JPH0149743B2 - - Google Patents

Info

Publication number
JPH0149743B2
JPH0149743B2 JP60277886A JP27788685A JPH0149743B2 JP H0149743 B2 JPH0149743 B2 JP H0149743B2 JP 60277886 A JP60277886 A JP 60277886A JP 27788685 A JP27788685 A JP 27788685A JP H0149743 B2 JPH0149743 B2 JP H0149743B2
Authority
JP
Japan
Prior art keywords
layer
membrane
exchange membrane
cation exchange
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60277886A
Other languages
Japanese (ja)
Other versions
JPS6264834A (en
Inventor
Toshio Oku
Toshikatsu Sada
Masakatsu Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP27788685A priority Critical patent/JPS6264834A/en
Publication of JPS6264834A publication Critical patent/JPS6264834A/en
Publication of JPH0149743B2 publication Critical patent/JPH0149743B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特殊な複合陽イオン交換膜に関す
る。詳しくは、多孔体層とイオン交換体層とより
なる特殊な複合隔膜であつて隔膜式電解槽による
アルカリ金属塩の電解において、特に高濃度の苛
性アルカリおよび純度の高い塩素を製造する場合
に有効に使用し得る複合陽イオン交換膜に係る。 従来、隔膜式電解法においては、隔膜としてア
スベスト等の透水性の比較的高いものを用いて、
陽極室から陰極室の方に塩水を流しつつ電解を行
つている。 隔膜としてはコスト及び加工性の面から、通常
クリソタイル等のアスベスト繊維を用いられる
が、これらは比較的アルカリに弱いこと及び使用
時の形安定性がそれ程よくないことから、数百時
間程度の使用で取りかえなければならないという
欠点があつた。 そこで、隔膜の強度を増大させる試みが近年な
されており、例えば、アスベストのバインダーと
して珪素化合物を用いるとか、アスベスト繊維と
弗素樹脂微粒子又は繊維とを共沈させる等して均
一に混在させ、これを焼結する等、アスベストの
バインダーの開発が行われた。また別の方法とし
て含弗素樹脂の多孔性フイルムを隔膜として用い
るという提案もなされている。これらの多くの試
みによつて隔膜の耐久性を相当に改善し得たが、
本質的な欠陥である苛性アルカリの品質の改良は
十分には行えない。 更に、隔膜としてイオンの選択的透過性を有す
る膜状物、即ち、イオン交換樹脂膜を用いようと
する試みがなされている。この方法によると、例
えば陽イオン交換膜を用いることにより陽極室か
らアルカリ金属イオンだけを選択的に陰極室に送
り、そこで苛性アルカリを生成し水素ガスが発生
する。他方陽極室では、塩素イオンが酸化され塩
素ガスが発生する。しかし陽イオン交換膜中の水
酸イオンの輸率は比較的大きく、陽極室にアルカ
リが抜け出る結果となり、その分だけ電力の損失
となるのみでなく、塩素中の酸素濃度を増大させ
る欠点がある、この現象は陰極室で生成する苛性
アルカリ濃度が高い程顕著となる。またイオン交
換膜は過酷な環境に曝されることになる。 そこで、電解条件下のような過酷な環境に耐え
得るイオン交換樹脂膜の開発が行われている。そ
れらの主なものは、いずれも含弗素樹脂をベース
にしたものであつて、例えば主鎖がパーフロロエ
チレン型でイオン交換基をペンダント基に有する
もの、パーフロロエチレンと弗化ビニリデンとの
共重合体または各重合体の混合物であつて、弗化
ビニリデンユニツトの水素の一部をスルホン基等
のイオン交換基で置換したもの等が提案されてい
る。 このようなイオン交換樹脂膜は耐久性という点
においては相当に改善せられており、実用に耐え
得るものがある。例えば、特開昭48−61397号公
報に開示された方法等は一応の目的を達するもの
と思われる。 これらの方法においても、なお陽イオン交換樹
脂膜の共通の欠点である水酸イオン透過を実質的
に完全に阻止することはできず、アルカリ金属
塩、就中アルカリ金属塩化物の電解の場合、電流
効率を高く保持することは困難である。従つて、
アルカリ金属塩化物の電解にあつては、一般に生
成する苛性アルカリの濃度を低く、例えば、3乃
至6規定程度に押えて電解を行うことが提案され
ており、その場合でもなお電流効率は80%程度と
なると考えられる。このように低濃度の苛性アル
カリは、通常更に濃縮工程を必要とし、装置的に
も、エネルギー的にも不利であることは言うまで
もない。また電解により直接高濃度の苛性アルカ
リを得ようとすると電流効率は急激に低下し、例
えば70%以下になる。 従つて本発明は、工業的に用いた場合、水酸イ
オンを実質的に透過させ難い複合陽イオン交換膜
を得ることを目的とする。 本発明の複合陽イオン交換膜によれば、70%以
上の電流効率で苛性アルカリは8規定以上、必要
により15規定又はそれ以上の高濃度で得られ、し
かも陽極室で得られる塩素の濃度は特に塩酸を添
加しなくても通常97%以上の濃度となり、塩素の
精製工程を簡略化又は不用とすることができるの
である。 即ち、本発明の複合陽イオン交換膜は多孔体で
ある厚い層と、実質的に水不透過性の陽イオン交
換体である薄層とよりなる複合膜である。詳細に
は、本発明は、主として樹脂よりなる多孔体層と
実質的に水不透過性であるカルボン酸型陽イオン
交換体であつて、前記多孔体層よりも厚くないイ
オン交換体層とよりなり、該多孔体層は、0.01
ml/hv・cm2・cmH2O以上の透水性を有する複合
陽イオン交換膜である。ここで多孔或いは水不透
過性という表現の基準は、共に各層のみの透水率
で表す。即ち水柱1cmの差圧下に1cm2当り1時間
当りの透水量(特記のない限りミリリツトルで表
す)として、実質的に水が透過しないものを水不
透過性と言い、多孔と表現されるものは透水率が
0.01以上のものである。本発明では、一般に、
0.1以上のものが推奨され、上限は数拾リツトル、
例えば直径1mm程度の孔を有するものであつても
よいが、一般に孔径の増大と共に多孔体層の厚さ
を増大させるのが好ましい。そして、孔の直径と
長さの関係は常に直径<長さに保たねばならない
が、特に多孔体の平均直径をdとし、孔の長さを
lとしたとき、l/d>100の関係にあることが
好ましい。 また孔の存在する量は多い程好ましいが、一般
に全体積に対して、孔の専有する体積(これを開
孔率とする)が50%以上、特に70%以上であれば
本発明に好ましく適用し得る。 本発明に関し、理解を助けるために第1図に隔
膜の多孔体層の水透過性と電解槽の極間電圧との
関係を示す。本例においては、バインダーとして
弗素樹脂を用いたアスベスト多孔膜とデユポン社
製ナフイオン(パーフロロ系陽イオン交換膜)
315(厚さ約0.41mm)を重ね合せて用い、アスベス
ト多孔膜の厚さをかえて水透過性を変化させた場
合の極間電圧を調べた。尚、電解条件は温度80
℃、30A/dm2、食塩280g/(陽極室出口)
とし陰極室13規定苛性ソーダとして取出す。 この第1図より、多孔体層の水透過性が0.01以
下では、極端に極間電圧が上昇することがわか
る。従つて、透水率は0.01以上好ましくは0.1以
上を選定しなければならない。また、多孔体層の
孔径が極端に大きく、1mm以上となれば最早多孔
体としての意義を失うことになり、本発明の目的
に適さない。 本発明の複合陽イオン交換膜は、主として樹脂
よりなる多孔体層と、実質的に水不透過性である
陽イオン交換体層とよりなり、該陽イオン交換体
層は、 多孔体層よりも厚くないことが特徴の一つであ
る。即ち、アルカリ金属塩等の電解に用いられる
一般の陽イオン交換膜は、比電気抵抗が大きく、
これが電極間電圧に占める割合は大きい。膜電気
抵抗を小さくするには、膜厚を薄くする必要があ
る。しかし過度に薄くすることは、強度的に弱く
なり、破損の恐れを生ずるだけでなく、更に電解
時に陰極室への塩類の拡散の増大を来たし、不都
合となる。 しかるに、本発明あつては、多孔体層がイオン
交換体層の支持体として作用し、イオン交換体層
を薄くすることが可能となる。更に、本発明者等
の推測によれば、多孔体層の孔中で濃度匂配を生
じるため、陰極室への塩類の拡散を減少させるこ
ともできる。これらの作用効果を得るためには、
多孔体層は、比較的厚いことが望まれる。 他方、電解に供し得る膜状物の厚みは、一般に
0.3〜5mm程度であるが、本発明にあつては、こ
れを多孔体層とイオン交換体層とで形成させるも
のであり、イオン交換体層を多孔体層よりも厚く
ない構成とすることが特に好適な結果を得るので
ある。 本発明において使用される多孔体を例示すれ
ば、有機の繊維状物の集合体で、不織布、織物、
編物等があり、ここで繊維とは、長さ(L)と直径(D)
との比、L/Dが相当に大きいもの、例えばL/
D>100の如きものであれば、その絶対長は特に
問題とはならない。また粉状物、繊維状物を圧
縮、焼結、熔着又は糊着等により成型したものも
含まれる。更に、各種の合成樹脂、セルローズ、
変性セルローズ、たん白質等の膜状物よりなる多
孔体も含まれる。勿論、繊維と粒子との混合物を
基礎とし、集合化、成型したものも有効である。
要するに、結果として、多孔体の膜状層を形成し
得るものであれば、本発明の目的に適合し得る。
但し、水に対してその形状を保持し得ないものが
含まれないことは、発明の目に徴して明らかであ
る。また、塩素により、攻撃されやすい素材であ
れば、アルカリ金属塩化物の電解に供した場合寿
命が短かいことは言うまでもない。 次に本発明における多孔体層の材質を例記する
と、羊毛、綿、麻、ジユート等の天然繊維、コル
ク、パーテイクルボード等の天然粒状物の集合体
(これらの天然高分子体も、本明細書において樹
脂に含ませるものとする)含弗素樹脂ポリオレフ
イン、ポリスチレン、ポリエステル、ポリアミ
ド、含塩素樹脂、その他の重合体又は共重合体で
ある合成樹脂繊維よりなる不織布、織物、編物又
は部分溶着物、多孔体シート、例えばこれらの合
成樹脂に被抽出性物質を混合して成形したシート
から、被抽出性物質を抽出除去したもの、又は合
成樹脂に非相溶性物質、例えば無機微粒子を混合
し、シート状に成型した後、たて及び/又は横方
向に延伸することにより多孔性化したシート等が
ある。また本発明における多孔体層の形成の一つ
の改良として、イオン交換樹脂層と面しない側に
のみ、更に珪酸被膜を形成させるとか、含弗素樹
脂の存在率を高くして、寸法安定性を補強した非
又は低含弗素樹脂多孔体等も採用される。また本
発明における多孔体層はイオン交換基を持つてい
てもよい。 多孔性物質の製法については、特開昭49−
126571号公報、同50−177879号公報、同51−6196
号公報、同47−1030号公報、同49−37878号公報、
同49−81278号公報、同49−118760号公報、同49
−119874号公報、同49−122480号公報、同50−
41960号公報、同50−10785号公報、同50−33194
号公報に述べられているが、これらは数例に過ぎ
ない。 次にイオン交換樹脂層を構成する材質は、カル
ボン酸基を有する、所謂カルボン酸型陽イオン交
換樹脂であつて、更に必要に応じてスルホン基、
亜りん酸基、りん酸基、硫酸エステル基、りん酸
エステル基、亜りん酸エステル基、フエノール性
水酸基、チオール基、解離し得る水素原子を有す
る酸アミド基、珪酸基、金属キレート化合物で負
に解離し得るもの、等の一種又は複数種をイオン
交換基として有していてもよく、これらのイオン
交換基は基体となる樹脂骨格に直接又は適当な分
枝基を介して結合したものであつて、樹脂骨格は
架橋されていてもよい。また好ましいイオン交換
樹脂は、パーフロロカーボン重合体の如く水素原
子を持たない重合体で、イオン交換基を適宜有す
るものであつて、800〜2000の重量当量を有する
イオン交換基を有するものが好ましい。 本発明において、使用され得るイオン交換体の
数例は、スチレン−ジビニルベンゼン共重合体の
スルホン化物、アクリル酸、又はメタアクリル酸
及びスチレン、アクリロニトリル、酢酸ビニル、
アクリル酸アルキル、メタアクリル酸アルキル等
の一種又は二種以上との共重合物、又はこれらに
ジビニルベンゼン、ジビニルスルホン等架橋剤を
加えた共重合体等で、必要に応じて加水分解又は
陽イオン交換基の導入を行つたもの、ペンダント
基が (但し、Rは弗素又はパーフロロアルキル、nは
0〜3、Yは弗素又はパーフロロアルキル)であ
り、これにスルホン基及びカルボキシル基の内少
なくとも1種が結合したパーフルオロビニルエー
テルとテトラフルオロエチレンとの共重合体等で
ある。 本発明の複合陽イオン交換膜を構成する多孔体
層及び陽イオン交換体層は、両者が一体化してい
ればよい。しかしながら、イオン交換体層が極め
て薄い層である場合、例えば、0.01〜0.1mm程度
であれば、イオン交換体層の電気抵抗は低く、延
いては多孔体層とイオン交換体層とが一体化され
た複合イオン交換体の電気抵抗も低くなる。この
場合、多孔体層がイオン交換体層の支持体として
も働くこともできる。このような両者の接着は、
一般に溶着、融着又は糊剤による接着の他に、多
孔体層の実質的な一面上で、重合及び/又はイオ
ン交換基の導入等により、イオン交換体層を形成
させる方法、又は、イオン交換体の膜状物の一方
の面を強アルカリ処理又は酸化処理等によつて部
分的に分解又は粗化して多孔化して、他方の面に
だけ陽イオン交換基の存在する薄層を残す方法も
ある。これらの方法では、イオン交換体層と多孔
体層の境界は明瞭ではなく、漸次一方の層から他
方層に状態が移ることになり、好ましい複合陽イ
オン交換膜として推奨される。 次に本発明の複合陽イオン交換膜の作り方の例
を示すが、本発明はこれらの方法により製造され
るものに限定されることはない。 (i) 多孔体が布状物又は孔径0.1mm程度以下の微
細孔状物である場合において、低架橋性又は実
質的に架橋のないイオン交換樹脂を、単独又は
増粘を目的とする他の樹脂又は可塑剤と共に、
適当な溶媒に溶解又は膨潤させて多孔体上に塗
布し、溶媒を蒸発その他により除去する方法。 (ii) 前項の如く多孔体に対して、低架橋性又は実
質的に架橋のないイオン交換樹脂微粉体の懸濁
物又はペースト状物を塗布し、これを該イオン
交換樹脂の軟化温度以上に加熱し皮膜化する方
法。 (iii) 多孔体の一方の面にイオン交換層樹脂のフイ
ルム状物を重ね、これを該イオン交換樹脂の軟
化温度以上好ましくは溶融温度以上に加熱融着
する方法。 (iv) 以上の(i)乃至(iii)によるイオン交換体の形成手
段を、イオン交換基の導入可能な合成樹脂、例
えば芳香核を有する合成樹脂、イオン交換基と
置換し得る水素、ハロゲン等を有する合成樹
脂、又はイオン交換基に変換し得る官能基、例
えばハロスルホン基、カルボン酸エステル基、
スルホン酸又はカルボン酸アマイド基を有する
合成樹脂に適用し、多孔体の一面に皮膜を形成
させた後イオン交換基を導入又は、イオン交換
基に変換する方法。 これらの方法を行うにあたり、多孔体の素材と
イオン交換体の素材との組合せを選択することに
よつて、強固な一体性を得ることが可能である。
例えば、多孔体が含弗素樹脂を主体とする場合に
は、イオン交換体も含弗素系のイオン交換体特に
イオン交換基を導入又は、イオン交換基に変化す
る以前のものをまず上記いずれかの手段で皮膜と
して形成させた後、これにイオン交換基を導入す
る。また多孔体がポリオレフインである場合に
は、主鎖が炭化水素又はイオン交換基以外の置換
基を有する炭化水素、例えば、アルキル置換、塩
素置換、芳香族置換、その他の置換基を有するイ
オン交換体を適用する。 その他複合陽イオン交換膜製造の例は、多孔体
上にイオン交換樹脂膜を糊剤により貼着する方法
である。一般に適用される糊剤はイオン交換樹脂
と同一又は類似の組成の樹脂溶液又は粉体であ
り、これらを接着面に塗布して必要により加熱接
着する。またエポキシ系の接着剤もしばしば有効
である。場合によつてはアラビアゴム等の粘着剤
も使用し得る。これらの糊剤は、多孔体とイオン
交換樹脂又はイオン交換樹脂に接着後変えられる
樹脂との相方の素材に応じて、当業者が適宜選択
使用すればよく、本発明においては、多孔体とイ
オン交換体との接着手段に発明の要旨を主張する
ものではない。 またイオン交換樹脂部分とイオン交換基を有し
ない部分よりなるイオン交換樹脂膜のイオン交換
基に鉄イオン、銅イオン、アミノ酸を導入してお
き、この膜の一方の面より過酸化水素で処理する
ことによつてイオン交換樹脂膜の一方の側のある
厚みの部分について鉄等の導入されているイオン
交換樹脂部分を選択的に多孔化することによつて
本発明の複合陽イオン交換膜を得ることができ
る。 以上の如く、又は、他の方法により一体化され
た複合陽イオン交換膜は、一般に多孔体部分の厚
さがイオン交換体部分の厚さに比して、1倍より
大きく、好ましくは10倍以上である。通常両層の
厚みの合計は0.3乃至5mm、好ましくは0.6乃至2
mmである。例えば多孔体の平均孔径が0.1mmであ
れば、多孔体層の厚さは一般に0.1mm以上であり、
イオン交換膜の厚さは0.1mm以下、特に0.01〜0.1
mmで、且つ複合陽イオン交換膜全体の厚さは0.3
〜5mmが好ましい。勿論、更に細孔の多孔体の場
合には、水透過率によつて規定する方が便利であ
り、その場合にあつては、水の透過量と多孔体の
厚さとは、ほぼ逆比例の関係にあるため、孔径が
大きい場合は厚さは大きく、小さい場合には薄い
という関係がすでに透過率の中に導入されてお
り、一般に多孔体層がイオン交換体層の厚さの10
倍以上であれば、一般に平均孔径と厚さの関係
は、l/d>100の開係を有する。 上述の如き複合陽イオン交換膜は、アルカリ金
属塩化物等の隔膜電解に適用することができる。
該隔膜式電解槽は特に限定はなく、堅型、横型い
ずれでもよく、また電極は、単極式、複極式のい
ずれであつてもよいし、平板型又は屈曲型電極、
プレート電極、多孔板電極であつてもよいし、フ
イルタープレス型、水槽型、所謂フインガー型等
いずれであつてもよい。 更に本発明の複合陽イオン交換膜を用いる電解
方法にあつては、隔膜をはさむ陽極室と陰極室と
の間のPH領域が、通常本発明の複合陽イオン交換
膜の中の多孔体層中に中性面を形成する。このた
め電解に供するアルカリ金属塩化物水溶液中に不
純物として存在するカルシウムイオン及びマグネ
シウムイオンが主に多孔体層中で沈澱し、イオン
交換体層に達する割合を減ずる。そこで、これら
のイオンによるイオン交換体の目詰り、延いては
槽電圧の上昇という悪い影響がほとんどない。従
つて、陽極室に供給されるアルカリ金属塩化物中
のカルシウムイオン及びマグネシウムイオンの濃
度は、5ppm以上であつても十分に使用に耐え得
る。 更に本発明複合陽イオン交換膜を用いた電解方
法は、通常30アンペア/平方デシメートル(A/
dm2)以上の高電流密度を用いること、及び/又
は陽極室でのアルカリ金属塩化物の分解率を比較
的小さくするのが好ましく、陽極室出口の陽極室
液濃度はアルカリ金属塩化物3規定以上の保つ必
要がある。好ましくは4規定以上で電解槽に導入
し分解率を30%以下、更には15%以下にすると共
に、出口濃度を3規定以上、特に4規定以上とす
る。 また陰極室においては通常8規定以上の苛性ア
ルカリが得られ、場合によつては15規定又はそれ
以上の濃度となる。このため、必要に応じて水又
は稀苛性アルカリを陰極室に連続的又は間歇的に
加えて、8規定乃至15規定の間で所望の濃度の苛
性アルカリを陰極室より取り出せばよい。 第2図はアスベスト多孔膜による複合陽イオン
交換膜を用いた電解における、苛性アルカリに対
する電流効率をたて軸に、陰極室内の苛性アルカ
リ濃度を横軸に採つた曲線であり、苛性アルカリ
濃度11乃至13規定付近に極大値を持ち、電流効率
70%以上となる範囲では9乃至15規定が対応す
る。勿論これらの範囲は、使用する複合陽イオン
交換膜の種類や電解条件によつて多少変動するも
のではあるが、少なくとも上記範囲、即ち苛性ア
ルカリ濃度9乃至15規定内で電流効率の極大を持
つ。従つて、この範囲内であれば、常に相当に高
い電流効率が得られるため、通常有利に電解する
ことができる。 また、第3図に、陽極室内の塩水濃度と得られ
る塩素の濃度との関係を示す。 第3図より、塩水濃度が低下するにつれて塩素
の濃度が低くなることが明らかであり、それだけ
塩素中に酸素が増加するのである。例えば、第3
図において塩水濃度が3規定以下では塩素濃度は
95%以下となり、2規定では90%以下となる。こ
のような状態では一般に塩素の精製を必要とし、
このため液化分離装置等が必要となるのである。 第2図及び第3図においては、共に陽極とし
て、チタンラス上にチタン、ルテニウム混合酸化
物を付着させた陽極、軟鋼ラスの陰極を用い、ア
スベストを含弗素樹脂デイスパージヨンと共に水
中に懸濁させ、抄紙した紙状の多孔体層(厚さ約
0.5mm、水透過率3ml/hr・cm2・cmH2O)上に、
主鎖がパーフロロカーボンよりなり、ペンダント
として FO2S−CF2−CF2−O−CF(CF3)−CF2−O− を有するポリマーの粉体と弗素樹脂の粉体との混
合物よりなる被膜を形成させ、ポアズイユの式に
より求めた平均孔径(d)、膜厚から求めた孔長(l)に
よるl/dが210の多孔体層と厚さ約0.1mmに均一
に融着した樹脂層とよりなる複合体とし、更に被
膜中の、FO2S−基を加水分解した約1200重量当
量のイオン交換体層を有する複合陽イオン交換膜
を得、これを用い、30A/dm2、85℃で食塩の電
解を行つた結果であり、第2図では陽極室の食塩
濃度280g/、第3図におる苛性ソーダ濃度は
13規定とした。 以下に実施例を示すが、いかなる意味でも、こ
れらの例に限定されるものではない。 尚、多孔体層における平均孔径はポアズイユの
式によつて求めた。また実施例において用いた電
解槽は、陽極としてチタンのラス材の上に酸化ル
テニウムと酸化チタンをコーテイングした不溶性
陽極を用い、陰極は軟鉄のラス材の表面をニツケ
ルメツキしたものを用いた有効膜面積1dm2の二
室式電解槽で、陽極と陰極の間の距離は3mmであ
り、陰極室に水柱で300mmの圧をかけて陽極面に
膜を押しつけて電解を行う。 比較例 1 ポリ4弗化エチレン製の不織布(厚さ4ミル、
開孔率60%、l/d=210)の一方の面と水素の
プラズマによつて処理して後、直ちに
The present invention relates to a special composite cation exchange membrane. Specifically, it is a special composite diaphragm consisting of a porous layer and an ion exchanger layer, and is particularly effective in producing highly concentrated caustic alkali and highly purified chlorine in the electrolysis of alkali metal salts in a diaphragm electrolyzer. This invention relates to a composite cation exchange membrane that can be used for. Conventionally, in the diaphragm electrolysis method, a material with relatively high water permeability such as asbestos is used as the diaphragm.
Electrolysis is carried out by flowing salt water from the anode chamber to the cathode chamber. Asbestos fibers such as chrysotile are usually used for the diaphragm due to cost and processability, but these fibers are relatively sensitive to alkali and have poor shape stability during use, so they can only be used for several hundred hours. The drawback was that it had to be replaced. Therefore, attempts have been made in recent years to increase the strength of the diaphragm. For example, by using a silicon compound as a binder for asbestos, or by co-precipitating asbestos fibers and fluororesin fine particles or fibers to uniformly mix them. Asbestos binders, such as sintering, were developed. Another method has been proposed in which a porous film of fluorine-containing resin is used as a diaphragm. Although many of these attempts have significantly improved the durability of the diaphragm,
The quality of caustic alkali, which is an essential defect, cannot be sufficiently improved. Furthermore, attempts have been made to use a membrane material having selective ion permeability, that is, an ion exchange resin membrane, as a diaphragm. According to this method, for example, a cation exchange membrane is used to selectively send only alkali metal ions from the anode chamber to the cathode chamber, where caustic alkali is generated and hydrogen gas is generated. On the other hand, in the anode chamber, chlorine ions are oxidized and chlorine gas is generated. However, the transfer number of hydroxide ions in the cation exchange membrane is relatively large, which results in the escape of alkali into the anode chamber, which not only causes a loss of power but also has the disadvantage of increasing the oxygen concentration in chlorine. This phenomenon becomes more pronounced as the concentration of caustic alkali generated in the cathode chamber increases. In addition, ion exchange membranes are exposed to harsh environments. Therefore, ion exchange resin membranes that can withstand harsh environments such as electrolytic conditions are being developed. The main ones are all based on fluorine-containing resins, such as those whose main chain is perfluoroethylene type and has an ion exchange group as a pendant group, and those that are a combination of perfluoroethylene and vinylidene fluoride. A polymer or a mixture of each polymer, in which a portion of the hydrogen of vinylidene fluoride units is replaced with an ion exchange group such as a sulfone group, has been proposed. Such ion exchange resin membranes have been considerably improved in terms of durability, and some of them can withstand practical use. For example, the method disclosed in Japanese Unexamined Patent Publication No. 48-61397 seems to achieve the intended purpose. Even with these methods, it is still not possible to substantially completely prevent hydroxide ion permeation, which is a common drawback of cation exchange resin membranes. It is difficult to maintain high current efficiency. Therefore,
In the case of electrolysis of alkali metal chlorides, it has generally been proposed to conduct the electrolysis by keeping the concentration of the caustic alkali produced low, for example, around 3 to 6N, and even in that case, the current efficiency is still 80%. It is thought that it will be about a certain extent. It goes without saying that such a low concentration of caustic alkali usually requires a further concentration step, which is disadvantageous in terms of equipment and energy. Furthermore, when attempting to obtain a high concentration of caustic alkali directly by electrolysis, the current efficiency rapidly decreases to, for example, 70% or less. Therefore, it is an object of the present invention to obtain a composite cation exchange membrane that is substantially impermeable to hydroxide ions when used industrially. According to the composite cation exchange membrane of the present invention, caustic alkali can be obtained at a high concentration of 8N or more, and if necessary, 15N or more with a current efficiency of 70% or more, and the concentration of chlorine obtained in the anode chamber is In particular, the concentration is usually 97% or higher even without the addition of hydrochloric acid, and the chlorine purification process can be simplified or eliminated. That is, the composite cation exchange membrane of the present invention is a composite membrane consisting of a thick porous layer and a thin layer of a substantially water-impermeable cation exchanger. Specifically, the present invention comprises a porous layer mainly made of resin, an ion exchanger layer that is a substantially water-impermeable carboxylic acid type cation exchanger, and is not thicker than the porous layer. and the porous layer has a thickness of 0.01
This is a composite cation exchange membrane with water permeability of ml/hv・cm 2・cmH 2 O or higher. Here, the expression porosity or water impermeability is expressed by the water permeability of each layer alone. In other words, water impermeability is defined as water permeability per 1 cm 2 per hour under a pressure difference of 1 cm of water column (expressed in milliliters unless otherwise specified). Water permeability
It is 0.01 or more. In the present invention, generally,
A value of 0.1 or higher is recommended, with an upper limit of several tens of liters,
For example, it may have pores with a diameter of about 1 mm, but it is generally preferable to increase the thickness of the porous layer as the pore diameter increases. The relationship between the diameter and length of the pores must always be maintained as diameter<length, but especially when the average diameter of the porous body is d and the length of the pores is l, the relationship l/d>100. It is preferable that the In addition, it is preferable that the amount of pores is large, but in general, it is preferably applied to the present invention if the volume occupied by pores (this is referred to as the pore opening ratio) is 50% or more, particularly 70% or more of the total volume. It is possible. Regarding the present invention, in order to aid understanding, FIG. 1 shows the relationship between the water permeability of the porous layer of the diaphragm and the interelectrode voltage of the electrolytic cell. In this example, we used an asbestos porous membrane using a fluororesin as a binder and a Nafion (perfluoro-based cation exchange membrane) made by DuPont.
315 (approximately 0.41 mm thick) was used to examine the interelectrode voltage when the water permeability was changed by changing the thickness of the asbestos porous membrane. In addition, the electrolysis conditions are a temperature of 80
°C, 30A/ dm2 , salt 280g/(anode chamber outlet)
Then remove from the cathode chamber as 13 regulated caustic soda. From FIG. 1, it can be seen that when the water permeability of the porous layer is 0.01 or less, the interelectrode voltage increases extremely. Therefore, the water permeability must be selected to be 0.01 or more, preferably 0.1 or more. Furthermore, if the pore diameter of the porous material layer is extremely large, 1 mm or more, it will no longer be useful as a porous material and is not suitable for the purpose of the present invention. The composite cation exchange membrane of the present invention consists of a porous layer mainly made of resin and a cation exchanger layer that is substantially water-impermeable, and the cation exchanger layer is larger than the porous layer. One of its characteristics is that it is not thick. In other words, general cation exchange membranes used for electrolysis of alkali metal salts, etc. have a large specific electrical resistance;
This accounts for a large proportion of the interelectrode voltage. In order to reduce the film electrical resistance, it is necessary to reduce the film thickness. However, making it too thin not only weakens the strength and poses a risk of breakage, but also increases the diffusion of salts into the cathode chamber during electrolysis, which is inconvenient. However, in the present invention, the porous layer acts as a support for the ion exchanger layer, making it possible to make the ion exchanger layer thinner. Furthermore, according to the present inventors' speculation, since a concentration gradient is generated in the pores of the porous layer, it is also possible to reduce the diffusion of salts into the cathode chamber. In order to obtain these effects,
It is desirable that the porous layer be relatively thick. On the other hand, the thickness of a membrane that can be subjected to electrolysis is generally
The thickness is approximately 0.3 to 5 mm, but in the present invention, this is formed by a porous layer and an ion exchange layer, and the ion exchange layer may not be thicker than the porous layer. Particularly favorable results are obtained. Examples of porous bodies used in the present invention include aggregates of organic fibrous materials such as nonwoven fabrics, woven fabrics,
There are knitted fabrics, etc., and the fiber here refers to the length (L) and diameter (D).
The ratio of L/D to L/D is considerably large, such as L/D.
If D>100, the absolute length is not a particular problem. It also includes those formed by compressing, sintering, welding, gluing, etc., powdery or fibrous materials. Furthermore, various synthetic resins, cellulose,
It also includes porous bodies made of membrane-like substances such as modified cellulose and proteins. Of course, those based on a mixture of fibers and particles, aggregated and molded, are also effective.
In short, any material that can form a membranous layer of porous material can be suitable for the purpose of the present invention.
However, it is clear from the perspective of the invention that it does not include anything that cannot maintain its shape in water. Furthermore, it goes without saying that if a material is easily attacked by chlorine, its life will be short when subjected to alkali metal chloride electrolysis. Next, examples of materials for the porous layer in the present invention include natural fibers such as wool, cotton, linen, and jute; aggregates of natural granules such as cork and particleboard (these natural polymers also include Nonwoven fabrics, woven fabrics, knitted fabrics, or partially welded fabrics made of synthetic resin fibers that are fluorine-containing resin polyolefins, polystyrene, polyesters, polyamides, chlorine-containing resins, and other polymers or copolymers (supposed to be included in resin in the specification) , a porous sheet, such as a sheet formed by mixing these synthetic resins with an extractable substance, from which the extractable substance has been extracted and removed, or a synthetic resin mixed with an incompatible substance, such as inorganic fine particles, There are sheets that are made porous by being formed into a sheet and then stretched in the vertical and/or horizontal directions. In addition, as an improvement in the formation of the porous layer in the present invention, it is possible to further strengthen the dimensional stability by forming a silicic acid film only on the side that does not face the ion exchange resin layer, or by increasing the presence rate of the fluorine-containing resin. Non- or low fluorine-containing porous resin materials may also be used. Further, the porous layer in the present invention may have an ion exchange group. Regarding the manufacturing method of porous materials, please refer to
Publication No. 126571, Publication No. 50-177879, Publication No. 51-6196
Publication No. 47-1030, Publication No. 49-37878,
Publication No. 49-81278, Publication No. 49-118760, Publication No. 49
-119874 publication, 49-122480 publication, 50-
Publication No. 41960, Publication No. 50-10785, Publication No. 50-33194
However, these are only a few examples. Next, the material constituting the ion exchange resin layer is a so-called carboxylic acid type cation exchange resin having a carboxylic acid group, and if necessary, a sulfone group,
Phosphite group, phosphoric acid group, sulfate ester group, phosphoric acid ester group, phosphite ester group, phenolic hydroxyl group, thiol group, acid amide group with a dissociable hydrogen atom, silicic acid group, metal chelate compound. It may have one or more types of ion exchange groups such as those that can be dissociated into In some cases, the resin skeleton may be crosslinked. Preferred ion exchange resins are polymers that do not have hydrogen atoms, such as perfluorocarbon polymers, and have appropriate ion exchange groups, preferably those having ion exchange groups having a weight equivalent of 800 to 2,000. In the present invention, some examples of ion exchangers that can be used are sulfonated products of styrene-divinylbenzene copolymers, acrylic acid, or methacrylic acid and styrene, acrylonitrile, vinyl acetate,
A copolymer with one or more alkyl acrylates, alkyl methacrylates, etc., or a copolymer of these with a crosslinking agent such as divinylbenzene or divinyl sulfone, etc., which can be hydrolyzed or cationized as necessary. Those with exchange groups introduced, pendant groups (However, R is fluorine or perfluoroalkyl, n is 0 to 3, Y is fluorine or perfluoroalkyl), and perfluorovinylether and tetrafluoroethylene are bonded to at least one of a sulfone group and a carboxyl group. copolymers with The porous layer and the cation exchanger layer constituting the composite cation exchange membrane of the present invention only need to be integrated. However, if the ion exchanger layer is extremely thin, for example, about 0.01 to 0.1 mm, the electrical resistance of the ion exchanger layer is low, and the porous layer and ion exchanger layer become integrated. The electrical resistance of the composite ion exchanger is also lowered. In this case, the porous layer can also function as a support for the ion exchanger layer. This kind of adhesion between the two is
In general, in addition to welding, fusing, or adhesion using a glue, a method of forming an ion exchange layer by polymerization and/or introduction of an ion exchange group on substantially one surface of the porous layer, or an ion exchange method. Another method is to partially decompose or roughen and make porous one side of the membranous material by strong alkali treatment or oxidation treatment, leaving a thin layer containing cation exchange groups only on the other side. be. In these methods, the boundary between the ion exchanger layer and the porous layer is not clear, and the state gradually shifts from one layer to the other, and is recommended as a preferred composite cation exchange membrane. Next, examples of how to make the composite cation exchange membrane of the present invention will be shown, but the present invention is not limited to those produced by these methods. (i) When the porous material is a cloth-like material or a microporous material with a pore diameter of approximately 0.1 mm or less, an ion exchange resin with low crosslinking properties or substantially no crosslinking may be used alone or with other materials for the purpose of thickening. With resin or plasticizer,
A method in which the solution is dissolved or swollen in an appropriate solvent and applied onto a porous body, and the solvent is removed by evaporation or other means. (ii) Apply a suspension or paste of ion exchange resin fine powder with low crosslinking properties or substantially no crosslinking to the porous body as described in the previous paragraph, and heat it to a temperature higher than the softening temperature of the ion exchange resin. A method of heating and forming a film. (iii) A method in which a film-like material of an ion exchange layer resin is superimposed on one surface of a porous body, and this is heated and fused to a temperature higher than the softening temperature of the ion exchange resin, preferably higher than the melting temperature. (iv) The means for forming an ion exchanger according to (i) to (iii) above is a synthetic resin into which an ion exchange group can be introduced, such as a synthetic resin having an aromatic nucleus, hydrogen, halogen, etc. that can be substituted with an ion exchange group. or a functional group that can be converted into an ion exchange group, such as a halosulfone group, a carboxylic acid ester group,
This method is applied to synthetic resins having sulfonic acid or carboxylic acid amide groups, and after forming a film on one surface of a porous body, ion exchange groups are introduced or converted into ion exchange groups. When carrying out these methods, it is possible to obtain strong integrity by selecting a combination of the porous body material and the ion exchanger material.
For example, when the porous body is mainly composed of a fluorine-containing resin, the ion exchanger should also be a fluorine-containing ion exchanger, especially one that has not had an ion exchange group introduced or has not been changed into an ion exchange group. After forming the film as a film, an ion exchange group is introduced into the film. In addition, when the porous body is a polyolefin, the main chain is a hydrocarbon or a hydrocarbon having a substituent other than an ion exchange group, such as an ion exchanger having an alkyl substitution, a chlorine substitution, an aromatic substitution, or another substituent. apply. Another example of composite cation exchange membrane production is a method in which an ion exchange resin membrane is adhered onto a porous body using a glue. The glue that is generally applied is a resin solution or powder having the same or similar composition as the ion exchange resin, which is applied to the adhesive surface and bonded by heating if necessary. Epoxy adhesives are also often effective. In some cases, adhesives such as gum arabic may also be used. These adhesives may be appropriately selected and used by those skilled in the art depending on the material of the porous body and the ion exchange resin or the resin to be changed after adhesion to the ion exchange resin. The gist of the invention is not claimed in the means for adhering to the exchanger. In addition, iron ions, copper ions, and amino acids are introduced into the ion exchange groups of an ion exchange resin membrane consisting of an ion exchange resin part and a part without ion exchange groups, and one side of this membrane is treated with hydrogen peroxide. The composite cation exchange membrane of the present invention is obtained by selectively making porous the ion exchange resin portion into which iron or the like has been introduced, particularly in a certain thickness portion on one side of the ion exchange resin membrane. be able to. In a composite cation exchange membrane integrated as described above or by other methods, the thickness of the porous body portion is generally more than 1 times, preferably 10 times, the thickness of the ion exchanger portion. That's all. Usually the total thickness of both layers is 0.3 to 5 mm, preferably 0.6 to 2 mm.
mm. For example, if the average pore diameter of the porous body is 0.1 mm, the thickness of the porous body layer is generally 0.1 mm or more,
The thickness of ion exchange membrane is less than 0.1mm, especially 0.01~0.1
mm, and the total thickness of the composite cation exchange membrane is 0.3
~5 mm is preferred. Of course, in the case of a porous material with even smaller pores, it is more convenient to define it in terms of water permeability, and in that case, the amount of water permeation and the thickness of the porous material are almost inversely proportional. Therefore, the relationship that the thickness is large when the pore size is large and thin when the pore size is small has already been introduced into the transmittance, and generally the porous layer is 10 times the thickness of the ion exchanger layer.
If it is more than twice that, the relationship between the average pore diameter and the thickness generally has a ratio of l/d>100. The composite cation exchange membrane as described above can be applied to diaphragm electrolysis of alkali metal chlorides and the like.
The diaphragm type electrolytic cell is not particularly limited, and may be either rigid or horizontal, and the electrode may be monopolar or bipolar, and may include flat or bent electrodes,
It may be a plate electrode, a porous plate electrode, a filter press type, a water tank type, a so-called finger type, or the like. Furthermore, in the electrolysis method using the composite cation exchange membrane of the present invention, the PH region between the anode chamber and the cathode chamber sandwiching the diaphragm is usually within the porous layer of the composite cation exchange membrane of the present invention. form a neutral surface. Therefore, calcium ions and magnesium ions present as impurities in the aqueous alkali metal chloride solution subjected to electrolysis mainly precipitate in the porous layer, reducing the proportion of them reaching the ion exchange layer. Therefore, there is almost no negative influence such as clogging of the ion exchanger due to these ions and an increase in cell voltage. Therefore, even if the concentration of calcium ions and magnesium ions in the alkali metal chloride supplied to the anode chamber is 5 ppm or more, it can be used satisfactorily. Furthermore, the electrolysis method using the composite cation exchange membrane of the present invention is usually 30 amperes/square decimeter (A/
It is preferable to use a high current density of dm 2 ) or more and/or to make the decomposition rate of alkali metal chloride relatively small in the anode chamber, and the concentration of the alkali metal chloride solution at the anode chamber outlet is 3N. Need to keep more than that. Preferably, it is introduced into the electrolytic cell at a concentration of 4N or more to make the decomposition rate 30% or less, more preferably 15% or less, and the outlet concentration is 3N or more, especially 4N or more. In the cathode chamber, caustic alkali with a concentration of 8N or higher is usually obtained, and in some cases, the concentration is 15N or higher. Therefore, if necessary, water or dilute caustic alkali may be added continuously or intermittently to the cathode chamber, and caustic alkali at a desired concentration between 8N and 15N may be taken out from the cathode chamber. Figure 2 is a curve in which the vertical axis is the current efficiency for caustic alkali and the horizontal axis is the caustic alkali concentration in the cathode chamber in electrolysis using a composite cation exchange membrane made of an asbestos porous membrane. The current efficiency has a maximum value around the 13 standard.
In the range of 70% or more, provisions 9 to 15 correspond. Of course, these ranges vary somewhat depending on the type of composite cation exchange membrane used and the electrolytic conditions, but at least the current efficiency is at its maximum within the above range, that is, within the range of 9 to 15 normal concentrations of caustic alkali. Therefore, within this range, electrolysis can usually be carried out advantageously since a considerably high current efficiency is always obtained. Further, FIG. 3 shows the relationship between the concentration of salt water in the anode chamber and the concentration of chlorine obtained. From FIG. 3, it is clear that as the salt water concentration decreases, the chlorine concentration decreases, and the amount of oxygen in the chlorine increases accordingly. For example, the third
In the figure, when the salt water concentration is 3 or less, the chlorine concentration is
It will be 95% or less, and under 2 regulations it will be 90% or less. Such conditions generally require purification of chlorine;
For this reason, a liquefaction separation device or the like is required. In both Figures 2 and 3, asbestos is suspended in water together with a fluorine-containing resin dispersion, and an anode made of titanium lath with mixed oxide of titanium and ruthenium adhered to it, and a cathode made of mild steel lath are used as anodes. , paper-like porous layer (thickness approx.
0.5mm, water permeability 3ml/hr・cm 2・cmH 2 O),
Consisting of a mixture of a polymer powder whose main chain is perfluorocarbon and which has FO 2 S-CF 2 -CF 2 -O-CF (CF 3 )-CF 2 -O- as a pendant and a fluororesin powder. A resin is uniformly fused to a porous layer with a thickness of approximately 0.1 mm to form a film and have an average pore diameter (d) determined by Poiseuille's formula and a pore length (l) determined from the film thickness of l/d of 210. A composite cation exchange membrane having an ion exchange layer of approximately 1200 weight equivalents by hydrolyzing FO 2 S- groups in the coating was obtained, and using this, 30 A/dm 2 , These are the results of electrolyzing salt at 85℃, and the salt concentration in the anode chamber in Figure 2 is 280g/, and the concentration of caustic soda in Figure 3 is
13 regulations. Examples are shown below, but the invention is not limited to these examples in any way. The average pore diameter in the porous layer was determined by Poiseuille's formula. In addition, the electrolytic cell used in the example used an insoluble anode in which ruthenium oxide and titanium oxide were coated on a titanium lath material as an anode, and a cathode with a nickel-plated surface of a soft iron lath material with an effective membrane area. It is a 1 dm 2 two-chamber electrolytic cell, the distance between the anode and cathode is 3 mm, and electrolysis is carried out by applying a pressure of 300 mm with a water column to the cathode chamber and pressing the membrane against the anode surface. Comparative Example 1 Nonwoven fabric made of polytetrafluoroethylene (thickness 4 mil,
Immediately after treatment with hydrogen plasma on one side of the porosity (60%, l/d = 210)

【式】 の蒸気中に放置して紫外線を照射した。これによ
つて不織布の一方の面のみに極性基が導入され他
の樹脂に対する接着性を向上させた。この膜の透
水量は15c.c./hr・cm2・cmH2O、電気抵抗は0.7Ω
−cm2(85℃、5NNaCl中)であつた。 他方、テトラフルオロエチレンとパーフルオロ
(3,6−ジオキサ−4−メチル−7−オクテン
スルホニルフルオライド)の共重合物で加水分解
したときの交換容量が1200重量当量のもので厚み
が2ミルの高分子膜状物を製造して、これを上記
ポリ4弗化エチレンの不織布の表面処理をした面
に重ねて250℃で加熱して上記不織布が圧縮緻密
化されない程度の圧力で押えつけて両者を一体化
させた。得られた多孔体層を有し、且つ陽イオン
交換膜を一体化した隔膜の多孔体層部分はポリ4
弗化エチレンであり、表面エネルギーが小さく撥
水性であるため、これをパーフルオロ系の陰イオ
ン性界面活性剤(商品名:フローラドFC−95、
住友スリーエム(株)社製)の水溶液中に長時間浸漬
して陰イオン性界面活性剤を吸着させて親水性を
賦与した。 さて、陽極としてチタンのラス材の上に酸化ル
テニウムと酸化チタンをコーテイングした不溶性
陽極を用い、陰極は軟鉄のラス材の表面をニツケ
ルメツキしたものを用いた有効膜面積1dm2の二
室式電解槽に上記隔膜を組み込んだ。隔膜は陽極
と接して多孔性面を陽極に向けて配し、陽極と陰
極の間の距離は3mmであり、陰極室に水柱で300
mmの圧をかけて陽極面に膜を押しつけた。電解温
度は85℃で電流密度は35A/dm2で陽極室には飽
食塩水を供給し、排出される食塩水の濃度は270
g/であつた。陰極室には純水を供給しないで
苛性ソーダを取得した。その結果、陰極室からは
12規定の苛性ソーダが電流効率79%で取得でき
た。電槽電圧は3.95Vであつた。また陽極で発生
した塩素の純度は98.5%であつた。 実施例 1 石綿繊維をテトラフルオロエチレンとヘキサフ
ルオロプロピレンの共重合体のデイスパージヨン
(商品名:ネオフロンデイスパージヨンND−1、
ダイキン工業(株)社製)と混合、抄造、加熱処理し
て厚さ1.1mm、開孔率55%で透水量1.2c.c./hr・
cm2・cmH2Oの透水性のある樹脂成分が65重量%
の隔膜を製造した。 次いでこれをメタノール中に浸漬して、メタノ
ールを均一に浸み込ませたのちに、ベンゼン中に
浸漬してメタノールとベンゼンを置換せしめた。 別にスチレン20部、ビニルスルホン酸n−ブチ
ルエステル40部、純度約55%のジビニルベンゼン
20部にステアリルメタアクリレート15部を加え更
にラウリルパーオキサイド1部を加えて混合した
均一なモノマー混合物を調整した。この中に上記
ベンゼンを含浸した石綿製の隔膜を浸漬し、ベン
ゼンとモノマーが完全に置換するように長時間放
置した。 次いでこれの両面をセロフアンでおおい、100
℃で16時間、120℃で8時間オートクレーブ中で
加熱して重合させ、次いで10%臭素酸中で加熱し
て加水分解処理をし、ふつ素系樹脂で結合された
石綿繊維を芯材とした陽イオン交換膜を得た。こ
れを6.0N NaOHと2NHClにくり返し浸漬して、
コンデイシヨニングしたあとNa型にしたものを
5.0N NaClと6.0N NaOHの間に膜を配して80℃
で交流1000サイクルで電気抵抗を測定したとこ
ろ、35Ω−cm2であり、交換容量は1.21ミリ当量/
グラム乾燥膜(826重量当量)であつた。次いで
これを二室式セルの中に組み込み、一方の側には
塩化第2鉄の5重量%水溶液を満たし、他方の部
屋には塩化バリウムの3重量%水溶液を満たして
適当に撹拌して30分間放置した。両側から膜内に
鉄イオンとバリウムイオンをイオン交換させた。
この後両室の液を抜き純水で軽く洗浄した後、塩
化第2鉄水溶液が満たされていた部屋には5重量
%の過酸化水素水溶液を満たし、他の部屋には純
水を満たし1時間放置したところ、鉄イオンを交
換させ、また過酸化水素と接した側のイオン交換
樹脂成分が選択的に分解されており、交換容量を
測定したところ、0.21ミリ当量/グラム乾燥膜と
なつていた。他方、透水量を測定したところ0.04
c.c./hr・cm2・H2Ocm以下であつた。またl/d
は120であつた。また複合陽イオン交換膜の透水
量は10- 5c.c./hr・cm2・H2Ocmであつた。更に膜の
電気抵抗は上記の測定と同一条件で測定して2.1
Ω−cm2であつた。このことから、ここで作つた隔
膜はバリウムイオンを交換し、この後純水と接し
た側は過酸化水素による分解が阻止されて緻密な
構造のイオン交換体層として残つたものと思われ
る。 次にこの膜を用いて前記電解槽を用いて、陽極
液を265g/の濃度になるように飽和塩化カリ
ウム溶液を供給して、電流密度35A/dm2で陰極
室からは13.2規定のKOH溶液が取得できるよう
に純水を添加した。その結果、KOH取得の電流
効率は85%であり、また陽極から発生する塩素ガ
スの中へのO2の含量は3%以下であつた。また
電槽電圧は4.30Vであり、電解槽の温度は70℃で
あつた。なお、陰極で生成した苛性カリの中の
KClの量は、48%kCl換算で125ppmであつた。 実施例 2 ポリ4弗化エチレン微粉末と揮発性分を予め加
熱して除いたガラス繊維製のチヨツプ(直径
10μ、長さ50μ)を75:25の重量比で均一に混合
し、ついでこれを立方体の型枠の中に入れて30
Kg/cm2に加圧し、更に370℃に24時間保つた。次
いでここで得られたブロツクを切削して1.3mmの
厚さで開孔率65%のシートを作り、得られたシー
トを室温で48時間弗化水素酸の中に浸漬してガラ
ス繊維を溶出せしめた。これの透水性は0.14c.c./
hr・cm2・H2Ocm、l/d=190であり、電気抵抗
は80℃の5.0N NaCl水中で測定して0.9Ω−cm2
あつた。 別に上記塊状物を切削して得たガラス繊維が入
つたポリ4弗化エチレンのシートの上に次の構造
式を有する、−COFを加水分解して
It was left in the steam of [Formula] and irradiated with ultraviolet rays. As a result, polar groups were introduced only on one side of the nonwoven fabric, improving adhesion to other resins. The water permeability of this membrane is 15c.c./hr・cm 2・cmH 2 O, and the electrical resistance is 0.7Ω.
-cm 2 (85°C, in 5NNaCl). On the other hand, a copolymer of tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) has an exchange capacity of 1200 weight equivalents when hydrolyzed and has a thickness of 2 mils. A polymeric film-like material is manufactured, and this is placed on the surface-treated surface of the polytetrafluoroethylene nonwoven fabric, heated at 250°C, and pressed down with enough pressure to prevent the nonwoven fabric from becoming compressed and densified. were integrated. The porous layer portion of the diaphragm having the obtained porous layer and integrated with the cation exchange membrane is made of poly 4
Ethylene fluoride has low surface energy and is water repellent, so it is used as a perfluorinated anionic surfactant (product name: Florad FC-95,
The material was immersed in an aqueous solution (manufactured by Sumitomo 3M Ltd.) for a long time to adsorb an anionic surfactant, thereby imparting hydrophilic properties. Now, a two-chamber electrolytic cell with an effective membrane area of 1 dm 2 is used, using an insoluble anode made of a titanium lath coated with ruthenium oxide and titanium oxide as the anode, and a nickel-plated soft iron lath surface as the cathode. The above diaphragm was incorporated into the diaphragm. The diaphragm is placed in contact with the anode with the porous side facing the anode, the distance between the anode and the cathode is 3 mm, and the water column in the cathode chamber is 300 mm.
The membrane was pressed against the anode surface using a pressure of mm. The electrolysis temperature was 85℃, the current density was 35A/ dm2 , saturated saline was supplied to the anode chamber, and the concentration of the saline discharged was 270.
It was g/. Caustic soda was obtained without supplying pure water to the cathode chamber. As a result, from the cathode chamber
12 standard caustic soda was obtained with a current efficiency of 79%. The battery voltage was 3.95V. The purity of chlorine generated at the anode was 98.5%. Example 1 Asbestos fibers were made into a dispersion of a copolymer of tetrafluoroethylene and hexafluoropropylene (trade name: NEOFLON DISPERSION ND-1,
(manufactured by Daikin Industries, Ltd.), paper-formed, and heat-treated to form a sheet with a thickness of 1.1 mm, porosity of 55%, and water permeability of 1.2 cc/hr.
65% by weight resin component with water permeability of cm2cmH2O
A diaphragm was manufactured. Next, this was immersed in methanol to uniformly soak in the methanol, and then immersed in benzene to replace methanol and benzene. Separately, 20 parts of styrene, 40 parts of vinylsulfonic acid n-butyl ester, and divinylbenzene with a purity of about 55%.
A homogeneous monomer mixture was prepared by adding 15 parts of stearyl methacrylate to 20 parts and further adding 1 part of lauryl peroxide. A diaphragm made of asbestos impregnated with benzene was immersed in this solution and left for a long time so that the benzene and monomer were completely replaced. Next, cover both sides of this with cellophane, 100
℃ for 16 hours and 120℃ for 8 hours to polymerize in an autoclave, then heat in 10% bromic acid for hydrolysis treatment, and asbestos fibers bonded with fluorine resin were used as a core material. A cation exchange membrane was obtained. This was repeatedly immersed in 6.0N NaOH and 2NHCl,
After conditioning, the Na-type
Place a membrane between 5.0N NaCl and 6.0N NaOH at 80°C.
When the electrical resistance was measured at 1000 AC cycles, it was 35Ω- cm2 , and the exchange capacity was 1.21 meq/cm2.
gram dry membrane (826 weight equivalents). This was then placed in a two-chamber cell, one side filled with a 5% by weight aqueous solution of ferric chloride, and the other chamber filled with a 3% by weight aqueous solution of barium chloride, and stirred appropriately for 30 minutes. Leave it for a minute. Iron ions and barium ions were ion-exchanged into the membrane from both sides.
After this, the liquid in both chambers was drained and washed lightly with pure water, then the chamber that had been filled with the ferric chloride aqueous solution was filled with a 5% by weight hydrogen peroxide aqueous solution, and the other chambers were filled with pure water. When left for a period of time, iron ions were exchanged and the ion exchange resin component on the side that came into contact with hydrogen peroxide was selectively decomposed, and when the exchange capacity was measured, it was found to be 0.21 meq/g dry membrane. Ta. On the other hand, when we measured the water permeability, it was 0.04.
It was less than cc/hr・cm 2・H 2 Ocm. Also l/d
was 120. The water permeability of the composite cation exchange membrane was 10 - 5 cc/hr·cm 2 ·H 2 Ocm. Furthermore, the electrical resistance of the membrane was measured under the same conditions as above.
It was Ω- cm2 . From this, it seems that the diaphragm produced here exchanged barium ions, and then the side that came into contact with pure water was prevented from being decomposed by hydrogen peroxide and remained as an ion exchanger layer with a dense structure. Next, using this membrane and the electrolytic cell, a saturated potassium chloride solution was supplied so that the anolyte had a concentration of 265 g/dm, and a 13.2N KOH solution was supplied from the cathode chamber at a current density of 35 A/ dm2. Pure water was added to obtain As a result, the current efficiency for KOH acquisition was 85%, and the content of O 2 in the chlorine gas generated from the anode was 3% or less. Further, the cell voltage was 4.30V, and the temperature of the electrolytic cell was 70°C. In addition, in the caustic potash generated at the cathode,
The amount of KCl was 125 ppm in terms of 48% kCl. Example 2 A glass fiber chop (diameter
10μ, length 50μ) at a weight ratio of 75:25, then put this into a cube mold and
It was pressurized to Kg/cm 2 and kept at 370°C for 24 hours. Next, the obtained block was cut into a sheet with a thickness of 1.3 mm and a porosity of 65%, and the resulting sheet was immersed in hydrofluoric acid at room temperature for 48 hours to dissolve the glass fibers. I forced it. The water permeability of this is 0.14cc/
hr·cm 2 ·H 2 Ocm, l/d=190, and the electrical resistance was 0.9Ω-cm 2 when measured in 5.0 N NaCl water at 80°C. Separately, on a sheet of polytetrafluoroethylene containing glass fiber obtained by cutting the above lump, -COF having the following structural formula was hydrolyzed.

【式】lは1、2、3 の混合物−COOHとしたときの交換容量が1250
重量当量に相当する厚さが0.1mmのシートを加圧
下に加熱圧着した。次いでこの膜状物を常温で48
時間弗化水素酸の中に浸漬してガラス繊維を溶出
させ、次いで6.0N NaOH水溶液の中に80℃で24
時間浸漬して、−COFを−COONaに変えて、本
発明の電解方法に用いる隔膜を製造した。なお上
記パーフルオロ系カルボン酸型の膜の電気抵抗抗
は1.4Ω−cm2(80℃、6N NaOH水溶液中)であ
つた。 電解は実施例1と同じ電解槽を用い、陽極室に
は飽和食塩水を供給し、260g/で排出させて
電解を実施した。電解温度は95℃で電流密度は
45A/dm2であつた。陰極室からは純水を供給し
ないで13規定の苛性ソーダを電流効率95%で取得
した。なお、陽極で発生した塩素ガス中の酸素ガ
スの量は1%以下であつた。また陰極で生成した
苛性ソーダの中の48%換算でのNaClの量は
45ppmにすぎなかつた。電槽電圧は4.05Vであつ
た。 比較例 2 アスベスト繊維にテトラフルオロエチレンとヘ
キサフルオロプロピレンの共重合体のデイスパー
ジヨン(商品名:ネオフロンデイスパージヨン
ND−1、ダイキン工業(株)社製)を70:30の比率
で加えて混合、抄造、加熱処理をして厚さが0.9
mmで透水量が0.35c.c./hr・cm2・cmH2O、電気抵抗
が0.5Ω−cm2(5N NaCl水中、800℃)の隔膜
(開孔率55%、l/d=80)を製造した。 次いでこの隔膜の一方の側にテトラフルオロエ
チレンと、パーフルオロ(3,6−ジオキサ−4
−メチル−7−オクテンスルホニルフルオライ
ド)の共重合体で加水分解したときの交換容量が
1100重量当量に相当する厚さが2ミルのシートを
加熱加圧して融着させた。更にその上に同じ共重
合体で加水分解したときの交換容量が1500重量当
量に相当する厚さが1ミルのシートを同じく重ね
て加熱、加圧して融着させた。得られた膜状物を
アスベストから前記共重合物が剥離しないように
して8%のKOHメタノール溶液中に浸漬して共
重合物中のスルホニルフルオライド基を加水分解
し、スルホン酸カリウムに変えた。 別に上記共重合物で2ミルの厚みの1100重量当
量のシートと1ミルの厚みの1500重量当量のシー
トをそれらのみで加熱融着して一枚のシートにし
て同様に8%のKOHメタノール溶液で加水分解
したスルホン酸カリウム型の陽イオン交換膜を
Na型に変えて、5.0N NaClと6.0N NaOHの間
に配して電気抵抗を常法により80℃で測定したと
ころ0.7Ω−cm2であつた。また透水量は10-5c.c./
hr・cm2・cmH2O以下であつた。 次いで上記で得られた本発明の隔膜を用いて、
実施例1で用いたと同じ電解槽によつて陽極液に
飽和食塩水を供給し、排出は270g/で行い、
35A/dm2の電流密度で90℃の電気分解を実施し
た。このとき陰極室には純水を供給しなかつた。
陰極室からは12.5規定の苛性ソーダが電流効率83
%で取得でき、苛性ソーダ中のNaClの量は48%
NaOH換算で62ppmであつた。なお電解の際の
電圧は3.95Vであり、陽極で発生する塩素ガス中
の酸素ガスの量は約1.5%であつた。 実施例 3 テトラフルオロエチレンとパーフルオロ(3,
6−ジオキサ−4−メチル−7−オクテンスルホ
ニルフルオライド)の共重合物で加水分解処理し
てスルホン酸型となつたミクロポーラスな構造を
有する交換容量が1100重量当量の厚さが7ミル
(0.18mm)で透水量が0.26c.c./hr・cm2・cmH2O、
l/d=350で電気抵抗が0.9Ω−cm2(80℃、5N
NaCl水中)のもの(商品名:Nafion
Diaphragm701、米国デユポン社製)を用いた。 他方、テトラフルオロエチレンと弗化ビニリデ
ンをカルボキシメチルセルローズとノルマルプロ
ピルパーオキサカーボネートを用いてエマルジヨ
ン重合させて、テトラフルオロエチレン5に対し
て弗化ビニリデン4の割合で共重合した共重合物
を得た。 次いでこの共重合体の微粉末10部に対して三弗
化−塩化エチレンのオリゴマー(商品名:ダイフ
ロイル#50、分子量1100;ダイキン工業(株)社製)
を1.5部混合して後230℃に加熱した鉄板の間には
さみ加圧して0.1mmの厚みのシートを作り、これ
を発煙硫酸の中に常温で2ケ月間浸漬してスルホ
ン化処理をした。膜の電気抵抗は80℃で5.0N
NaClと6.0N NaOHの間に膜を配して交流で測
定したところ2.3Ω−cm2で、交換容量は1.1ミリ当
量/グラム乾燥膜H型(910重量当量)であつた。
透水量は10-5c.c./hr・cm2・cmH2O以下であつた。
ここで得られた透水性を有する陽イオン交換膜と
非透水性の陽イオン交換膜を接着するために、い
ずれの膜も酸型にして分子量約20000のポリビニ
ルアルコールの5%水溶液を薄く両方の膜状物の
片面に塗布し、これのそれぞれの塗布した面を合
わせて110℃で5時間加熱して乾燥させ両者を接
着した。その後これを硫酸、芒硝、ホルマリンか
らなる通常のホルマール化浴に60℃で30分間浸漬
し、接着部に存在するポリビニルアルコールをホ
ルマール化架橋させて両者を一体化した。一体化
したあと常法により80℃での電気抵抗を測定した
ところ1.8Ω−cm2(5N NaCl/6N NaOH)であ
つた。多孔性陽イオン交換膜の面を陽極に向け本
発明のこの隔膜を用いて飽和食塩水の電気分解を
実施した。陽極室から排出される食塩水の濃度は
220g/であつた。電解槽は実施例1で用いた
と同一のものを用い、電流密度20A/dm2、電解
温度80℃であつた。陰極室には純水を供給して
85N NaOHを定常的に取得した。その結果、陰
極室から取得されるNaOH取得の電流効率は85
%であり、NaOH中のNaClの量は48%NaOH換
算で65ppmであり、電槽電圧は4.16Vであつた。
なお陽極で発生する塩素ガス中の酸素の量は3%
以下であつた。 実施例 4 ポリ4弗化エチレン製の不織布(商品名:FA
−10L、ダイキン工業(株)社製)をスチレン10部、
純度55%のジビニルベンゼン20部、4−ビニルピ
リジン50部にケロシン50部を加えた中にベンゾイ
ルパーオキサイド1部を溶解したモノマー混合物
中に一週間浸漬して不織布の中に均一に浸み込ま
せた。ついでこれをモノマーが飛散しないように
両面をセロフアンでおおい、110℃でオートクレ
ーブ中で加熱重合させた。これをベンゼンで抽出
し、更に沃化メチルとn−ヘキサンの1:1の混
合溶液中に浸漬してピリジン環を4級化処理し
た。この膜の電気抵抗は5.0N NaClと5.0N
NaCl中で80℃で交流で測定したところ、0.5Ω−
cm2で陰イオン交換容量は0.4ミリ当量/グラム乾
燥膜(Cl型)であつた。また透水量は0.03c.c./
hr・cm2・cmH2O、l/d=110であつた。 これの片面に実施例3で用いたパーフルオロ系
カルボン酸型の陽イオン交換膜を加熱融着して飽
和食塩水の電気分解を実施した。電解条件、電解
槽は実施例1と同様にしたが、排出する塩水の濃
度は300g/であつた。 陰極室には純水を供給しないで12.2規定の
NaOHを取得し、電流効率は96%で、電槽電圧
は3.62Vであつた。又、塩素ガス中の酸素濃度は
1%以下であつた。 比較例 3 ポリテトラフルオロエチレンの平織布で目の密
なもので、厚みが1mmで、これをメタノール中に
浸して濡らし透水量を測定すると350c.c./hr・
cm2・cmH2O、l/d=140の布を多孔体部分とし
て用いた。この布の電気抵抗は0.4Ω−cm2(5.0N
NaClと6.0N NaOHの間で80℃で交流で測定し
た値)であつた。陽イオン交換膜部分としては実
施例1で実施したと同様にテトラフルオロエチレ
ンとパーフルオロ(3,6−ジオキサ−4−メチ
ル−7−オクテンスルホニルフルオライド)の共
重合物で加水分解したときの交換容量が1200重量
当量に相当する厚みが2ミルの高分子膜状物を上
記の布に加熱融着させて8%KOHメタノール溶
液で加水分解して本発明の隔膜とした。この膜を
用いて実施例1と同じ電解槽を用いて食塩水を供
給して260g/で排出した。電流密度は35A/
dm2で、陰極室には純水を供給しないで12.5規定
のNaOHを電流効率79%で取得した。電槽電圧
は3.75Vであり、陽極で発生した塩素の純度は98
%であつた。なお電解温度は85℃であつた。 比較例 4 実施例10と同じ電槽を用い同じ様に電解を行つ
た。但し、この際には多孔膜は用いずに
“Nafion427”のみを用いた。 この場合には陽極室の食塩水濃度が約200g/
の時に電流効率は最大となり(80%)、この時
陰極室NaOH濃度は11.1規定で、塩素ガス純度は
95.5%で陰陽極間電圧は4.00Vであつた。 又、この場合に陽極室の塩水濃度を270g/
で電解を行つた場合には、陰極室NaOH濃度は
約12規定で電流効率は64%となり、塩素ガスの純
度は93%で陰陽極間電圧は4.00Vであつた。
[Formula] When l is a mixture of 1, 2, and 3 - COOH, the exchange capacity is 1250
A sheet having a thickness of 0.1 mm corresponding to the weight equivalent was heat-pressed under pressure. Next, this film-like substance was heated at room temperature for 48 hours.
Elute the glass fibers by immersing them in hydrofluoric acid for 24 hours and then into a 6.0N NaOH aqueous solution at 80 °C for 24 hours.
The diaphragm used in the electrolytic method of the present invention was manufactured by immersing the membrane for a period of time to change -COF to -COONa. The electrical resistance of the perfluorinated carboxylic acid type film was 1.4 Ω-cm 2 (at 80° C. in a 6N NaOH aqueous solution). The same electrolytic cell as in Example 1 was used for electrolysis, and saturated saline was supplied to the anode chamber and discharged at a rate of 260 g/min. The electrolysis temperature is 95℃ and the current density is
It was 45A/ dm2 . 13N caustic soda was obtained at a current efficiency of 95% without supplying pure water from the cathode chamber. Note that the amount of oxygen gas in the chlorine gas generated at the anode was 1% or less. Also, the amount of NaCl in the caustic soda produced at the cathode is calculated as 48%.
It was only 45ppm. The battery voltage was 4.05V. Comparative Example 2 Dispersion of asbestos fibers and a copolymer of tetrafluoroethylene and hexafluoropropylene (trade name: NEOFLON Dispersion)
ND-1 (manufactured by Daikin Industries, Ltd.) was added at a ratio of 70:30, mixed, paper-formed, and heat-treated to a thickness of 0.9
Manufactured a diaphragm (porosity 55%, l/d=80) with water permeability of 0.35cc/hr・cm 2・cmH 2 O and electrical resistance of 0.5Ω-cm 2 (in 5N NaCl water, 800°C) in mm. did. Tetrafluoroethylene and perfluoro(3,6-dioxa-4) were then added to one side of the membrane.
-Methyl-7-octensulfonyl fluoride) when hydrolyzed with a copolymer of
Two mil thick sheets corresponding to 1100 weight equivalents were fused together by heat and pressure. Furthermore, a sheet of the same copolymer having a thickness of 1 mil and having an exchange capacity of 1500 weight equivalents when hydrolyzed was similarly superimposed and fused by heating and pressure. The obtained film-like material was immersed in an 8% KOH methanol solution so that the copolymer did not peel off from the asbestos, and the sulfonyl fluoride groups in the copolymer were hydrolyzed and converted to potassium sulfonate. . Separately, a 2 mil thick 1100 weight equivalent sheet of the above copolymer and a 1 mil thick 1500 weight equivalent sheet were heated and fused together to form a single sheet using the same 8% KOH methanol solution. A potassium sulfonate type cation exchange membrane hydrolyzed with
When the electrical resistance was measured at 80°C by a conventional method by changing to the Na type and placing it between 5.0N NaCl and 6.0N NaOH, it was 0.7Ω-cm 2 . Also, the water permeability is 10 -5 cc/
It was below hr・cm 2・cmH 2 O. Next, using the diaphragm of the present invention obtained above,
A saturated saline solution was supplied to the anolyte using the same electrolytic cell as used in Example 1, and the discharge was performed at 270 g/.
Electrolysis was carried out at 90° C. with a current density of 35 A/dm 2 . At this time, pure water was not supplied to the cathode chamber.
From the cathode chamber, 12.5 rated caustic soda has a current efficiency of 83
%, the amount of NaCl in caustic soda is 48%
It was 62 ppm in terms of NaOH. The voltage during electrolysis was 3.95V, and the amount of oxygen gas in the chlorine gas generated at the anode was about 1.5%. Example 3 Tetrafluoroethylene and perfluoro(3,
It has a microporous structure that has been hydrolyzed with a copolymer of 6-dioxa-4-methyl-7-octensulfonyl fluoride (6-dioxa-4-methyl-7-octensulfonyl fluoride) to form a sulfonic acid type, and has an exchange capacity of 1100 weight equivalents and a thickness of 7 mil ( 0.18mm), the water permeability is 0.26cc/hr・cm 2・cmH 2 O,
At l/d=350, the electrical resistance is 0.9Ω-cm 2 (80℃, 5N
(Product name: Nafion) (in NaCl water)
Diaphragm701 (manufactured by DuPont, USA) was used. On the other hand, tetrafluoroethylene and vinylidene fluoride were emulsion polymerized using carboxymethyl cellulose and n-propyl peroxacarbonate to obtain a copolymer in a ratio of 5 parts tetrafluoroethylene to 4 parts vinylidene fluoride. . Next, an oligomer of trifluoride-ethylene chloride (trade name: Daifloyl #50, molecular weight 1100; manufactured by Daikin Industries, Ltd.) was added to 10 parts of the fine powder of this copolymer.
A 0.1 mm thick sheet was prepared by mixing 1.5 parts of the mixture, pressing it between iron plates heated to 230°C, and sulfonating the sheet by immersing it in fuming sulfuric acid at room temperature for 2 months. The electrical resistance of the membrane is 5.0N at 80℃
When the membrane was placed between NaCl and 6.0N NaOH and measured with alternating current, it was 2.3 Ω-cm 2 and the exchange capacity was 1.1 milliequivalents/gram dry membrane type H (910 weight equivalents).
The water permeability was less than 10 -5 cc/hr·cm 2 ·cmH 2 O.
In order to adhere the water permeable cation exchange membrane obtained here and the water impermeable cation exchange membrane, both membranes were made into acid form and a 5% aqueous solution of polyvinyl alcohol with a molecular weight of approximately 20,000 was applied to both membranes. It was applied to one side of the film-like object, and the two coated sides were heated and dried at 110° C. for 5 hours to adhere them together. Thereafter, this was immersed in a normal formalization bath consisting of sulfuric acid, Glauber's salt, and formalin at 60°C for 30 minutes to formalize and crosslink the polyvinyl alcohol present in the bonded area, thereby integrating the two. After integration, the electrical resistance at 80°C was measured using a conventional method and found to be 1.8Ω-cm 2 (5N NaCl/6N NaOH). Electrolysis of saturated saline water was carried out using this diaphragm of the present invention with the surface of the porous cation exchange membrane facing the anode. The concentration of the saline solution discharged from the anode chamber is
It was 220g/. The electrolytic cell used was the same as that used in Example 1, with a current density of 20 A/dm 2 and an electrolysis temperature of 80°C. Supply pure water to the cathode chamber
85N NaOH was obtained constantly. As a result, the current efficiency of NaOH acquisition obtained from the cathode chamber is 85
%, the amount of NaCl in NaOH was 65 ppm in terms of 48% NaOH, and the cell voltage was 4.16 V.
The amount of oxygen in the chlorine gas generated at the anode is 3%.
It was below. Example 4 Nonwoven fabric made of polytetrafluoroethylene (product name: FA
−10L, manufactured by Daikin Industries, Ltd.), 10 parts of styrene,
It was immersed for one week in a monomer mixture of 55% pure divinylbenzene, 50 parts of 4-vinylpyridine, and 50 parts of kerosene dissolved in 1 part of benzoyl peroxide to uniformly penetrate into the nonwoven fabric. I let it happen. Then, both sides of this were covered with cellophane to prevent the monomer from scattering, and polymerization was carried out by heating in an autoclave at 110°C. This was extracted with benzene and further immersed in a 1:1 mixed solution of methyl iodide and n-hexane to quaternize the pyridine ring. The electrical resistance of this membrane is 5.0N NaCl and 5.0N
When measured with alternating current at 80℃ in NaCl, 0.5Ω−
The anion exchange capacity in cm 2 was 0.4 meq/g dry membrane (Cl form). Also, the water permeability is 0.03cc/
hr·cm 2 ·cmH 2 O, l/d=110. The perfluoro carboxylic acid type cation exchange membrane used in Example 3 was heat-fused to one side of this, and saturated saline solution was electrolyzed. The electrolytic conditions and the electrolytic cell were the same as in Example 1, but the concentration of the discharged salt water was 300 g/min. 12.2 without supplying pure water to the cathode chamber.
NaOH was obtained, the current efficiency was 96%, and the cell voltage was 3.62V. Further, the oxygen concentration in the chlorine gas was 1% or less. Comparative Example 3 A densely woven polytetrafluoroethylene plain woven fabric with a thickness of 1 mm. When soaked in methanol and wetted, the water permeability was measured to be 350 c.c./hr.
A cloth with cm 2 ·cmH 2 O and l/d=140 was used as the porous body part. The electrical resistance of this cloth is 0.4Ω−cm 2 (5.0N
(measured with alternating current between NaCl and 6.0N NaOH at 80°C). The cation exchange membrane part was prepared by hydrolyzing with a copolymer of tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) in the same manner as in Example 1. A polymer membrane having a thickness of 2 mils and having an exchange capacity of 1200 weight equivalents was heat-fused to the above cloth and hydrolyzed with an 8% KOH methanol solution to obtain the membrane of the present invention. Using this membrane, a saline solution was supplied using the same electrolytic cell as in Example 1 and discharged at 260g/. Current density is 35A/
dm 2 and 12.5N NaOH was obtained with a current efficiency of 79% without supplying pure water to the cathode chamber. The cell voltage is 3.75V, and the purity of chlorine generated at the anode is 98
It was %. Note that the electrolysis temperature was 85°C. Comparative Example 4 Electrolysis was carried out in the same manner as in Example 10 using the same container. However, in this case, only "Nafion 427" was used without using a porous membrane. In this case, the saline concentration in the anode chamber is approximately 200g/
The current efficiency is maximum (80%) when
At 95.5%, the cathode-to-anode voltage was 4.00V. In addition, in this case, the salt water concentration in the anode chamber is set to 270g/
When electrolysis was carried out, the NaOH concentration in the cathode chamber was approximately 12N, the current efficiency was 64%, the purity of the chlorine gas was 93%, and the cathode-to-anode voltage was 4.00V.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は隔膜の多孔体層の水透過性と電解槽の
極間電圧との関係を示す図であり、第2図は苛性
ソーダ濃度と電流効率との関係を示す図であり、
第3図は陽極室内の塩水濃度と得られる塩素との
関係を示す図である。
FIG. 1 is a diagram showing the relationship between the water permeability of the porous layer of the diaphragm and the interelectrode voltage of the electrolytic cell, and FIG. 2 is a diagram showing the relationship between the caustic soda concentration and current efficiency.
FIG. 3 is a diagram showing the relationship between the salt water concentration in the anode chamber and the obtained chlorine.

Claims (1)

【特許請求の範囲】 1 主として樹脂よりなる多孔体層と、実質的に
水不透過性であるカルボン酸型陽イオン交換体で
あつて、前記多孔体層よりも厚くないイオン交換
体層とよりなり、該多孔体層は0.01ml/hr.cm2
cmH2O以上の透水性を有することを特徴とする
複合陽イオン交換膜。 2 多孔体層が0.01ml/hr.cm2.cmH2O以上の透
水性および直径1mm以下の孔を有し、且つ開孔率
が50%以上である特許請求の範囲第1項記載の複
合陽イオン交換膜。 3 多孔体層を構成する組成が弗素樹脂を有して
いる特許請求の範囲第1項記載の複合陽イオン交
換膜。 4 陽イオン交換体層が実質的に水素原子を共有
結合として結合していない樹脂より主として構成
されている特許請求の範囲第1項記載の複合陽イ
オン交換膜。 5 陽イオン交換体層が800〜2000の重量当量を
有するパーフルオロ系イオン交換体よりなる隔膜
を用いる特許請求の範囲第1項記載の複合イオン
交換膜。 6 多孔体層とイオン交換体層とが実質的に不可
分に一体化している隔膜を用いる特許請求の範囲
第1項記載の複合陽イオン交換膜。
[Scope of Claims] 1. A porous layer mainly made of resin, and an ion exchanger layer that is a substantially water-impermeable carboxylic acid type cation exchanger and is not thicker than the porous layer. The density of the porous layer is 0.01ml/hr.cm 2 .
A composite cation exchange membrane characterized by having water permeability of cmH 2 O or higher. 2 Porous layer is 0.01ml/hr.cm 2 . The composite cation exchange membrane according to claim 1, which has a water permeability of cmH 2 O or more, pores with a diameter of 1 mm or less, and a porosity of 50% or more. 3. The composite cation exchange membrane according to claim 1, wherein the composition of the porous layer includes a fluororesin. 4. The composite cation exchange membrane according to claim 1, wherein the cation exchanger layer is mainly composed of a resin in which hydrogen atoms are not substantially bonded as covalent bonds. 5. The composite ion exchange membrane according to claim 1, wherein the cation exchanger layer uses a diaphragm made of a perfluorinated ion exchanger having a weight equivalent of 800 to 2000. 6. The composite cation exchange membrane according to claim 1, which uses a diaphragm in which a porous layer and an ion exchange layer are substantially inseparably integrated.
JP27788685A 1985-12-12 1985-12-12 Ion-exchange membrane Granted JPS6264834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27788685A JPS6264834A (en) 1985-12-12 1985-12-12 Ion-exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27788685A JPS6264834A (en) 1985-12-12 1985-12-12 Ion-exchange membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8559076A Division JPS5911674B2 (en) 1976-07-20 1976-07-20 Electrolysis method and electrolyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23964788A Division JPH01126342A (en) 1988-09-27 1988-09-27 Ion exchange membrane

Publications (2)

Publication Number Publication Date
JPS6264834A JPS6264834A (en) 1987-03-23
JPH0149743B2 true JPH0149743B2 (en) 1989-10-25

Family

ID=17589654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27788685A Granted JPS6264834A (en) 1985-12-12 1985-12-12 Ion-exchange membrane

Country Status (1)

Country Link
JP (1) JPS6264834A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0891951A (en) * 1994-09-22 1996-04-09 Sumitomo Electric Ind Ltd Aluminum-silicon nitride conjugate and its production
KR20030016291A (en) * 2001-04-13 2003-02-26 오르가노 가부시키가이샤 Ion Exchanger
US20040122117A1 (en) * 2001-04-13 2004-06-24 Koji Yamanaka Composite porous ion-exchanger, method for manufacturing the ion-exchanger, deionization module using the ion-exchaner and electric deionized water manufacturing device
US6689501B2 (en) 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
EP1602639A4 (en) * 2003-02-21 2007-12-26 Asahi Glass Co Ltd Process for production of perfluorodiacyl fluorides
WO2006013903A1 (en) * 2004-08-04 2006-02-09 Asahi Glass Company, Limited Fluorine-containing ion-exchange membrane and process for producing fluoropolymer
JP4621536B2 (en) * 2005-04-20 2011-01-26 旭化成イーマテリアルズ株式会社 Method for producing electrolyte membrane with excellent chemical stability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171888A (en) * 1974-12-19 1976-06-22 Sumitomo Electric Industries Sekisokozokaranaru fuirumu oyobi sonoseizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171888A (en) * 1974-12-19 1976-06-22 Sumitomo Electric Industries Sekisokozokaranaru fuirumu oyobi sonoseizohoho

Also Published As

Publication number Publication date
JPS6264834A (en) 1987-03-23

Similar Documents

Publication Publication Date Title
US4090931A (en) Anode-structure for electrolysis
US4683040A (en) Process for electrolysis of sodium chloride
US4101395A (en) Cathode-structure for electrolysis
JPS61130347A (en) Novel double-layered diaphragm for electrolysis
JPS5911674B2 (en) Electrolysis method and electrolyzer
JPH0739729A (en) Process for recovering acid and/or alkali from neutral salt
EP0192261B1 (en) Multilayer cation exchange membrane
KR100393440B1 (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
JPH0149743B2 (en)
US4686120A (en) Multilayer cation exchange membrane
JPS621652B2 (en)
JP2504135B2 (en) Cation exchange membrane for electrolysis
CA1175781A (en) Forming fluorinated ion exchange polymer on removable thin layer over perforated electrode
JPS63312988A (en) Production of alkali hydroxide
JPH0978280A (en) Cation exchange membrane for electrolysis and production of high purity potassium hydroxide
JPS62280230A (en) Reinforced multilayer ion exchange diaphragm
JPS5857444B2 (en) Cation exchange membrane for electrolysis
JPS61281890A (en) Fluorine-containing ion exchange membrane for electrolysis
JPH0325517B2 (en)
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPS6221074B2 (en)
JPH01126342A (en) Ion exchange membrane
JPS63310985A (en) Production of alkali hydroxide
JPS62277433A (en) Reinforced ion-exchange membrane
JPH0756079B2 (en) Method for producing alkali hydroxide