JPH0150805B2 - - Google Patents

Info

Publication number
JPH0150805B2
JPH0150805B2 JP59118296A JP11829684A JPH0150805B2 JP H0150805 B2 JPH0150805 B2 JP H0150805B2 JP 59118296 A JP59118296 A JP 59118296A JP 11829684 A JP11829684 A JP 11829684A JP H0150805 B2 JPH0150805 B2 JP H0150805B2
Authority
JP
Japan
Prior art keywords
nox
stage
air
amount
blr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59118296A
Other languages
English (en)
Other versions
JPS60263014A (ja
Inventor
Hisanori Myagaki
Toshihiko Azuma
Atsushi Yokogawa
Yoshihiro Shimada
Nobuo Kurihara
Mitsuyo Nishikawa
Yoshio Sato
Atsumi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59118296A priority Critical patent/JPS60263014A/ja
Priority to DE19853520728 priority patent/DE3520728A1/de
Priority to US06/743,439 priority patent/US4622922A/en
Publication of JPS60263014A publication Critical patent/JPS60263014A/ja
Publication of JPH0150805B2 publication Critical patent/JPH0150805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/40Simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/10Measuring temperature stack temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、火炉の燃焼制御方法に係り、特に低
NOx化が要求されるプラントに使用する好適な
燃焼制御方法に関する。
〔発明の背景〕
火炉のNOx量をオンラインで制御する技術は
なかつた。その理由は、NOxの還元効果などを
的確に把握できなかつたために適切に燃料量や空
気量を制御する指針がなく、従来は負荷に対応し
た燃料量および空気量になるように制御されてい
たに過ぎない。このため、炭種変動等による燃料
の性状変化や給炭変動があるプラントでは、
NOxのオンライン制御は不可能であつた。
第1図は、本発明の適用対象の一つである石炭
火力プラントの概略図を示す。本図を用いて石炭
火力プラントの概要を説明する。まず、ボイラ1
で燃焼するための石炭は、石炭バンカ2に貯えら
れており、フイーダ4及び駆動用モータ3により
ミル5に供給され、粉砕された後バーナ6へ送ら
れる。燃焼用空気は、押込通風機8により空気予
熱器9へ送られ、一方は、微粉炭搬送用として1
次空気フアン12を経てミルへ、他方は燃焼用空
気として直接バーナ6へ導かれる。又、空気予熱
器9には、バイパス系があり、ダンパ10により
1次空気の温度が制御されるようになつている。
又、燃焼に必要な合計空気量はダンパ7で、微粉
炭搬送に必要な空気量はダンパ11によりそれぞ
れ制御される。一方、給水系13により加圧され
た給水は、ボイラ1で過熱蒸気となり、主蒸気管
14を経てタービン15,16へ送られる。ター
ビン15,16は、過熱蒸気の断熱膨張により回
転し、発電機17によつて発電する。又、ボイラ
1で燃焼し、水及び蒸気に熱を与えた燃焼の排ガ
スは、煙突19へ送られ大気へ放出されるが、1
部のガスは、ガス再循環フアン18によりボイラ
1へ戻される。
このような石炭火力プラントを負荷要求指令に
応じて円滑に運転するためには、各バルブ、ダン
パ、モータを適切に制御する必要がある。第2図
は、従来から使用されて来ている火力プラント自
動制御系の概略図を示す。以下、本図に従つてそ
の機能の概要を説明する。まず、火力プラントへ
の負荷(発電機17の出力)要求信号1000
は、主蒸気圧力1100が所定の値(定圧プラン
トでは一定値、変圧プラントでは負荷に応じた
値)になるように補正され(主蒸気圧力補償ブロ
ツク100)、ボイラ1へのボイラ入力デマンド
信号3000となる。このボイラ入力デマンド信
号3000は、給水流量1200の設定値として
給水流量制御系400へ導かれ、給水流量加減弁
20の制御用として使用される一方、燃焼量デマ
ンド3100決定用としても使用される。主蒸気
温度補償ブロツク200へ導かれたボイラ入力デ
マンド信号3000は、主蒸気温度1101が所
定値になるように補正され、燃焼量デマンド31
00を決定する。この燃焼量デマンド信号310
0は、合計石炭燃料流量1201の設定値として
燃料流量制御系500へ導かれ、フイーダ4の駆
動用モータ3の制御用として使用される。又、燃
料量デマンド信号3100は、空燃比補償ブロツ
ク300で排ガスO2過剰率が所定値になるよう
に補正され合計空気流量デマンド信号3200と
なる。空気流電制御系600は、合計空気流量1
202がこのデマンド信号に等しくなるようにダ
ンパ7を制御する。
以上が石炭火力プラント自動制御系の概要であ
り、この他に、再熱蒸気温度制御系やタービン加
減弁制御系等があるが、本発明と直接関係がない
ので省略してある。
このような従来システムには、次に示す問題が
ある。即ち、発生NOx値をフイードバツクした
燃焼制御になつていない為、燃料の性状や供給量
が変化するとNOx値を目標値に保持できない可
能性が大きいことである。燃料の性状変化は、石
炭燃料の場合、異る炭種の燃料が供給される場合
や同炭種でも組成のバラツキが大きい場合、また
石油燃料の場合でも異つた油種の配分を制御しな
がら運転される場合、いわゆるCOMで運転され
る場合などに生ずる。なおこれらに関する公知例
には例えば特開57−112613号、特開56−100224
号、特開56−151814号がある。
〔発明の目的〕
本発明の目的は、燃料の性状や供給量が変化し
ても、常に安定なNOxの制御を可能とする制御
方式を提供するにある。
〔発明の概要〕
本発明は、火炎の情報を利用してNOx還元量
を推定し、これに基づいて火炉出口NOx濃度を
推定し、更にこの情報を利用して火炉出口NOx
濃度を目標値に維持するよう段間のNOx空気量
及び燃料量を制御するものである。
〔発明の実施例〕
本発明を第1図に示した石炭火力プラントに適
用した実施例について説明する。
石炭火力プラントの場合、発生するNOxの約
7割は燃料中に含有されているN分に起因すると
言われている。このため、同じ容量のプラントで
も石炭焚の場合は石油焚に比べて2倍から3倍の
NOxが発生しているのが現状である。従つて、
石炭火力プラントのNOx発生量を従来の石油焚
並みあるいはそれ以下に下げるためには、燃焼に
よつて発生したNOxを火炉内で還元させるプロ
セスを設ける必要がある。石炭火力プラントにも
この還元プロセスをもたせた例であるが、還元プ
ロセスのメカニズムを解明する計測技術がない
為、還元プロセスの制御方法は未だ確立されてい
ない。
第3図は、本発明の実施例の全体構成図を示
す。図において第1図と同一又は等価なものは同
一記号で表わす。従来と異なるのは次の機能が追
加されていることである。
(1) バーナNOx還元量推定機能(ブロツク40
00) (2) 段毎NOx推定機能(ブロツク4100) (3) 段毎NOx目標値決定機能(ブロツク420
0) (4) 火炉NOx推定機能(ブロツク4300) (5) 段毎燃料、空気操作量決定機能(ブロツク4
400) 第3図を用いて先ず本実施例の概要を説明す
る。バーナNOx還元量推定機能4000は、火
炎の特徴を抽出し、バーナ出口のNOx還元量を
推定する。それは1つまたは2つ以上の燃焼領域
について各領域の火炎情報13011〜1303o
を用いて各領域のバーナ出口NOx還元量140
1〜1400oを推定する。段毎NOx推定機能
4100は、各領域の燃料量13001〜130
o、1次空気量13011〜1301o、2次空
気量13021〜1302o、3次空気量1303
〜1303o上述バーナ出口NOx濃度14001
〜1400oを用いて各領域のNOx濃度1501
〜1501oを推定する。段毎NOx目標値決定
機能4200は、火炉出口NOx目標値2000
を元に灰分中の未燃分が最小になるように各領域
のNOx目標値20011〜2001oを決定する。
段毎燃料、空気操作量決定機能ブロツク4400
は、上述した各領域のNOx目標値20011〜2
001oを用いて各領域の燃料配分操作量331
1〜3310o、1次空気操作量33201〜3
320o、2次空気操作量33301〜3330o
及び3次空気操作量33401〜3340oを決定
する。燃料配分ブロツク8001〜800oは、上
述燃料配分操作量33101〜3310oに対応し
てそのゲインを調節し、その出力を燃料操作量3
3111〜3311oとする。火炉NOx推定機能
ブロツク4300は、各領域のNOx推定量15
001〜1500oを基に火炉出口NOxを推定し、
これと火炉出口NOx計測値との誤差を求め、こ
れに基づく各領域毎のNOxの推定誤差修正量1
6001〜1600oを段毎NOx推定機能ブロツ
クにフイードバツクし、上述のNOx推定値15
001〜1500oを修正し各領域のNOx濃度1
5011〜1501oとする。
なお、加算ブロツク700は、燃焼領域の燃料
量13001〜1300oを加算して合計燃料量1
201を算出するものである。以下、本発明の機
能ブロツクの詳細につき、第4図に示す微粉炭焚
ボイラの火炉モデルを対象にした場合について説
明する。
段毎NOx推定機能ブロツク4100では、ま
ずi段(第4図ではi=1〜3)のバーナ出口
NOx:NOxi BNRを次式で示すように、バーナ空気
比λi BNRとバーナNOx還元量Ii NOXの関数モデルを用
いて推定する。
ここで k0:石炭の燃料比、窒素含有率、O2含有率な
どの特性パラメータによつて決められる炭
種に依存した定数 k1,k2:バーナ構造等によつて決まる定数 k3:INOX生成比(=∂NOxBNR/∂IiNOX) λi BNR:i段のバーナ空気比(理論空気量に対す
る実空気量の比) Ii NOX:i段のNOx還元量 (1)式において、Ii NOXは、火炎特徴抽出法を用い
てバーナNOx還元量推定機能ブロツク4000
で求められ、バーナ空気比は、i段の燃料量Fiと
空気量AFi(=i段の1次空気量+i段の2次空
気量+i段の3次空気量)の計測値から次式を用
いて求める。
λi BNR=AFi/A0・Fi(i=1〜3) …(2) ここで、A0:供給炭1Kg当りの理論空気量 次に、i段のNOx推定値:NOxi BLRは、上記の
バーナ出口NOx:NOxi BNRとバーナ空気比λi BNR
バーナ平均空気比BNRの関数モデルを用いて推
定する。
ここで BNR=(λ1F1+λ2F2+λ3F3) /(F1+F2+F3) 次に、火炉NOx推定機能ブロツク4300で
は、(3)式で求めた段毎NOx推定値NOxi BLR(i=
1〜3)を用いて次式により火炉NOx:NOx〜BLR
を推定する。
NOx〜BLR
F1・NOx1 BLR+F2・NOx2 BLR+F3・NOx3 BLR/F1+F2+F3 …(4) ここでF1,F2.C3はそれぞれ1,2,3段の燃
料量(4)式より求めた火炉NOx推定値NOx〜BLRと計
測値NOx〜BLRとの火炉NOx推定誤差 ε=NOxBLR−NOx〜BLR …(5) この誤差は各段のNOx推定値の誤差によつて
生じNOxの推定値NOxi BLRに対して同じ比率で生
ずると考えることができる。各段でのNOx推定
誤差ε1,ε2,ε3とすると ε1/NOx1 BLR=ε2/NOx2 BLR=ε3/NOx3 BLR …(6) ε=F1・ε1+F2・ε2+F3・ε3/F1+F2+F3 …(7) (5),(6),(7)式から段毎NOx推定値NOx〜i BLRの誤
差εiは εi=NOxiBLR/NOxBLR・ε …(8) となる。
従つて誤差を修正した後のi段NOx推定値を
NOx〜i BLRとすると NOx〜i BLR=NOxi BLR+εi …(9) と表わすことができる。
次に、段毎NOx目標値決定機能ブロツク42
00では、灰分中の未燃カーボンを評価するイン
デツクスIUBCを求めこれが最大(未燃分が最小)
になるように、火炉出口NOx目標値:NOx* BLR
ら段毎NOx目標値NOx*i BLRを次式の条件を満すよ
うに決定する。
NOx* BLR=F1・NOx*1BLR+F2・NOx*2BLR+F3・NOx
*3/F1+F2+F3…(10) 段毎燃料、空気操作量決定機能ブロツク440
0では、第5図A,B,Cの処理フローに従つて
段毎の空気及び燃料操作量を決定する。まず、火
炉出口NOxの目標値NOx* BLRと計測値NOxBLR
の差を次式に基づいて評価する。
I=|NOxBLR−NOx* BLR|≦εN …(11) ここでεN:火炉出口NOx制御許容偏差 (11)式が満たされている場合には、現状維持でよ
いから処理を終了する。しかし、(11)式が満足され
ない場合には、ステツプ1〜6の処理を実行して
段毎NOx推定値NOxi BLRと段毎NOx目標値
NOx*i BLRを先ず計算する。
そして、先ず、現状の火炉出口NOxが目標値
より高い場合、すなわち、ステツプ7で NOxBLR−NOx* BLR>εN …(12) の場合には、ステツプ7′で燃焼モードの判定を
行う。燃焼モードとしては、第6図に示す通常燃
焼、2次燃焼、脱硝燃焼の3つのモードを想定
し、空気、燃料それぞれの操作量の決定をどの状
態から制御開始するかを決める目安とする。初期
状態が通常燃焼の場合には、ステツプ8から、2
段燃焼の場合にはステツプ12、脱硝燃焼の場合
にはステツプ16からそれぞれ処理を開始する。
以下ステツプ8から順にその処理内容を説明す
る。
ステツプ8,9では各段の合計空気量は変えな
い(空気比は一定)で3次空気量と2次空気量の
比率を目安として両者を調節し、ステツプ10で
段毎のバーナNOx還元量Ii NOxを火炎画像処理によ
つて求め、新たに計算した段毎NOx推定値NOx〜
i BLRと目標値との差を次式に基づいて段毎に評価
する。
Ji=|NOx*i BLR−NOxi BLR|≦εS …(13) ここでεS:段毎NOx制御許容偏差 (13)式が満足された場合には、ステツプ1に戻
つて(11)式による評価を行う。1度で(13)式が満足
されない場合には、ステツプ8,9,10を繰り
返す。この過程で3次空気または2次空気操作量
が操作上の制限値(操作端の特性限界等による)
においても(13)式が満されない場合、(13)式を最
小にする3次空気及び2次空気操作量に戻しステ
ツプ12の処理に移る。
ステツプ12,13では、バーナ平均空気比
BNRを一定のきざみ幅で変化させるべく段毎の空
気比λi BNRBNRと同一比率で減少させる処理を
行う。この処理では、 λi BNR(j+1) =λi BNR(j)+Δλi BNR(j) …(14) ここで λi BNR(j+1):仮想的な空気比変化をさせた時
のi段空気比 λi BNR(j):現状のi段空気比 Δλi BNR(j):i段の仮想的空気比変化 のように空気比を仮想的に変化させてみる一方、
この空気比変化に対するi段のNOx還元量 Ii NOX(j+1)を Ii NOX(j+1)=Ii NOX(j)+∂IiNOX(j)/
∂λiBNR(j)|Δλi BNR(j) ここで ∂IiNOX(j)/∂λiBNR(j):Ii NOXのλi BNR
に対する偏微分係数で、 運用上考えられる範囲のλi BNRに対して予め
標準的に求めておいたデータを用いる。
で仮想的に求め、(14),(15)式の結果からi段の
NOx推定値NOx〜i BLRを予測する。そしてステツプ
14で段毎に目標値と比較し、(13)式の条件が満
足された場合には、その空気比を実現するような
空気量と燃料量を実際にプラントに出力してステ
ツプ1に戻る。一方条件が満足されない場合は、
ステツプ12,13,14を繰り返し、この過程
でバーナ平均空気比が制限値に達しても条件が満
されない場合にはステツプ16の処理に移る。
ステツプ16,17では、一定のきざみ幅で仮
想的にMバーナ(第4図では、バーナ,)の
空気比を増やし、Pバーナ(第4図では、バーナ
)の空気比を減らし、ステツプ12,13,1
4で説明したと同様の処理によつてi段のNOx
推定値NOx〜i BLRを計算し、ステツプ19の条件が
満足されれば、その時の空気比を実現するような
空気量と燃料量を実際に出力し、ステツプ1に戻
る。ステツプ16でバーナ空気比が制限値に達し
た場合には処理を終了する。この場合には、火炉
出口NOx目標値を実現可能な値に再設定する等
の措置が必要になる。
次に、現状の火炉出口NOxが目標値より低い
場合、すなわち、ステツプ9で NOxBLR−NOx* BLR<−ε …(16) の場合には、ステツプ21でステツプ7′と同様
の燃焼モードの判定をまず行う。通常燃焼モード
の場合には、ステツプ22,23の処理に移り、
ある一定のきざみ幅で段毎の空気比λi BNRBNR
と同一比率で仮想的に増加させ、ステツプ12,
13と同様にして、i段のNOx推定値NOx〜i BLR
予測する。そして、ステツプ24で段毎に目標値
と比較し、条件が満された場合には、その空気比
を実現するような空気量と燃料量を実際にプラン
トに出力してステツプ1に戻る。条件が満されな
い場合は、ステツプ21〜24を繰り返し実行
し、バーナ平均空気比が上限に達した場合には、
処理を終了する。この場合は、実現可能な目標値
を再設定する等の措置が必要になる。次に、初期
状態が2段燃焼モードの場合には、ステツプ26
の処理に移り、火炉の合計空気量が一定という条
件で、仮想的に一定のきざみ幅でバーナ平均空気
比を増加、アフタエアポート空気量を減少させ、
λBNRと同一比率で仮想変化させた段毎の空気比
λi BNRを用いてステツプ12,13と同様にしてi
段のNOx推定値NOx〜i BLRを予測する。そしてステ
ツプ27で条件判定を行い、満されれば対応した
空気量と燃料量をプラントに出力し、満されなけ
ればステツプ21へ戻り26,27の処理を繰り
返す。この過程でアフタエアポートダンパ開度が
0%になつた場合には、ステツプ21で通常燃焼
モードと判定され、前述のステツプ22の処理へ
移る。次に、初期状態が脱硝燃焼モードの場合に
は、ステツプ29の処理に移り、BNRが一定と
いう条件のもとで、仮想的に一定のきざみ幅でP
バーナの空気比を増加、Mバーナの空気比を減少
させてNOxi BLRを予測する。そしてステツプ30
で条件判定を行い、満されれば対応した空気量と
燃料量をプラントに出力し、満されなければステ
ツプ21へ戻り、29,30の処理を繰り返す。
この過程でPバーナ、Mバーナの空気比が同等の
レベルになつた場合には、ステツプ21で2段燃
焼モードと判定され、前述のステツプ26の処理
に移る。
〔発明の効果〕
本発明によれば、燃焼領域毎にNOx還元量及
びNOx濃度を推定し、領域毎に空気および燃料
操作量を決定することができ、またプラントの状
態変化に対しても上記NOx推定値を修正するこ
とができるので、常に安定なNOx低減制御が行
なえる。
【図面の簡単な説明】
第1図は、石炭火力プラントの概略図、第2図
は、石炭火力プラントの従来の制御系統図、第3
図は、本発明の一実施例の全体構成図、第4図
は、微粉炭焚ボイラの火炉モデル例、第5図A,
B,Cは、段毎燃料、空気操作量決定アルゴリズ
ム、第6図は、燃焼モードの判定条件の説明図。 4000……バーナNOx還元量推定機能ブロ
ツク、4100……段毎NOx推定機能ブロツク、
4200……段毎NOx目標値決定機能ブロツク、
4300……火炉NOx推定機能ブロツク、44
00……段毎燃料、空気操作量決定機能ブロツ
ク。

Claims (1)

  1. 【特許請求の範囲】 1 火炉で生成されるNOxを火炉内で還元する
    ことによつて火炉出口NOx量を制御する燃焼制
    御方法において、前記火炉内の1つまたは2つ以
    上の燃焼領域の各々で還元されるNOxの量(以
    下NOx還元量と呼ぶ)を各領域の火炎情報より
    推定し、該NOx還元量推定値から該燃焼領域毎
    のNOx濃度を推定し、該火炉の出口NOx目標値
    に基づいて該燃焼領域毎にNOx目標値を決定し、
    該燃焼領域のNOx濃度推定値とNOx目標値に基
    づいて、該燃焼領域毎に空気流量または燃料流量
    を調節し、該火炉の出口のNOx濃度を目標値に
    制御することを特徴とする燃焼制御方法。 2 特許請求の範囲第1項に記載の燃焼制御方法
    において、該火炉の出口のNOx推定値と実測値
    との偏差により燃焼領域毎のNOx濃度推定値を
    修正することを特徴とする燃焼制御方法。
JP59118296A 1984-06-11 1984-06-11 燃焼制御方法 Granted JPS60263014A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59118296A JPS60263014A (ja) 1984-06-11 1984-06-11 燃焼制御方法
DE19853520728 DE3520728A1 (de) 1984-06-11 1985-06-10 Verfahren und vorrichtung zur steuerung der verbrennung in oefen
US06/743,439 US4622922A (en) 1984-06-11 1985-06-10 Combustion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118296A JPS60263014A (ja) 1984-06-11 1984-06-11 燃焼制御方法

Publications (2)

Publication Number Publication Date
JPS60263014A JPS60263014A (ja) 1985-12-26
JPH0150805B2 true JPH0150805B2 (ja) 1989-10-31

Family

ID=14733165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118296A Granted JPS60263014A (ja) 1984-06-11 1984-06-11 燃焼制御方法

Country Status (1)

Country Link
JP (1) JPS60263014A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150619A (ja) * 2007-12-21 2009-07-09 Babcock Hitachi Kk ボイラー装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650177B2 (ja) * 1986-04-09 1994-06-29 株式会社日立製作所 マルチバ−ナ燃焼状態監視方法
KR101531808B1 (ko) 2011-04-01 2015-06-25 미츠비시 히타치 파워 시스템즈 가부시키가이샤 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
JP5854620B2 (ja) * 2011-04-01 2016-02-09 三菱日立パワーシステムズ株式会社 ボイラ及びボイラの運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150619A (ja) * 2007-12-21 2009-07-09 Babcock Hitachi Kk ボイラー装置

Also Published As

Publication number Publication date
JPS60263014A (ja) 1985-12-26

Similar Documents

Publication Publication Date Title
US8515582B2 (en) Control system for operation of a fossil fuel power generating unit
US5626085A (en) Control of staged combustion, low NOx firing systems with single or multiple levels of overfire air
WO2020015694A1 (zh) 生物质锅炉的燃烧风量控制系统及控制方法
CN108954293A (zh) 一种“分级联合”整体控制的二次再热机组再热汽温控制系统及方法
CN105485714A (zh) 一种确定锅炉运行氧量的方法、装置及自动控制系统
JPS6033971B2 (ja) 発電装置用の制御装置
CN112664975A (zh) 一种适用于煤粉锅炉的风量控制方法
CN112197262A (zh) 一种循环流化床燃煤锅炉智能控制方法
JPH0150805B2 (ja)
CN113341713B (zh) 一种燃煤机组煤风同步动态协控方法
JP5100338B2 (ja) 再熱蒸気制御方法及び再熱蒸気温度管理システム
CN107631286A (zh) 一种提高超超临界锅炉机组效率的调温方法及系统
CN109579044B (zh) 一种步进式加热炉空燃比动态前馈燃烧控制方法
RU2044216C1 (ru) Автоматический регулятор температуры перегретого пара в парогенераторе
JP2612284B2 (ja) 燃焼装置
CN112377890B (zh) 一种二次再热机组烟气再循环量调节方法及系统
JP2645707B2 (ja) ボイラ自動制御装置
JPH0563683B2 (ja)
CN115507379A (zh) 一种煤气锅炉风量控制方法
JP2002349806A (ja) 混焼炉におけるフライアッシュ中の未燃カーボン制御方法
CN115681943A (zh) 一种煤气发电锅炉三种煤气自动燃烧控制系统
JPH0238843B2 (ja)
JPH0443709Y2 (ja)
JPS62245009A (ja) ボイラ自動制御装置
JPS6332205A (ja) 火力発電プラント