JPS61281890A - Fluorine-containing ion exchange membrane for electrolysis - Google Patents
Fluorine-containing ion exchange membrane for electrolysisInfo
- Publication number
- JPS61281890A JPS61281890A JP12257885A JP12257885A JPS61281890A JP S61281890 A JPS61281890 A JP S61281890A JP 12257885 A JP12257885 A JP 12257885A JP 12257885 A JP12257885 A JP 12257885A JP S61281890 A JPS61281890 A JP S61281890A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- ion exchange
- fluorine
- exchange membrane
- electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、電解用含フッ素イオン交換膜、更に詳しくは
、大きい機械的強度と寸法安定性を有しながら、且つ小
さい電気抵抗を有する電解用含フッ素イオン交換膜に関
する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fluorine-containing ion exchange membrane for electrolysis, and more specifically, to an electrolysis membrane having high mechanical strength, dimensional stability, and low electrical resistance. The present invention relates to a fluorine-containing ion exchange membrane for use.
[従来の技術]
含フッ素イオン交換膜は、水酸化アルカリと塩素を製造
するための塩化アルカリ水溶液の電解を始め、水電解、
塩酸電解、有価金属回収などの電解用隔膜として、耐熱
性、耐薬品性1機械的強度などが優れていることから広
く使用され、また使用が提案されている。[Prior art] Fluorine-containing ion exchange membranes are used for electrolysis of aqueous alkali chloride solutions to produce alkali hydroxide and chlorine, water electrolysis,
It is widely used as a diaphragm for electrolysis such as hydrochloric acid electrolysis and valuable metal recovery because of its excellent heat resistance, chemical resistance, mechanical strength, etc., and its use has also been proposed.
含フッ素イオン交換膜が、電解用として実用に供される
場合には、一般にその機械的強度及び寸法安定性を向上
させる為に1例えばポリテロラフルオロエチレン(PT
FE)などの含フッ素重合体からなる織布などの多孔性
基材を膜中に補強材として挿入し、支持することが行な
われている。(特開昭53−58192号公報、特開昭
58−37188号公報、特開昭58−37187号公
報など)しかしながら、このようにして補強した含フッ
素イオン交換膜は、補強材である多孔性基材が、イオン
の透過(電流の流れ)を遮蔽する結果を招き、その為に
膜抵抗を増大させることになる。かかる膜抵抗の増大は
、イオン交換膜中に多孔性基材を密に挿入し、膜の機械
的強度及び寸法安定性の向上を図ればそれだけ顕著にな
る。When a fluorine-containing ion-exchange membrane is put into practical use for electrolysis, it is generally made using 1, for example, polytetrafluoroethylene (PT) to improve its mechanical strength and dimensional stability.
A porous substrate such as a woven fabric made of a fluorine-containing polymer such as FE) is inserted into the membrane as a reinforcing material to support the membrane. (JP-A-53-58192, JP-A-58-37188, JP-A-58-37187, etc.) However, the fluorine-containing ion exchange membrane reinforced in this way has The result is that the substrate blocks ion transmission (current flow), thereby increasing membrane resistance. Such an increase in membrane resistance becomes more pronounced as the porous substrate is inserted more closely into the ion exchange membrane to improve the mechanical strength and dimensional stability of the membrane.
上記イオン交換膜の機械的物性と電気化学的特性の相矛
盾する現象のため、従来は、膜抵抗を極端に上昇させな
い密度で多孔性基材を使用せざるを得なかった。このた
め、多孔性基材の織布等の糸密度は、必然的に疎になり
、また強度の与える関係から、織布の糸径は大きくなら
ざるを得ない。Due to the contradictory phenomenon between the mechanical properties and electrochemical properties of the ion exchange membrane, conventionally, it has been necessary to use a porous base material with a density that does not excessively increase the membrane resistance. For this reason, the thread density of the woven fabric or the like of the porous base material inevitably becomes sparse, and the thread diameter of the woven fabric inevitably becomes large in order to provide strength.
織布の糸径の増大は、イオン交換膜の厚みの増加を招き
、また目開きが疎になることは、元来相互に滑り易いP
TFE糸では、均一な糸密度゛をもつ織布の製造を困難
にし、その結果、からみ織り等の特殊な織布(特開昭5
5−75428号。An increase in the thread diameter of the woven fabric causes an increase in the thickness of the ion exchange membrane, and a sparse opening also means that the P
With TFE yarn, it is difficult to manufacture woven fabrics with uniform thread density, and as a result, special woven fabrics such as leno weave (Japanese Patent Application Laid-open No. 5
No. 5-75428.
実公昭58−81301号など)を必要とし、これがま
たイオン交換膜の膜厚の増大を招くという悪循環をもた
らしている。Utility Model Publication No. 58-81301, etc.), which in turn leads to an increase in the thickness of the ion exchange membrane, creating a vicious cycle.
[発明の解決しようとする問題点]
本発明の目的は、上記従来の技術では、相成立し得ない
ところの、大きい機械的強度と寸法安定性を有しながら
、膜厚も小さくでき、更に電気抵抗の小さい電解用含フ
ッ素イオン交換膜を提供するものである。[Problems to be Solved by the Invention] It is an object of the present invention to have high mechanical strength and dimensional stability, which cannot be achieved with the above conventional techniques, and to reduce the film thickness. The present invention provides a fluorine-containing ion exchange membrane for electrolysis with low electrical resistance.
より具体的には、織布等の多孔性基材を大きい密度で膜
中に挿入して大きい機械的強度と寸法安定性を与えるが
、この場合にも膜抵抗を上昇させず、M厚も増大しない
電解用台フーI素イオン交換膜を提供するものである。More specifically, a porous substrate such as a woven fabric is inserted into the membrane at a high density to provide high mechanical strength and dimensional stability, but this also does not increase the membrane resistance and reduces the M thickness. The present invention provides an ion exchange membrane for electrolysis that does not increase in size.
[問題点を解決するための手段]
本発明の、上記目的を達成すべくなされたものであり、
その特徴は、糸径が10〜300デニール(De)の含
フッ素重合体系からなり、糸密度が40木/インチ以上
の高密度の多孔性基材が、膜の陽極側表面からその一部
が露出するように膜を構成する含フッ素重合体フィルム
に埋め込まれ、且つ少なくとも露出した多孔性基材の表
面が親木性被覆を有する電解用含フッ素イオン交換膜に
ある。[Means for solving the problems] The present invention has been made to achieve the above object,
The feature is that it is made of a fluorine-containing polymer system with a thread diameter of 10 to 300 denier (De), and a high-density porous base material with a thread density of 40 wood/inch or more, which partially extends from the anode side surface of the membrane. A fluorine-containing ion exchange membrane for electrolysis is embedded in a fluorine-containing polymer film constituting the membrane so as to be exposed, and at least the exposed surface of the porous base material has a wood-philic coating.
本発明では、糸径が10〜300Da 、糸密度が40
木/インチ以上という高密度の多孔性基材が補強材とし
て使用されるが、従来このような高密度の多孔性基材が
使用されたことはなく、従ってこれまでにない大きな機
械的強度及び寸法安定性が図られる。In the present invention, the thread diameter is 10 to 300 Da and the thread density is 40
A porous base material with a high density of wood/inch or more is used as a reinforcing material, but such a high density porous base material has never been used before, and therefore has unprecedented mechanical strength and Dimensional stability is achieved.
上記のように、本発明では、多孔性基材が膜の陽極側表
面から露出するように挿入される。As described above, in the present invention, the porous substrate is inserted so as to be exposed from the anode side surface of the membrane.
従来補強材が膜面から露出する場合には、ここにガス等
が付着し、抵抗が上昇するため好ましくないとされてい
た。一方、例外的に、補強材を膜面から−f!l!露出
するように挿入することが特開昭58−37188号に
記載されている。しかし。Conventionally, when the reinforcing material is exposed from the membrane surface, it has been considered undesirable because gas and the like will adhere to the reinforcing material and the resistance will increase. On the other hand, exceptionally, the reinforcing material is removed from the membrane surface by -f! l! Japanese Patent Laid-Open No. 58-37188 describes inserting it so that it is exposed. but.
この場合に使用される多孔性基材は、糸密度が、従来の
ものと同様10〜30本/インチと小さく、従って糸径
も大きいとともに1本発明で必須とする膜から露出した
多孔性基材に親木性被覆をもたしめることは開示されて
いない。The porous base material used in this case has a small thread density of 10 to 30 threads/inch, similar to conventional ones, and therefore has a large thread diameter, as well as porous bases exposed from the membrane, which is essential in the present invention. There is no disclosure of providing wood with a wood-loving coating.
本発明では、目開きの小さい、vE度の大きい多孔性基
材を使用した場合、その膜から露出した部分に親水性被
覆をもたしめて初めて上記目的を達成できる。これは、
後に示す実施例からも明らかにされるところであり、機
構は必ずしも明らかではない、察するところ、本発明で
は親木性被覆を表面に有する多孔性基材は1毛細管現象
により陽極液が多孔性基材を通じて膜の内部にまで浸透
し、そのために膜に埋めこまれた高密度の多孔性基材も
、その近傍には、電解液が存在する結果、多孔性基材に
よる電流の遮蔽の効果は軽減され、膜抵抗の増大が防止
されるものと思われる。In the present invention, when a porous base material with a small opening and a high vE degree is used, the above object can only be achieved by providing a hydrophilic coating to the portion exposed from the membrane. this is,
The mechanism is not necessarily clear, as will be made clear from the examples shown later.As it seems, in the present invention, the porous substrate having a wood-loving coating on the surface is The high-density porous base material that penetrates into the interior of the membrane through the electrolyte and is embedded in the membrane also has an electrolytic solution nearby, which reduces the current shielding effect of the porous base material. This is thought to prevent an increase in membrane resistance.
本発明で使用される多孔性基材は、好ましくは織布又は
編布からなり、その糸径は10〜300Da、好ましく
は50〜100[1e 、また糸密度が、40本/イン
チ以上、特には50〜150本/インチという高密度の
ものが使用される。これを平面の開口率で表わした場合
には糸径によって異なるが、通常60%以下、好ましく
は50〜30%になる。多孔性基材の厚みは、イオン交
換膜の厚みによって異なるが、好ましくは膜厚の3/2
〜115のもので50〜200μ層のものが使用される
。The porous substrate used in the present invention is preferably made of woven or knitted fabric, has a thread diameter of 10 to 300 Da, preferably 50 to 100 [1e], and a thread density of 40 threads/inch or more, particularly A high density of 50 to 150 lines/inch is used. When expressed as a planar open area ratio, it is usually 60% or less, preferably 50 to 30%, although it varies depending on the thread diameter. The thickness of the porous base material varies depending on the thickness of the ion exchange membrane, but is preferably 3/2 of the membrane thickness.
~115 and a layer of 50 to 200μ is used.
多孔性基材は、電解、用という観点から高度の機械的強
度及び寸法安定性を維持するために。Porous substrates maintain a high degree of mechanical strength and dimensional stability in terms of electrolytic applications.
耐熱性及び耐薬品性を有することが好ましい。It is preferable to have heat resistance and chemical resistance.
これらの例としては、 PTFE、四フッ化エチレンー
パーフルオロアルキルビニルエーテルの共重合体、四フ
ッ化エチレンーパーフルオロアクリル酸エステル共重合
体、四フッ化エチレンーエチレンの共重合体、フッ化ビ
ニリデン重合体などの含フッ素重合体、なかでもパーフ
ルオロ重合体が好ましい。Examples of these include PTFE, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-perfluoroacrylate copolymer, tetrafluoroethylene-ethylene copolymer, and vinylidene fluoride. Fluorine-containing polymers such as polymers, particularly perfluoropolymers, are preferred.
多孔性基材を構成する織布又は編布は、モノフィラメン
ト又はマルチフィラメント又はこれらのヤーン(撚り糸
)、スリットヤーンなどが使用され、織り方も平織り、
からみ織り、綾織り、コード織り、シャーサッカ、編織
などの適宜の織り方が使用される。多孔性基材は、場合
により、含フッ素重合体の糸と電解下に溶解性を有する
所謂犠牲糸と呼ばれる、レーヨン、ポリエチレンテレフ
タレート、セルロース等との糸との混紡糸又は混繊糸も
使用できる。この場合の犠牲糸の混有量は、好ましくは
全量に対し重量基準で、好ましくは6%〜85%、特に
は30%〜BO%が使用できる。The woven fabric or knitted fabric constituting the porous base material is monofilament or multifilament, yarn thereof, slit yarn, etc., and the weaving method may be plain weave,
Appropriate weaving methods such as leno weaving, twill weaving, cord weaving, sashakka, and knitting are used. In some cases, the porous base material may be a blended yarn or mixed fiber yarn of a fluorine-containing polymer yarn and a yarn of rayon, polyethylene terephthalate, cellulose, etc., which is a so-called sacrificial yarn that is soluble under electrolysis. . In this case, the amount of sacrificial yarn mixed is preferably 6% to 85%, particularly 30% to BO%, based on the weight of the total amount.
織布又は編布は、特開昭58−37187号に示される
ように、断面を扁平化し、糸断面の積極/縦径の比率が
、好ましくは2〜10にした所謂扁平な多孔性基材も使
用できる。The woven fabric or knitted fabric is a so-called flat porous base material whose cross section is flattened and the ratio of positive/longitudinal diameter of the yarn cross section is preferably 2 to 10, as shown in JP-A No. 58-37187. can also be used.
本発明の含フッ素イオン交換膜は、カルボン酸基、スル
ホン酸基又はリン酸基をイオン交換機とする含フッ素重
合体からなる。イオン交換容量は好ましくは0.5〜4
.0 ミリ当量7g乾燥樹脂、なかでも0.8〜2.0
ミリ当量/g乾燥樹脂が適切で、厚みは好ましくは30
〜300μ、特には100〜250μの小さいものが膜
抵抗上好ましい。The fluorine-containing ion exchange membrane of the present invention is made of a fluorine-containing polymer having a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group as an ion exchanger. Ion exchange capacity is preferably 0.5-4
.. 0 milliequivalent 7g dry resin, especially 0.8-2.0
Milliequivalents/g dry resin is suitable, thickness preferably 30
A small one of ~300μ, particularly 100~250μ is preferable in terms of membrane resistance.
含フッ素イオン交換膜は、単一層の含フッ素重合体フィ
ルムから形成することができるが、同種又は異なる種類
の81層膜であることもできる。好ましい積層構造をも
つイオン交換膜としては、カルボン酸基をイオン交換基
として有する含フッ素重合体からなる第一の層と、多孔
性基材で支持された陽イオン交換基を有する含フッ素重
合体からなり、上記第一の層の陽極側に位置し、且つ電
気抵抗が小さく、厚みの大きい75〜220μ諺を有す
る第二の層とを有しなければならない。The fluorine-containing ion exchange membrane can be formed from a single layer of fluoropolymer film, but it can also be an 81-layer membrane of the same or different type. The ion exchange membrane having a preferable laminated structure includes a first layer made of a fluorine-containing polymer having a carboxylic acid group as an ion exchange group, and a fluorine-containing polymer having a cation exchange group supported by a porous base material. and a second layer located on the anode side of the first layer and having a low electrical resistance and a large thickness of 75 to 220 μm.
上記第一の層は、イオン交換基としてカルボン酸基を有
することが、高電流効率を与える為には必要であり、そ
のイオン交換容量は好ましくは、0.5〜2.0 ミリ
当1/g乾燥樹脂、なかでも0.8〜1.3 ミリ当量
7g乾燥樹脂が使用される。この第一の層は、第二の層
に比べて電気抵抗(比抵抗)が、好ましくは、180〜
250Ω・cmと大きいので、その厚みは、好ましくは
、10〜70μ層、特には15〜40μ量を有する含フ
ッ素重合体フィルムから構成される。It is necessary for the first layer to have a carboxylic acid group as an ion exchange group in order to provide high current efficiency, and the ion exchange capacity is preferably 0.5 to 2.0 1/m/mm. g dry resin, especially 0.8 to 1.3 meq. 7 g dry resin is used. This first layer preferably has an electrical resistance (specific resistance) of 180 to 180 compared to the second layer.
Since it is as large as 250 Ω·cm, its thickness is preferably comprised of a fluoropolymer film having a layer thickness of 10 to 70 μm, particularly an amount of 15 to 40 μm.
第二の層は、陽イオン交換基として、特に限定されるこ
とではないが、好ましくはスルホン酸基、カルボン酸基
又はリン酸基を有し、また第一の層に比べて、小さい電
気抵抗である好ましくは20〜200Ω・C鳳、なかで
も30〜150Ω・C■を有し、且つ厚みとして75〜
220μm、なかでも80〜200μ鳳を有する含フッ
素重合体フィルムから形成される。第二の暦の含フッ素
重合体は、第一の層と同様、必ずしも一種類の重合体か
ら形成される必要はなく、必要に応じて、イオン交換基
の種類及び/又はイオン交換容量が異存る二種以上の含
フッ素重合体から形成できる。The second layer preferably has, but is not limited to, a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group as a cation exchange group, and also has a lower electrical resistance than the first layer. It preferably has 20-200 Ω・C, especially 30-150 Ω・C, and has a thickness of 75-200 Ω・C.
It is formed from a fluoropolymer film having a thickness of 220 μm, particularly 80 to 200 μm. Like the first layer, the second fluorine-containing polymer does not necessarily have to be formed from one type of polymer, and may have different types of ion exchange groups and/or ion exchange capacities as necessary. It can be formed from two or more types of fluorine-containing polymers.
例えば1wk極側のカルボン酸基をもつフィルムと陽極
側のスルホン酸基をもつフィルムとからなる場合、或い
は、いずれもスルホン酸基又はカルボン酸基をもつが、
1極側のイオン交換容量の大きい二種以上のフィルムと
からなる例が挙げられる。For example, if the film is composed of a film with a carboxylic acid group on the 1wk electrode side and a film with a sulfonic acid group on the anode side, or both have a sulfonic acid group or a carboxylic acid group,
Examples include two or more types of films having a large ion exchange capacity on one pole side.
第二の層としてスルホン酸基をもつ含フッ素重合体フィ
ルム又は該フィルムとカルボン酸基をもつフィルムとの
二種以上のフィルムとを使用した場合、スルホン酸基を
もつフィルムとカルボン酸基をもつフィルムとの積層界
面に、場合により好ましくは2両者間の接合性を高める
ために、スルホン酸基とカルボン酸基との両者をもつ含
フッ素重合体の層又は、スルホン酸基をもつ含フッ素重
合体とカルボン酸基をもつ含フッ素重合体とのブレンド
層からなり、厚みが好ましくは、5〜50μ塵、特には
10〜40μ−の第三の層を介在せしめることができる
。When a fluorine-containing polymer film having a sulfonic acid group or two or more films including the film and a film having a carboxylic acid group are used as the second layer, a film having a sulfonic acid group and a film having a carboxylic acid group are used. A layer of a fluoropolymer having both a sulfonic acid group and a carboxylic acid group or a fluoropolymer having a sulfonic acid group is preferably added to the laminated interface with the film in order to improve bonding properties between the two. A third layer consisting of a blend layer of a polymer and a fluorine-containing polymer having a carboxylic acid group and having a thickness of preferably 5 to 50 μm, particularly 10 to 40 μm can be interposed.
上記第二の層又は第三の層の陽イオン交換基をもつ含フ
ッ素重合体のもつイオン交換容量は、好ましくは、0.
5〜2.5ミリ当量/g乾燥樹脂、特には0.8〜2.
0ミリ当量/g乾燥樹脂から選ばれる。The ion exchange capacity of the fluorine-containing polymer having a cation exchange group in the second layer or the third layer is preferably 0.
5-2.5 meq/g dry resin, especially 0.8-2.
0 meq/g dry resin.
上記第一〜第三の層を構成する含フッ素重合体は、好ま
しくは、パーフルオロ重合体から形成されるが、これら
は少なくとも二種の単量体の共重合体からなり、好まし
くは1次の(イ)及び(ロ)の重合単位をもつ共重合体
からなる。The fluorine-containing polymer constituting the first to third layers is preferably formed from a perfluoropolymer, which is composed of a copolymer of at least two types of monomers, preferably a primary It consists of a copolymer having the polymerized units of (a) and (b).
ココテ、x、 x゛は、−F、 −CI、−1(又は−
CF3 テあり、Aは一503M、−000M又は−P
O3H(Mは水素。Kokote, x, x゛ are -F, -CI, -1 (or -
CF3 with Te, A is -503M, -000M or -P
O3H (M is hydrogen.
アルカリ金属又は加水分解によりこれらの基に転化する
基を表す)、Yは1次のものから選ばれるが、そこで、
Z、z″は−F又は炭素数1〜10のパーフルオロアル
キル基であり、 X、!、Zは 1〜10の整数を表わ
す。(representing an alkali metal or a group that is converted into these groups by hydrolysis), Y is selected from the primary ones, where:
Z, z'' are -F or a perfluoroalkyl group having 1 to 10 carbon atoms, and X, !, and Z each represent an integer of 1 to 10.
−(CF2)X、−0−(CFt矢。、 (0−CF
2−CFチ、。-(CF2)X, -0-(CFt arrow., (0-CF
2-CF Chi.
なお、上記重合体を形成する(イ)/(ロ)の組成比(
モル比)は、含フッ素重合体が上記イオン交換容量を形
成するように選ばれる。In addition, the composition ratio of (a)/(b) forming the above polymer (
molar ratio) is selected such that the fluoropolymer forms the above ion exchange capacity.
上記含フッ素重合体は、好ましくはパーフルオロ重合体
が適切であり、その好ましい例は、CF2−CF2
とCF2−CFOCFz CF CC,Fs )OCF
z 0F2So2Fとの共重合体、CF2 +++Cp
2 とCF2mCFO(CF2h−ssOzFとの共重
合体、 CF2−CF2とCF2−CFO(CF2 )
+ −s COOCH3との共重合体、更にはCF2
w−CF2 とCFt−CF−OCFzCF(CF
3)OCFzCF2COOCH3との共重合体が例示さ
れる。The above-mentioned fluoropolymer is preferably a perfluoropolymer, and a preferable example thereof is CF2-CF2
and CF2-CFOCFz CF CC, Fs ) OCF
Copolymer with z 0F2So2F, CF2 +++Cp
2 and CF2mCFO (copolymer of CF2h-ssOzF, CF2-CF2 and CF2-CFO (CF2)
+ -s Copolymer with COOCH3, furthermore CF2
w-CF2 and CFt-CF-OCFzCF (CF
3) A copolymer with OCFzCF2COOCH3 is exemplified.
多孔性基材を膜に構成する含フッ素重合体フィルムに挿
入する場合、多孔性基材は、含フッ素重合体フィルムと
重ね合わせて加熱圧入される。上記複層の含フッ素重合
体フィルムを使用する場合には、第一の層、必要に応じ
て、第三の層、そして第二の層、次いで多孔性基材をこ
の順序で重ね合せて加熱圧入される。含フッ素重合体の
軟化点温度以上、好ましくは溶融点以上の温度1例えば
100〜250℃になるように選ばれ、かかる加熱下に
好ましくは重ね合せて物を外部から 1〜80kg/c
履2にて、プレス等により加圧することにより、多孔性
基材は、重合体フィルムに挿入される。When inserting a porous base material into a fluoropolymer film constituting a membrane, the porous base material is superimposed on the fluoropolymer film and heated and press-fitted. When using the above multilayer fluoropolymer film, the first layer, if necessary, the third layer, the second layer, and then the porous substrate are layered in this order and heated. Press-fitted. The temperature is selected to be at least the softening point of the fluorine-containing polymer, preferably at least the melting point, for example 100 to 250°C, and under such heating, the objects are preferably stacked one on top of the other and exposed from the outside at a weight of 1 to 80 kg/cm.
At step 2, the porous substrate is inserted into the polymer film by applying pressure using a press or the like.
本発明では、多孔性基材は、イオン交換膜の陽極側表面
からその一部が露出するように、含フッ素重合体フィル
ム中に挿入、埋め込まれる。即ち、多孔性基材は、埋め
込まれた膜の全面にわたって露出させる必要はないが、
好ましくは、可及的多くの部分で膜面から露出させる。In the present invention, the porous substrate is inserted and embedded in the fluoropolymer film so that a portion of the porous substrate is exposed from the anode side surface of the ion exchange membrane. That is, the porous substrate does not need to be exposed over the entire surface of the embedded membrane;
Preferably, as many parts as possible are exposed from the membrane surface.
また露出程度は、多孔性基材が含フッ素重合体フィルム
中に、好ましくは少なくとも10μ層以上、好ましくは
50〜100μ層埋め込まれ、そして好ましくは10μ
m以上、特には20〜50μ腸が膜の陽極側表面から露
出するようにされる。多孔性基材の過度に小さい埋め込
みは、膜の機械的強度及び寸法安定性が十分でなくなる
ので好ましくなく、一方過度の埋め込みは、膜抵抗の増
大を招き、特に多孔性基材の露出部分が小さい場合には
著しい膜抵抗の増大を招くことになる。The degree of exposure is such that the porous base material is embedded in the fluoropolymer film, preferably at least 10μ layer, preferably 50 to 100μ layer, and preferably 10μ layer.
m or more, particularly 20 to 50 μm, are exposed from the anode side surface of the membrane. Excessively small embedding of the porous substrate is undesirable because the mechanical strength and dimensional stability of the membrane will not be sufficient, while excessive embedding will lead to an increase in membrane resistance, especially if exposed parts of the porous substrate If it is small, a significant increase in membrane resistance will result.
多孔性基材は、本発明では少なくともその露出部分の表
面が親木性被覆を有することが必要である。多孔性基材
に親木性被覆を施す手段としては1種々の方法が採用で
きる0例えば、多孔性基材を膜に挿入、埋め込んだ後、
その露出部分に、無機又は有機の親木化剤の溶液又は分
散液をスプレー(噴霧)するか又はこれらの溶液又は分
散液中に多孔性基材を浸漬し、乾燥乃至焼成する手段が
採用できる。溶液又は分散液中の親木化剤の濃度は、好
ましくは5〜30重量%が選ばれ、乾燥乃至焼成は、好
ましくは50〜200℃にて0.1−1時間にて行なわ
れる。In the present invention, the porous base material is required to have a wood-philic coating on at least the surface of the exposed portion thereof. Various methods can be used to apply the wood-loving coating to the porous substrate. For example, after inserting and embedding the porous substrate into the membrane,
Possible methods include spraying a solution or dispersion of an inorganic or organic lignifying agent onto the exposed portion, or immersing the porous substrate in this solution or dispersion, followed by drying or firing. . The concentration of the lignifying agent in the solution or dispersion is preferably selected to be 5 to 30% by weight, and the drying and firing are preferably carried out at 50 to 200°C for 0.1 to 1 hour.
上記した無機の親水化剤としては、チタン。The above-mentioned inorganic hydrophilic agent is titanium.
ジルコニウム、ニオブ、タンタル、バナジウム、マンガ
ン、モリブデン、スズなどの酸化物、塩化物、オキシ塩
化物、硝酸塩、炭化珪素などが使用される。かかる無機
の親木化剤を使用する場合には、好ましくは上記した多
孔性基材を構成するのと同じ含フッ素重合体を溶液又は
分散液中に好ましくは、 2〜25%量%添加し、無機
の親水化剤と多孔性基材との接着性を高めることができ
る。Oxides, chlorides, oxychlorides, nitrates, silicon carbide, etc. of zirconium, niobium, tantalum, vanadium, manganese, molybdenum, tin, etc. are used. When such an inorganic wood-loving agent is used, the same fluorine-containing polymer as that constituting the porous substrate described above is preferably added to the solution or dispersion in an amount of 2 to 25% by weight. , it is possible to improve the adhesion between the inorganic hydrophilic agent and the porous substrate.
上記し有機の親水化剤としては、カルボン酸基又はリン
酸基などの親木基を有する含フッ素重合体が使用される
。かかる含フッ素重合体としては、前記したイオン交換
膜を形成する含フッ素重合体と同種のものが使用できる
が、この場合には分子量が500〜10000の低分子
量のものが使用できる。As the organic hydrophilizing agent mentioned above, a fluorine-containing polymer having a parent group such as a carboxylic acid group or a phosphoric acid group is used. As such a fluorine-containing polymer, the same kind as the fluorine-containing polymer forming the above-mentioned ion exchange membrane can be used, but in this case, a low molecular weight one having a molecular weight of 500 to 10,000 can be used.
多孔性基材に親水性被覆を施す別の手段としては、上記
有機の親木化剤である親木基をもつ含フッ素重合体の七
ツマ−の溶液又は分散液を多孔性基材にスプレーするか
又は、これら溶液又は分散液中に多孔性基材を浸漬し、
次いで。Another method for applying a hydrophilic coating to a porous substrate is to spray a solution or dispersion of a fluorine-containing polymer having a tree parent group, which is the organic tree parent agent mentioned above, onto the porous base material. or by immersing a porous substrate in these solutions or dispersions;
Next.
上記七ツマ−を重合することによって親木性被覆をもた
らしめることができる。更に別の手段としては、多孔性
基材を埋め込んだイオン交換膜を電解槽に組み込んだ後
、陽極液中に上記した親水化剤、好ましくはZrO(N
O3)2. Zr0C+2゜FeCl2などの無機の親
木化剤を添加し、これら親水化剤の多孔性基材への沈漬
によって、所謂現場にて親木性被覆を施すこともできる
。A woodphilic coating can be produced by polymerizing the above-mentioned hexamers. Still another method is to incorporate the ion exchange membrane embedded with the porous substrate into the electrolytic cell, and then add the above-mentioned hydrophilic agent, preferably ZrO(N), to the anolyte.
O3)2. A so-called wood-loving coating can also be applied on-site by adding an inorganic wood-loving agent such as Zr0C+2°FeCl2 and dipping these hydrophilic agents into the porous substrate.
多孔性基材への親木性被覆は、多孔性基材の膜からの露
出部分の一部、好ましくは全表面に施すことが必要であ
るが場合により、膜中に埋め込まれた部分も含めて多孔
性基材の全表面に施すことができる。この場合にも、多
孔性基材を膜中に埋め込む前に上記した親木性被覆を施
す手段により同様に実施される。The lignophilic coating on the porous substrate needs to be applied to a portion of the exposed portion of the porous substrate from the membrane, preferably the entire surface, but in some cases, it may also be applied to the portion embedded in the membrane. It can be applied to the entire surface of the porous substrate. In this case as well, the process is carried out in the same manner by applying the above-mentioned wood-philic coating before embedding the porous base material in the membrane.
本発明のイオン交換膜を使用して塩化アルカリ水溶液の
電解を行なうプロセス条件としては、上記した特開昭5
4−11iass号公報におけるような既知の条件が採
用できる0例えば、陽極室には好ましくは2.5〜5.
0規定(N)の塩化アルカリ水溶液を供給し、陰極室に
は水又は稀釈水酸化アルカリを供給し、好ましくは50
〜120℃、電流密度10〜100A/d麿2で電解さ
れる。The process conditions for electrolyzing an aqueous alkali chloride solution using the ion exchange membrane of the present invention are
For example, the anode chamber is preferably 2.5 to 5.
A 0N alkali chloride aqueous solution is supplied, and water or diluted alkali hydroxide is supplied to the cathode chamber, preferably 50N.
Electrolysis is carried out at ~120° C. and a current density of 10 to 100 A/d.
かかる場合、塩化アルカリ水溶液中のカルシウム及びマ
グネシウムなどの重金属イオンは、イオン交換膜の劣化
を招くので、可及的に小さくせしめるのが好ましい、ま
た1wA極における酸素の発生を極力防止するために塩
酸などの酸を塩化アルカリ水溶液に添加することができ
る。In such a case, heavy metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane, so it is preferable to minimize them as much as possible. can be added to the aqueous alkali chloride solution.
本発明において電解槽は、上記構成を有する限りにおい
て単極型でも複極型でもよい、また電解槽を構成する材
料は、例えば、塩化アルカリ水溶液の電解の場合には陽
極室の場合には。In the present invention, the electrolytic cell may be of a monopolar type or a bipolar type as long as it has the above configuration, and the material constituting the electrolytic cell may be, for example, in the case of an anode chamber in the case of electrolysis of an aqueous alkali chloride solution.
塩化アルカリ水溶液及び塩素に耐性があるもの1例えば
弁金属、チタンが使用され、陰極室の場合には水酸化ア
ルカリ及び水素に耐性がある鉄、ステンレス又はニッケ
ルなど使用される。Materials resistant to aqueous alkali chloride and chlorine, such as valve metal and titanium, are used; in the case of the cathode chamber, iron, stainless steel, or nickel, which are resistant to alkali hydroxide and hydrogen, are used.
本発明において電極を配置する場合、電極は複層膜に接
触して配置しても、また適宜の間隔において配置しても
よいが、特に本発明の場合、隔膜に電極を接触して配置
した場合、支障を伴なうことなく低い膜抵抗に伴なう、
有利な摺電圧が達成できる。In the case of arranging the electrodes in the present invention, the electrodes may be arranged in contact with the multilayer membrane or at appropriate intervals, but in particular in the case of the present invention, the electrodes may be arranged in contact with the diaphragm accompanied by low membrane resistance without any hindrance,
Advantageous sliding voltages can be achieved.
以上は、主に塩化アルカリ水溶液の電解の例について本
発明の隔膜を使用したが、水、ハロゲン酸(塩酸、臭化
水素酸)、炭酸アルカリの電解に対しても同様に適用で
きることはもちろんである。In the above, the diaphragm of the present invention was mainly used for the electrolysis of aqueous alkali chloride solutions, but it goes without saying that it can be similarly applied to the electrolysis of water, halogen acids (hydrochloric acid, hydrobromic acid), and alkali carbonate. be.
次に本発明を実施例により説明するが、本発明は、その
範囲内で種々の態様が含まれることはもちろんである0
例えば1本発明の多孔性基材が埋め込まれるイオン交換
膜には、その陽極側又は陰極側の表面又は両面に必要に
応じて、ガス及び液透過性の電極活性を有しない粒子を
含む多孔質層(特開昭58−75583号及び特開昭5
7−39185号公報)或は、ガス及び液透過性の電極
活性を有する粒子を含む多孔質層(特開昭54−112
398号公報)を設けて、電解下における摺電圧を更に
改良することができる。Next, the present invention will be explained with reference to Examples, but it goes without saying that the present invention includes various embodiments within its scope.
For example, the ion exchange membrane in which the porous base material of the present invention is embedded may contain porous particles that are permeable to gas and liquid and have no electrode activity on the surface or both surfaces of the anode side or the cathode side, as necessary. layer (JP-A-58-75583 and JP-A-5
7-39185) or a porous layer containing gas- and liquid-permeable particles with electrode activity (Japanese Patent Laid-Open No. 54-112)
No. 398) can be provided to further improve the sliding voltage under electrolysis.
[実施例]
実施例1及び比較例1
PTFEよりなる10デニールのモノフィラメント8本
を引きそろえて撚ったデニール数80のマルチフィラメ
ントを縦糸及び横糸とし糸密度100木/インチの平織
り布Aを得た。[Example] Example 1 and Comparative Example 1 A plain-woven fabric A with a thread density of 100 wood/inch was obtained by using multifilaments with a denier number of 80, which are made by aligning and twisting eight 10-denier monofilaments made of PTFE, as warp and weft threads. Ta.
この織布の開口率は35%であり、ダイアルゲージで測
定した糸の交点厚みはSOμ腸であり、糸の断面形状を
顕微鏡にて観察した結果、糸の扁平比はほぼ1.0であ
った。織布Aの一部を20cmX 20cmに切り取り
、 Zr0Ch 18%及びテトラフルオロエチレン
とパーフルオロ−3−オキサ−1−ヘプテン酸メチルと
の共重合体であって、イオン交換容量が2.0ミリ当量
/グラムのポリマー3%を含むエタノール溶液に20分
間浸漬しその後エアーオーブン中70℃にて30分間乾
燥し、表面に親水性被覆をもつ織布Bを得た。The open area ratio of this woven fabric was 35%, the thickness at the intersection of the threads measured with a dial gauge was SOμ, and the cross-sectional shape of the threads was observed under a microscope, and the oblateness ratio of the threads was approximately 1.0. Ta. A part of the woven fabric A was cut to a size of 20 cm x 20 cm, and a sample containing 18% Zr0Ch and a copolymer of tetrafluoroethylene and methyl perfluoro-3-oxa-1-heptenoate with an ion exchange capacity of 2.0 meq. The fabric B was immersed in an ethanol solution containing 3%/g of polymer for 20 minutes and then dried in an air oven at 70°C for 30 minutes to obtain a woven fabric B having a hydrophilic coating on its surface.
一方テドラフルオロエチレンとパーフルオロ−3−オキ
サ−1−ヘプテン酸メチルとの共重合体であって、イオ
ン交換容量が1.50 ミリ当量/グラムのポリマーを
Tダイ押出法により成形し厚さ140μ諺の含フッ素重
合体フィルムを得た。On the other hand, a copolymer of tedrafluoroethylene and methyl perfluoro-3-oxa-1-heptenoate, which has an ion exchange capacity of 1.50 milliequivalents/gram, is molded by T-die extrusion to a thickness of A fluoropolymer film having a diameter of 140 μm was obtained.
ついで20cmX 2Gcmに切り取った含フッ素重合
体フィルムに、それぞれ前記2種類に織布A及びBを重
ね、それぞれ2軸延伸ポリエステルフイルムの間に挟み
、平板プレス機を用いていずれの場合も5kg/c厘2
.180℃にて10分間プレスした後冷却し離型用ポリ
エステルフィルムを剥して、織布A、Bがともに膜全面
にわたって平均7〜8μ層だけで片面から露出した2種
類のイオン交換膜A(比較例1)及びイオン交換膜B(
実施例1)を得た。Next, the two types of woven fabrics A and B were layered on the fluorine-containing polymer film cut into a size of 20 cm x 2 Gcm, sandwiched between two biaxially stretched polyester films, and pressed at 5 kg/cm using a flat plate press in each case. Rin 2
.. After pressing at 180°C for 10 minutes, the polyester film for mold release was peeled off and two types of ion exchange membrane A (comparison Example 1) and ion exchange membrane B (
Example 1) was obtained.
次にこれらのイオン交換膜を80℃の25重量%水酸化
ナトリウム水溶液にて18時間浸漬し、加水分解した後
イオン交換HA及びBからそれぞれ5c腸X5c腸のサ
ンプルを切り出した、ともに織布が露出する面を陽極側
に向けてRum2/ T i02からなる陽極およびR
u/Xiからなる低過電圧陰極を有する電解槽に組み込
み、80℃、 25A/dm2にて食塩水の電解を行な
った。Next, these ion-exchange membranes were immersed in a 25% by weight aqueous sodium hydroxide solution at 80°C for 18 hours, and after hydrolysis, samples of 5c intestine x 5c intestine were cut out from ion-exchanged HA and B, respectively. Anode and R made of Rum2/T i02 with the exposed surface facing the anode side.
It was installed in an electrolytic cell having a low overvoltage cathode made of u/Xi, and electrolysis of saline water was carried out at 80° C. and 25 A/dm2.
陽極側の塩水濃度を3.5Nの保ち、陰極側に水を供給
しながら生成苛性ソーダ濃度を35%に保持した。7日
後の電解槽の摺電圧はイオン交換膜Aテ3.21V、イ
オン交換膜B テ3.18V テあり、本発明のイオン
交換膜Bの優位性は明らかであった。電流効率はいずれ
も84.0%であった。The concentration of salt water on the anode side was maintained at 3.5N, and the concentration of produced caustic soda was maintained at 35% while supplying water to the cathode side. After 7 days, the sliding voltage of the electrolytic cell was 3.21 V for ion exchange membrane A and 3.18 V for ion exchange membrane B, demonstrating the superiority of ion exchange membrane B of the present invention. The current efficiency was 84.0% in all cases.
比較例2
テトラフルオロエチレンとパーフルオロ−3−オキサ−
1−ヘプテン酸メチルとの共重合体であって、イオン交
換容量が1.55ミリ当量/グラムの含フッ素重合体を
Tダイ押出し成形により厚さ110μ諺の含フッ素重合
体フィルムaを得、また同様にして厚さ30μmの含フ
ッ素重合体フィルムbを得た。Comparative Example 2 Tetrafluoroethylene and perfluoro-3-oxa-
A fluoropolymer copolymer with methyl 1-heptenoate and having an ion exchange capacity of 1.55 milliequivalents/gram was obtained by T-die extrusion molding to obtain a fluoropolymer film a having a thickness of 110 μm, In the same manner, a fluoropolymer film b having a thickness of 30 μm was obtained.
実施例1と同様な方法で、含フッ素重合体フィルムロ、
織布B及びフィルムbの順に積層し完全に織布Bが埋め
込まれたイオン交換膜を得た。In the same manner as in Example 1, a fluoropolymer film,
Woven fabric B and film b were laminated in this order to obtain an ion exchange membrane in which woven fabric B was completely embedded.
この膜を実施例1と同様にして加水分解して得られる膜
を用いて、食塩水の電解を行なった。7日後の電解槽の
摺電圧は3.28Vであり。Using a membrane obtained by hydrolyzing this membrane in the same manner as in Example 1, electrolysis of saline water was performed. The sliding voltage of the electrolytic cell after 7 days was 3.28V.
電流効率は93.5%であった。Current efficiency was 93.5%.
実施例1と比較例2(織布が完全に埋め込まれている)
の結果を比べると約120mVだけ実施例1の摺電圧が
低くなる事が認められた。Example 1 and Comparative Example 2 (woven fabric is completely embedded)
Comparing the results, it was found that the sliding voltage of Example 1 was lower by about 120 mV.
実施例2
実施例1で製作したイオン交換膜Bを用い膜の両面に粒
径l〜10μのZrO2微粒子を水系溶媒でペースト化
したものをスプレー塗布した後乾燥し膜の両面に、10
g/s2のZ r02を付着させた後140℃に加熱さ
れた一対のロールプレスでプレスし、膜表面にZ r0
2の粒子からなる多孔質層を形成させた。Example 2 Using the ion exchange membrane B produced in Example 1, a paste of ZrO2 fine particles with a particle size of 1 to 10 μm was made into a paste using an aqueous solvent was spray coated on both sides of the membrane, and then dried.
After adhering Z r02 of g/s2, it was pressed with a pair of roll presses heated to 140°C, and Z r0 was applied to the film surface.
A porous layer consisting of 2 particles was formed.
次に実施例1と同様にして加水分解して得られた膜を用
いて食塩水の電解を行なった。7日後の電解槽の摺電圧
は2.98Vであり、電流効率は94%であり、その後
80日間安定した運転が継続された0M転を止めて電解
槽を解体し膜を観察したが、布の剥れあるいは含フッ素
重合体フィルムのクラックやピンホールは皆無であった
。Next, electrolysis of saline solution was performed using the membrane obtained by hydrolysis in the same manner as in Example 1. After 7 days, the sliding voltage of the electrolytic cell was 2.98V, and the current efficiency was 94%.The 0M rotation, which had continued stable operation for 80 days, was stopped, the electrolytic cell was disassembled, and the membrane was observed. There was no peeling or cracks or pinholes in the fluoropolymer film.
実施例3
テトラフルオロエチレンとパーフルオロ−3=オキサ−
1−ヘプテン酸メチルとの共重合体であって、イオン交
換容量が1.20ミリ当!/グラムの厚さ30μ厘のフ
ィルムaと、同じくイオン交換容量1.55ミリ当量/
グラムの厚さ140μ露のフィルムbと、イオン交換容
量1.15ミリ当量/グラムのテトラフルオロエチレン
とパーフルオロ(3,8−ジオキサ−4−メチル−7−
オクテンスルホニルフルオリド)の共重合体及びテトラ
フルオロエチレンとパーフルオロ−3−オキサ−1−ヘ
プテン酸メチルとの共重合体イオン交換容量1.55ミ
リ当量/グラムの2=3重量比のブレンドからなり、厚
さ20μのフィルムを押出し成形法により上記の順の含
フッ素重合体重合体積層フィルムを得た。Example 3 Tetrafluoroethylene and perfluoro-3=oxa-
It is a copolymer with methyl 1-heptenoate and has an ion exchange capacity of 1.20 mm! /g of film a with a thickness of 30μ and the same ion exchange capacity of 1.55 milliequivalents/
Film b with a thickness of 140 μm and an ion exchange capacity of 1.15 meq/g of tetrafluoroethylene and perfluoro(3,8-dioxa-4-methyl-7-
octensulfonyl fluoride) and a copolymer of tetrafluoroethylene and methyl perfluoro-3-oxa-1-heptenoate from a 2=3 weight ratio blend with an ion exchange capacity of 1.55 meq/g. A fluorine-containing polymer laminated film in the above order was obtained by extrusion molding a film having a thickness of 20 μm.
次にPTFEよりなる10タデ−−ルのモノフィラメン
)10本を引きそろえて撚ったデニール@ 100のマ
ルチフィラメントを縦糸及び横糸とし、密度85本/イ
ンチの平織り布を得た。Next, 10 PTFE monofilaments (10 denier) were twisted together to form warp and weft multifilaments with a denier of 100, to obtain a plain-woven fabric with a density of 85 threads/inch.
この織布の開口率48%であり、ダイアルゲージで測定
した糸の交点厚みは 110〜120μ層であった。織
布の一部を20c麿×200履に切り取り、パーフルオ
ロ−n−オクタン酸リチウム20%、テトラフルオロエ
チレンとパーフルオロ(3,8−ジオキサ−4−メチル
−7−オクテンスルホニツクアシッド)の共重合体から
成り、イオン交換容量が1.2ミリ当量/グラムのポリ
マー5%を含むエタノール溶液に15分間浸漬しその後
エアーオーブン中50℃にて1時間乾燥し、表面に親木
性被覆をもつ織布を得た。The open area ratio of this woven fabric was 48%, and the thread intersection thickness measured with a dial gauge was 110 to 120 μm. A part of the woven fabric was cut into a size of 20cm x 200mm and mixed with 20% lithium perfluoro-n-octoate, tetrafluoroethylene and perfluoro(3,8-dioxa-4-methyl-7-octensulfonic acid). The sample was immersed in an ethanol solution containing 5% of a copolymer with an ion exchange capacity of 1.2 meq/g for 15 minutes, and then dried in an air oven at 50°C for 1 hour to form a wood-philic coating on the surface. Obtained woven fabric.
ついで上記織布をブレンド層側に重ね、それぞれ2輌延
伸ポリエステルフイルムの間に挟み、平板プレス機を用
いて5kg/cm2.200℃5分間プレスした後冷却
しIll型用ポリエステルフィルムを剥して、織布が膜
全面にわたって平均7〜8μ園露出したイオン交換膜を
得た。Next, the above-mentioned woven fabric was stacked on the blend layer side, sandwiched between two stretched polyester films, and pressed using a flat plate press at 5 kg/cm2 at 200°C for 5 minutes, cooled, and the Ill type polyester film was peeled off. An ion exchange membrane was obtained in which the woven fabric was exposed over the entire surface of the membrane by an average of 7 to 8 μm.
次にこの膜を30℃の25%重量水酸化ナトリウム水溶
液にて16時間浸漬して加水分解した後。Next, this membrane was immersed in a 25% weight sodium hydroxide aqueous solution at 30° C. for 16 hours to be hydrolyzed.
5csXSc厘のサンプルを切り出した、イオン交換膜
を織布が露出する面を陽極側に向けてRuO2/TiO
2陽極およびRu/旧からなる低過電圧陰極をもち、両
極間の間隔が0.55m−以下の電解槽に組み込み、液
温を80℃に保ちながら、30A/d鳳2の電流密度に
て食塩水の電解を行なった。A sample of 5cs
It is installed in an electrolytic cell with two anodes and a low overvoltage cathode made of Ru/Ru, and the distance between the two electrodes is 0.55 m or less, and salt is heated at a current density of 30 A/d while maintaining the liquid temperature at 80°C. Performed water electrolysis.
陰陽両極室の液濃度は実施例1と同様とした。7日後の
電解槽の摺電圧は3.llV、電流効率はいずれも87
.0%であった。The liquid concentrations in the negative and positive polarity chambers were the same as in Example 1. The sliding voltage of the electrolytic cell after 7 days is 3. llV and current efficiency are both 87
.. It was 0%.
実施例4
PTFEよりなる30デニールのモノフィラメント3木
を引きそろえて撚ったデニ、−ル数80のマルチフィラ
メントを縦糸及び横糸とし、織り密度150木/インチ
の平織り布を得た。Example 4 A plain-woven cloth with a weaving density of 150 wood/inch was obtained by using multifilaments of 30 denier monofilaments made of PTFE and twisting them together as warp and weft threads and 80 threads.
この織布の開口率24%で、ダイアルゲージで測定した
織布の厚みは80μ厘、糸の交点厚みは120μ層であ
った。織布の一部を20cmX 20c厘に切り取り、
パーフルオロ−n−オクタン酸リチウム20%、テトラ
フルオロエチレンとパーフルオロ(3,8−ジオキサ−
4−メチルづ−オクテンスルホニツクアシッド)の共重
合体から成り、イオン交換容量が1.2ミリ当量/グラ
ムのポリマー5%を含むエタノール溶液に15分間浸漬
しその後エアーオーブン中50℃にて1時間乾燥し1表
面に親水性被覆をもつ織布を得た。The open area ratio of this woven fabric was 24%, the thickness of the woven fabric measured with a dial gauge was 80 μm, and the thickness at the intersection of the threads was 120 μm. Cut a part of the woven fabric to 20cm x 20cm,
20% lithium perfluoro-n-octoate, tetrafluoroethylene and perfluoro(3,8-dioxa-
It was immersed for 15 minutes in an ethanol solution containing 5% of the polymer with an ion exchange capacity of 1.2 meq/g, and then heated in an air oven at 50°C for 1 hour. After drying for hours, a woven fabric with a hydrophilic coating on one surface was obtained.
一方テドラフルオロエチレンとパーフルオロ−3−オキ
サ−1−ヘプテン酸メチルとの共重合体であって、イオ
ン交換容量が1.40ミリ当量/グラムのポリマーをT
ダイ押出法により成形し厚さ150μ−の含フッ素重合
体フィルムを得た。On the other hand, T
A fluoropolymer film having a thickness of 150 μm was obtained by molding by die extrusion.
ついで20cmX 20c■に切り取った含フッ素重合
体に前記織布を重ね、それぞれ2輌延伸ポリエステルフ
イルムの間に挟み、平板プレス機を用いて5kg/c腸
2,200℃、5分間プレスした後冷却し離型用ポリエ
ステルフィルムを剥して、織布が膜全面にわたって5〜
10μ麿だけ露出したイオン交換膜を得た。Next, the woven fabric was layered on the fluorine-containing polymer cut into 20cm x 20cm squares, sandwiched between two stretched polyester films, and pressed at 2,200°C for 5 minutes using a flat plate press, followed by cooling. Peel off the mold release polyester film, and the woven fabric covers the entire surface of the film.
An ion exchange membrane with only 10 μm exposed was obtained.
次にこの膜を90℃の25重量%水酸化ナトリウム水溶
液にて18時間浸漬して加水分解した後。Next, this membrane was immersed in a 25% by weight aqueous sodium hydroxide solution at 90° C. for 18 hours to be hydrolyzed.
5c鵬X5c層のサンプルを切り出したイオン交換膜を
、織布が露出する面を陽極側に向けてRuO2/TiO
2陽極およびRu/にiからなる低過電圧陰極を有する
電解槽に組み込み、80℃、20A/d■2にて食塩水
の電解運転を行なった。The ion exchange membrane cut out from the sample of the 5c layer
It was assembled into an electrolytic cell having two anodes and a low overvoltage cathode made of Ru/i, and electrolysis of saline water was carried out at 80° C. and 20 A/d2.
陽極側の塩水濃度を3.5Nに保ち、陰極側には水を供
給しながら生成苛性ソーダ濃度を35%に保持した。7
日後の電解槽の摺電圧は3.31Vであり、電流効率は
85.0%であった。The concentration of salt water on the anode side was maintained at 3.5N, and the concentration of produced caustic soda was maintained at 35% while supplying water to the cathode side. 7
After several days, the sliding voltage of the electrolytic cell was 3.31 V, and the current efficiency was 85.0%.
実施例5
実施例4に記載の浮織布を用いたが、平均粒径0,2μ
のβ−炭化ケイ素を35%、テトラフルオロエチレンと
パーフルオロ(3,8−ジオキサ−4−メチル−7−オ
クテンスルホニツクアシッド)の共重合体から成り、イ
オン交換容量が1.0ミリ当量/グラムのポリマー4%
を含むエタノール溶液に15分間浸漬しその後エアーオ
ーブン中50℃にて1時間乾燥し、表面に親水性被覆を
もつ織布を得た。Example 5 The floating fabric described in Example 4 was used, but with an average particle size of 0.2μ
It consists of 35% β-silicon carbide, a copolymer of tetrafluoroethylene and perfluoro(3,8-dioxa-4-methyl-7-octensulfonic acid), and has an ion exchange capacity of 1.0 meq/ grams of polymer 4%
The fabric was immersed in an ethanol solution containing the following for 15 minutes and then dried in an air oven at 50°C for 1 hour to obtain a woven fabric with a hydrophilic coating on its surface.
上記の織布を用いた以外は実施例4と同様にして作製し
た膜を用いて、食塩水電解を行なった結果、3日後の電
解槽の摺電圧は3.30Vであり、電流効率は85.0
%であった。Using a membrane prepared in the same manner as in Example 4 except for using the above-mentioned woven fabric, saline solution electrolysis was performed. As a result, the sliding voltage of the electrolytic cell after 3 days was 3.30 V, and the current efficiency was 85 .0
%Met.
実施例6
織布が膜全体にわたって80〜70μ鳳露出させた以外
は実施例4と同仕様のイオン交換膜を作製し、これを用
いて食塩水の電解を行なった結果、3日後の電解槽の摺
電圧は3.28Vであり、電流効率は35.5%であっ
た。Example 6 An ion exchange membrane with the same specifications as in Example 4 except that the woven fabric was exposed to 80 to 70 μm over the entire membrane was prepared, and as a result of electrolysis of saline water using this membrane, an electrolytic cell was obtained after 3 days. The sliding voltage was 3.28V, and the current efficiency was 35.5%.
実施例7
PTFEよりなる10デニールのモノフィラメント5本
を引きそろえて撚ったデニール数50のマルチフィラメ
ントを縦糸及び横糸とし、織り密度100本/インチの
平織り布を得た。Example 7 A plain-woven cloth with a weaving density of 100 filaments/inch was obtained using multifilaments with a denier number of 50 made by aligning and twisting five monofilaments of 10 denier made of PTFE as warp and weft yarns.
この織布の開口率41%であり、ダイアルゲージで測定
した織布の厚みは70μ層、糸の交点厚みは80μ腸で
あった。The open area ratio of this woven fabric was 41%, the thickness of the woven fabric measured with a dial gauge was 70 μm layer, and the thickness at the intersection of threads was 80 μm.
この織布を用いる以外は実施例4と同様にしてイオン交
換膜を作製し、これを用いて食塩水の電解を行なった結
果/日後の電解槽の摺電圧は3.21Vであり、電流効
率は95.5%であった。An ion exchange membrane was prepared in the same manner as in Example 4 except for using this woven fabric, and the result of electrolysis of saline solution was that the sliding voltage of the electrolytic cell after 1 day was 3.21 V, and the current efficiency was was 95.5%.
実施例8
PTFEよりなる10デニールのモノフィラメント10
本を引きそろえて撚ったデニール数100のマルチフィ
ラメントを縦糸及び横糸とし、織り密度70木/インチ
の平織り布を得た。Example 8 10 denier monofilament 10 made of PTFE
A plain-woven cloth with a weave density of 70 wood/inch was obtained by using multifilaments of denier 100, which were made by pulling and twisting books, as warp and weft threads.
この織布の開口率42%で、ダイアルゲージで測定した
糸の交点厚みは85μ層であった。The open area ratio of this woven fabric was 42%, and the thread intersection thickness measured with a dial gauge was 85 μm.
一方テドラフルオロエチレンとパーフルオロ−3−オキ
サ−1−ヘプテン酸メチルとの共重合体であって、イオ
ン交換容量が1.20ミリ当量/グラム及び1.50ミ
リ当量/グラムのポリマーをTダイ押山法により成形し
厚さがそれぞれ35μ閣、80ILmの含フッ素重合体
フィルムを得た。On the other hand, T A fluoropolymer film having a thickness of 35 μm and 80 ILm was obtained by molding using the die pressing method.
上記2種のフィルムをロールプレスにより180℃の温
度で積層し、二層構成の含フッ素重合体フィルムを得た
。The above two types of films were laminated at a temperature of 180° C. using a roll press to obtain a two-layered fluoropolymer film.
ついで二層構成の含フッ素重合体フィルムのイオン交換
容量が1.50ミリ当量/グラムのポリマー側に前記織
布を重ね、2軸延伸ポリエステルフイルムの間に挟み、
平板プレス機を用いて5kg/cm2.200℃、5分
間の条件でプレスした後、冷却し離型用ポリエステルフ
ィルムを剥して、織布が膜全面にわたって平均5μ騰だ
け露出した膜を得た。Next, the woven fabric is layered on the polymer side of a two-layered fluoropolymer film having an ion exchange capacity of 1.50 meq/g, and sandwiched between biaxially stretched polyester films.
After pressing at 5 kg/cm2 using a flat plate press at 200° C. for 5 minutes, the film was cooled and the release polyester film was peeled off to obtain a film in which the woven fabric was exposed by an average of 5 μm over the entire surface of the film.
かくして得られた膜の両面に、 Zr0Ch 15%。15% Zr0Ch on both sides of the film thus obtained.
テトラフルオロエチレンとパーフルオロ(3,8−ジオ
キサ−4−メチル−7−オクテン酸スルホニツクアシッ
ド)の共重合体5%を含むエタノール水溶液をスプレー
塗布、乾燥し膜の両面に。An aqueous ethanol solution containing 5% of a copolymer of tetrafluoroethylene and perfluoro(3,8-dioxa-4-methyl-7-octenoic acid sulfonic acid) was spray applied and dried on both sides of the membrane.
15g/+s2 (1) Zr0Chを付着させた後、
90℃ノエアーオーブン中で40分間乾燥し膜及び織布
の表面に親木性被覆をもつイオン交換膜を得た。15g/+s2 (1) After attaching Zr0Ch,
The membrane was dried in an air oven at 90°C for 40 minutes to obtain an ion exchange membrane having a wood-philic coating on the surface of the membrane and woven fabric.
次にこの膜を90℃の25重量%水酸化ナトリウム水溶
液にて18時間浸漬して加水分解した後、5cm XS
c腸のサンプルを切り出したイオン交換膜を、織布が露
出する面を陽極側に向けてRuO2/TiO2陽極およ
びRu/旧からなる低過電圧陰極を有する電解槽に組み
込み、 90℃、 30A/dm2にて食塩水の電解運
転を行なった。Next, this membrane was immersed in a 25% by weight aqueous sodium hydroxide solution at 90°C for 18 hours to be hydrolyzed, and then 5cm
c The ion exchange membrane from which the intestine sample was cut was placed in an electrolytic cell with a RuO2/TiO2 anode and a low overvoltage cathode made of Ru/Old, with the exposed surface of the woven fabric facing the anode side, and heated at 90°C and 30A/dm2. Saline electrolysis operation was carried out at
陽極側の塩水濃度を3.5Nに保ち、陰極側には水を供
給しながら生成苛性ソーダ濃度を35%に保持した。7
日後の電解槽の摺電圧は2.98Vであり、電流効率は
8B、5%であった。The concentration of salt water on the anode side was maintained at 3.5N, and the concentration of produced caustic soda was maintained at 35% while supplying water to the cathode side. 7
After a few days, the sliding voltage of the electrolytic cell was 2.98V, and the current efficiency was 8B, 5%.
実施例9
織布が平均40μ履膜面から露出した以外は実施例8と
同様にして膜製造し、同様の条件で加水分解して得られ
た膜を用いて食塩水の電解を行なった。4日後の電解槽
の摺電圧は2.114Vであり、電流効率は88.5%
であった。Example 9 A membrane was produced in the same manner as in Example 8, except that the woven fabric was exposed from the shoe surface by an average of 40μ, and electrolysis of saline water was performed using the membrane obtained by hydrolysis under the same conditions. The sliding voltage of the electrolytic cell after 4 days was 2.114V, and the current efficiency was 88.5%.
Met.
実施例1O
PTFEよりなる10デニールのモノフィラメント10
本を引きそろえて撚ったデニール数100のマルチフィ
ラメントを縦糸及び横糸とし、織り密度40本/インチ
の平織り布を得た。Example 1O 10 denier monofilament 10 made of PTFE
A plain-woven cloth with a weave density of 40 threads/inch was obtained by using multifilaments of denier 100, which were made by pulling and twisting books, as warp and weft threads.
この織布の開口率63%で、ダイアルゲージで測定した
糸の交点厚みは85μ層であった。This woven fabric had an open area ratio of 63%, and the thread intersection thickness measured with a dial gauge was 85 μm layer.
上記の織布を使用する以外は実施例8と全く同様にして
膜製造し、この膜を同様の条件にて加水分解して得られ
た膜を用いて食塩水の電解を行なった。4日後の電解槽
の摺電圧は2.93Vであり、電流効率は86.0%で
あった。A membrane was produced in exactly the same manner as in Example 8, except for using the above-mentioned woven fabric, and this membrane was hydrolyzed under the same conditions, and the resulting membrane was used for electrolysis of saline solution. The sliding voltage of the electrolytic cell after 4 days was 2.93 V, and the current efficiency was 86.0%.
実施例11
PTFEよりなる20デニールのモノフィラメント4木
を引きそろえて撚ったデニールa8oのマルチフィラメ
ントを横糸とし、PTFEよりなる10デニールのモノ
フィラメンと4木を引きそろえて撚ったデニール数40
のマルチフィラメントを縦糸として、縦、横の織り密度
がそれぞれ3B本/インチ及び45本/インチの絡み織
り布を得た。Example 11 20 denier monofilament made of PTFE A multifilament of denier A8O made by aligning and twisting four pieces of wood was used as the weft, and a denier number of 40 was made by aligning and twisting four pieces of wood and a 10 denier monofilament made of PTFE.
Multifilaments were used as warp threads to obtain entangled fabrics having warp and weft weave densities of 3B/inch and 45 threads/inch, respectively.
一方テドラフルオロエチレンとパーフルオロ−3−オキ
サ−1−ヘプテン酸メチルとの共重合体であって、イオ
ン交換容量が1.15ミリ当量/グラム及びi、eoミ
リ当量/グラムのポリマーをTダイ押出法により成形し
厚さがそれぞれ30μm、100μ腸の含フッ素重合体
フィルムを得た。On the other hand, T Fluoropolymer films having a thickness of 30 μm and a thickness of 100 μm were obtained by molding by die extrusion.
上記2種のフィルムをロールプレスにより200℃の温
度でm層し、二層構成の含フッ素重合体フィルムを得た
。The above two types of films were rolled into m layers at a temperature of 200° C. to obtain a two-layered fluoropolymer film.
ついで二層構成の含フッ素重合体フィルムのイオン交換
容量が1.60ミリ当量/グラムのポリマー側に前記織
布を重ね、2軸延伸ポリエステルフイルムの間に挟み、
平板プレス機を用いて5kg/c鳳2,200℃5分間
の条件でプレスした後冷却し、離型用ポリエステルフィ
ルムを剥して・織布が膜全面にわたって平均5μ鳳だけ
露出した膜を得た。Next, the woven fabric is layered on the polymer side of a two-layered fluoropolymer film having an ion exchange capacity of 1.60 meq/g, and sandwiched between biaxially stretched polyester films.
After pressing at 5 kg/c for 5 minutes using a flat plate press at 2,200°C, it was cooled and the release polyester film was peeled off to obtain a film in which the woven fabric was exposed by an average of 5 μ over the entire surface of the film. .
かくして得られた膜の両面に、粒径1〜10μmのZr
O2微粒子を水系溶媒でペースト化したちのスプレー塗
布、乾燥し膜の両面に、 20g/層2のZ r(hを
付着させた後、140℃に加熱された一対のロールでプ
レスし、膜表面にZrO2の非電導性多孔質層を半埋め
込み状態で形成させた。Zr with a particle size of 1 to 10 μm is coated on both sides of the film thus obtained.
After making a paste of O2 fine particles with an aqueous solvent, spray coating, drying, and depositing 20 g/layer 2 of Zr(h) on both sides of the membrane, the membrane surface was pressed with a pair of rolls heated to 140°C. A non-conductive porous layer of ZrO2 was formed in a semi-buried state.
次にこの膜を80℃の25重量%水酸化ナトリウム水溶
液にて18時間浸漬して加水分解した後、5C膳X5c
膳のサンプルを切り出したイオン交換膜を、織布が露出
する面を陽極側に向けてRuO2/TiO2陽極および
Ru/旧からなる低過電圧陰極を有する電解槽に組み込
み、80℃、30A/da2 にて食塩水の電解を行な
った。Next, this membrane was immersed in a 25% by weight aqueous sodium hydroxide solution at 80°C for 18 hours to be hydrolyzed, and then
The ion exchange membrane cut out from the sample of the table was placed in an electrolytic cell with a RuO2/TiO2 anode and a low overvoltage cathode made of Ru/Old, with the side where the woven fabric was exposed facing the anode side, and heated to 80°C and 30A/da2. electrolysis of saline solution was carried out.
陽極側の塩水濃度を3.5Nに保ち、陰極側には水を供
給しながら生成苛性ソーダ濃度を35%に保持した。7
日後の電解槽の摺電圧は3.OOVであり、電流効率は
88.0%であった。The concentration of salt water on the anode side was maintained at 3.5N, and the concentration of produced caustic soda was maintained at 35% while supplying water to the cathode side. 7
The sliding voltage of the electrolytic cell after 3 days. OOV, and the current efficiency was 88.0%.
実施例12
実施例11に記載の織り布を用い、Zr0C1218%
、テトラフルオロエチレンとパーフルオロ−3−オキサ
−1−ヘプテン酸メチルの共重合体であり、イオン交換
容量が2.0ミリ当量/グラムポリマ一5%を含むエタ
ノール溶液に20分間浸漬し、その後エアーオーブン中
で30分間乾燥し表面に親木性被覆をもつ織布を得た。Example 12 Using the woven fabric described in Example 11, Zr0C1218%
, is a copolymer of tetrafluoroethylene and methyl perfluoro-3-oxa-1-heptenoate, and has an ion exchange capacity of 2.0 meq/g. It is immersed in an ethanol solution containing 5% polymer for 20 minutes, and then immersed in air. The fabric was dried in an oven for 30 minutes to obtain a woven fabric with a wood-loving coating on the surface.
上記織布を用いる以外は実施例11と同様にしてイオン
交換膜を作製し、実施例11と同様にして加水分解した
膜を用いて食塩水の電解を行なった。7日後の電解槽の
摺電圧は2.15Vであり、電流効率は88.0%であ
った。An ion exchange membrane was prepared in the same manner as in Example 11 except that the above-mentioned woven fabric was used, and the membrane was hydrolyzed in the same manner as in Example 11 to perform electrolysis of saline solution. After 7 days, the sliding voltage of the electrolytic cell was 2.15 V, and the current efficiency was 88.0%.
実施例13
織布が40〜50μ騰露出した以外は実施例12と同様
にしてイオン交換膜を作製し、実施例1!に準じた加水
分解した膜を用いて食塩水の電解を行なった。7日後の
電解槽の摺電圧は2.93Vであり、電流効率は8B、
0%であった。Example 13 An ion exchange membrane was prepared in the same manner as in Example 12 except that the woven fabric was exposed at a height of 40 to 50 μm. Electrolysis of saline solution was carried out using a hydrolyzed membrane according to the method. The sliding voltage of the electrolytic cell after 7 days was 2.93V, the current efficiency was 8B,
It was 0%.
実施例14
PTFEよりなる 100デニールのモノフィラメント
を撚って縦糸及び横糸とし、縦、横の織り密度がそれぞ
れ52本/インチ及び26本/インチの絡み織り布を得
た。この織布の開口率は56%で、ダイアルゲージで測
定した糸の交点厚みは150μ腫であった・
上記織布を用いる以外は実施例12と同様にして製膜、
加水分解して得られた膜を用いて食塩水の電解を行なっ
た。3日後の電解槽の摺電圧は2.98Vであり、電流
効率は86.5%であった。Example 14 A 100-denier monofilament made of PTFE was twisted to form warp and weft yarns to obtain a tangle-woven fabric with warp and weft weave densities of 52 yarns/inch and 26 yarns/inch, respectively. The open area ratio of this woven fabric was 56%, and the thickness at the intersection of the threads measured with a dial gauge was 150 μm. Film formation was carried out in the same manner as in Example 12, except that the above woven fabric was used.
Electrolysis of saline solution was performed using the membrane obtained by hydrolysis. The sliding voltage of the electrolytic cell after 3 days was 2.98 V, and the current efficiency was 86.5%.
Claims (7)
からなり、糸密度が40本/インチ以上の高密度の多孔
性基材が、膜の陽極側表面からその一部が露出するよう
に膜を構成する含フッ素重合体フィルムに埋め込まれ、
且つ少なくとも露出した多孔性基材の表面が親水性被覆
を有することを特徴とする電解用含フッ素イオン交換膜
。(1) A high-density porous base material made of fluorine-containing polymer threads with a thread diameter of 10 to 300 deniers and a thread density of 40 threads/inch or more, with a part of it exposed from the anode side surface of the membrane. embedded in the fluoropolymer film that makes up the membrane,
A fluorine-containing ion exchange membrane for electrolysis, characterized in that at least the exposed surface of the porous base material has a hydrophilic coating.
その1/100〜2/3が、膜表面から露出している特
許請求の範囲(1)の膜。(2) the porous base material has a thickness of 10 to 300 μm,
The membrane according to claim (1), in which 1/100 to 2/3 of the membrane is exposed from the membrane surface.
ある特許請求の範囲(1)又は(2)の膜。(3) The membrane according to claim (1) or (2), wherein the hydrophilic coating on the surface of the porous substrate is an inorganic oxide.
ン酸基及び/又はスルホン酸基をもつ含フッ素重合体か
らなる特許請求の範囲(1)、(2)又は(3)の膜。(4) The membrane according to claim (1), (2) or (3), wherein the fluorine-containing polymer film constituting the membrane is made of a fluorine-containing polymer having a carboxylic acid group and/or a sulfonic acid group.
に面するカルボン酸基を有する含フッ素重合体フィルム
とその陽極側に位置し、上記よりもイオン交換容量の大
きいカルボン酸基を有する含フッ素重合体フィルムとの
積層構造をもつ特許請求の範囲(1)、(2)又は(3
)の膜。(5) The fluorine-containing polymer film constituting the membrane has a fluorine-containing polymer film having a carboxylic acid group facing the cathode side and a carboxylic acid group located on the anode side having a larger ion exchange capacity than the above. Claims (1), (2) or (3) having a laminated structure with a fluoropolymer film
) membrane.
に面するカルボン酸基を有する含フッ素重合体フィルム
とその陽極側に位置するスルホン酸基を有する含フッ素
重合体フィルムとの積層構造をもつ特許請求の範囲(1
)、(2)又は(3)の膜。(6) The fluoropolymer film constituting the membrane has a laminated structure of a fluoropolymer film with carboxylic acid groups facing the cathode side and a fluoropolymer film with sulfonic acid groups located on the anode side. Claims with (1)
), (2) or (3).
とを製造するための、塩化アルカリ電解用である特許請
求の範囲(1)〜(6)のいずれか一つの膜。(7) The membrane according to any one of claims (1) to (6), wherein the fluorine-containing ion exchange membrane is used for alkali chloride electrolysis to produce alkali hydroxide and chlorine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12257885A JPS61281890A (en) | 1985-06-07 | 1985-06-07 | Fluorine-containing ion exchange membrane for electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12257885A JPS61281890A (en) | 1985-06-07 | 1985-06-07 | Fluorine-containing ion exchange membrane for electrolysis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61281890A true JPS61281890A (en) | 1986-12-12 |
Family
ID=14839375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12257885A Pending JPS61281890A (en) | 1985-06-07 | 1985-06-07 | Fluorine-containing ion exchange membrane for electrolysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61281890A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018059103A (en) * | 2016-10-06 | 2018-04-12 | 旭化成株式会社 | Ion exchange membrane |
JP2018059163A (en) * | 2016-10-06 | 2018-04-12 | 旭化成株式会社 | Cation exchange membrane and electrolytic tank |
WO2019088299A1 (en) * | 2017-11-06 | 2019-05-09 | Agc株式会社 | Solid polymer electrolyte film, membrane electrode assembly and electrolyzer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794585A (en) * | 1980-12-05 | 1982-06-12 | Asahi Glass Co Ltd | Cation exchange membrane for electrolysis |
JPS5837186A (en) * | 1981-08-31 | 1983-03-04 | Tokuyama Soda Co Ltd | Ion exchange membrane for electrolysis |
JPS5932550A (en) * | 1982-08-14 | 1984-02-22 | Nippon Air Brake Co Ltd | Two-system fluid pressure control valve moving in response to deceleration |
-
1985
- 1985-06-07 JP JP12257885A patent/JPS61281890A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794585A (en) * | 1980-12-05 | 1982-06-12 | Asahi Glass Co Ltd | Cation exchange membrane for electrolysis |
JPS5837186A (en) * | 1981-08-31 | 1983-03-04 | Tokuyama Soda Co Ltd | Ion exchange membrane for electrolysis |
JPS5932550A (en) * | 1982-08-14 | 1984-02-22 | Nippon Air Brake Co Ltd | Two-system fluid pressure control valve moving in response to deceleration |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018059103A (en) * | 2016-10-06 | 2018-04-12 | 旭化成株式会社 | Ion exchange membrane |
JP2018059163A (en) * | 2016-10-06 | 2018-04-12 | 旭化成株式会社 | Cation exchange membrane and electrolytic tank |
WO2019088299A1 (en) * | 2017-11-06 | 2019-05-09 | Agc株式会社 | Solid polymer electrolyte film, membrane electrode assembly and electrolyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5264100A (en) | Fluorine-containing cation exchange membrane for electrolysis having a protruding porous base reinforcing material on one side thereof | |
US4872958A (en) | Ion exchange membrane for electrolysis | |
JP2609512B2 (en) | Modified Reno Weave fabric reinforced membrane | |
JPH0212495B2 (en) | ||
JPH043420B2 (en) | ||
JP2688902B2 (en) | Reinforced ion exchange membrane and method of making the same | |
JPS59174627A (en) | No-reinforced membrane, electrochemical cell and electrolysis | |
US4988364A (en) | Coated cation exchange yarn and process | |
EP0388670B1 (en) | Cation exchange reinforced membrane and process | |
EP0327313B1 (en) | Membrane electrolytic process for producing concentrated caustic | |
JPS621652B2 (en) | ||
JPS61281890A (en) | Fluorine-containing ion exchange membrane for electrolysis | |
JPH07233267A (en) | Fabric-reinforced film | |
US4996098A (en) | Coated cation exchange fabric and process | |
JPS62280231A (en) | Novel multilayer diaphragm | |
JPS62280230A (en) | Reinforced multilayer ion exchange diaphragm | |
JPS62199629A (en) | Novel multi-layer permeable membrane for electrolysis | |
JPS6040459B2 (en) | Reinforced ion exchange membrane | |
JPH02261829A (en) | Cation exchange membrane reinforced with cation exchange cloth | |
JPS63113029A (en) | Electrolytic ion exchange membrane | |
JPH03130384A (en) | Cation exchange membrane for electrolyzing alkali metal chloride | |
JP2623571B2 (en) | Method for producing alkali hydroxide | |
JPH0410906B2 (en) | ||
JPS5837186A (en) | Ion exchange membrane for electrolysis | |
JPH0254791A (en) | Production of alkali hydroxide |