure indicate the following. 1... Outer diameter of the object to be measured, 2... Maximum inscribed circle, 11
...Object to be measured, 12... Tuning fork deflector, 13... Lens, 14... Laser oscillator, 15... Condensing lens, 16... Photoelectric element, 21... Glass tube, 22
...Measurement object holding section, 23...Parallel light source, 24...
...imaging vidicon camera, 25...imaging lens system, 26...imaging system holding unit, 27...monitor,
31, 32, 33, 34, 35, 36, 37, 3
8, 39... Ray trajectory, 40... Focus position, 4
1, 42... Total reflection center point, 51, 52... Outer diameter image of the object to be measured, 53... Bright area, 54, 55... Bright line, 60... Refraction surface, 61... Object point, 62... Image point, 70...Virtual image of point 41, 71...Virtual image of point 42.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物である透明管を、これを透過し得る
波長を含む平行光線中に配し、この透過光を撮像
系に導いて結像させ、被測定物の蔭として生ずる
2つの暗部中に輝く2本の輝線の間隔を像上で計
測し、別に用意した被測定物の前記波長における
屈折率と前記計測値とから所望の内径を間接的に
測定することを特徴とした透明管内径測定方法。
1 A transparent tube, which is the object to be measured, is placed in a parallel beam of light that includes a wavelength that can pass through it, and this transmitted light is guided to an imaging system to form an image. A transparent tube inner diameter measurement characterized by measuring the interval between two shining bright lines on an image and indirectly measuring a desired inner diameter from the refractive index at the wavelength of a separately prepared object to be measured and the measured value. Method.
JP14799780A 1980-10-22 1980-10-22 Method of measuring inner diameter of transparent tube Granted JPS5772003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14799780A JPS5772003A (en) 1980-10-22 1980-10-22 Method of measuring inner diameter of transparent tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14799780A JPS5772003A (en) 1980-10-22 1980-10-22 Method of measuring inner diameter of transparent tube

Publications (2)

Publication Number Publication Date
JPS5772003A JPS5772003A (en) 1982-05-06
JPS632322B2 true JPS632322B2 (en) 1988-01-18

Family

ID=15442799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14799780A Granted JPS5772003A (en) 1980-10-22 1980-10-22 Method of measuring inner diameter of transparent tube

Country Status (1)

Country Link
JP (1) JPS5772003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337511A (en) * 1986-07-30 1988-02-18 昭和電線電纜株式会社 Watertight ow wire
JPH059778Y2 (en) * 1986-10-27 1993-03-10

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852389B1 (en) * 2003-03-12 2005-05-13 Commissariat Energie Atomique METHOD FOR MEASURING THREE DIMENSIONAL OBJECTS BY OPTICAL OMBROSCOPY WITH A SINGLE VIEW
FR2875295B1 (en) * 2004-09-10 2006-11-17 Commissariat Energie Atomique METHOD OF MEASURING THREE DIMENSIONAL OBJECTS BY OPTICAL OMBROSCOPY WITH A SINGLE VIEW, USING THE OPTICAL LAWS OF LIGHT PROPAGATION
EP3537100B1 (en) * 2018-03-01 2020-08-05 Mitutoyo Corporation Methods and apparatuses for refractive index measurement of transparent tube
FI20185309A1 (en) * 2018-04-04 2019-10-05 Teknologian Tutkimuskeskus Vtt Oy Optical measurement of inner diameter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337511A (en) * 1986-07-30 1988-02-18 昭和電線電纜株式会社 Watertight ow wire
JPH059778Y2 (en) * 1986-10-27 1993-03-10

Also Published As

Publication number Publication date
JPS5772003A (en) 1982-05-06

Similar Documents

Publication Publication Date Title
US3922093A (en) Device for measuring the roughness of a surface
JP5560558B2 (en) Measuring apparatus and measuring method
US5118954A (en) Method and device for the geometrical characterization of transparent tubes
JPH02146514A (en) Optical apparatus
JPH0954278A (en) Optical device for controlling expanding angle of annular light ray
JPH0781843B2 (en) Apparatus for measuring inner diameter of pipe, manufacturing method thereof, and measuring method
KR870000478B1 (en) Method of measuring optical outlines
US6498645B1 (en) Inspection of liquid injectable products for contaminating particles
US5017008A (en) Particle measuring apparatus
DE4320845C1 (en) Arrangement for measuring scattered light in bores in work-pieces or in tubes
US3345120A (en) Light spot apparatus
JPS632322B2 (en)
JPH0634488A (en) Refractive-index measuring device for body
US4184748A (en) Device for expanding practically parallel light rays
US6285451B1 (en) Noncontacting optical method for determining thickness and related apparatus
JPH0364816B2 (en)
CN110799816B (en) Measuring probe for beam scanning
US6538755B1 (en) System and method of detecting the interface between mediums with dissimilar indices of refraction
AU739618B2 (en) Non-contact method for measuring the shape of an object
JPS59166838A (en) Device for measuring refractive index of optical fiber
US5078488A (en) Method and apparatus for determining refractive index distribution
JP2000509825A (en) Optical scanning device
US4690556A (en) Capillary bore straightness inspection
JPS6035046Y2 (en) Standard dimension display device
JPH0886641A (en) Light emitting and receiving type focus detector