JPH0149191B2 - - Google Patents

Info

Publication number
JPH0149191B2
JPH0149191B2 JP57171021A JP17102182A JPH0149191B2 JP H0149191 B2 JPH0149191 B2 JP H0149191B2 JP 57171021 A JP57171021 A JP 57171021A JP 17102182 A JP17102182 A JP 17102182A JP H0149191 B2 JPH0149191 B2 JP H0149191B2
Authority
JP
Japan
Prior art keywords
sulfur
coal
liquefaction
residue
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57171021A
Other languages
Japanese (ja)
Other versions
JPS5962692A (en
Inventor
Kazuhito Kurachi
Keiichi Hayakawa
Tsukasa Chikada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17102182A priority Critical patent/JPS5962692A/en
Publication of JPS5962692A publication Critical patent/JPS5962692A/en
Publication of JPH0149191B2 publication Critical patent/JPH0149191B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、触媒として鉄系触媒及び単体硫黄を
使用し、液化残渣は溶融金属浴でガス化する石炭
液化法における液化残渣よりの硫黄分の回収およ
び再利用に関するものである。 近年、石油資源の涸渇が叫ばれ、石油代替エネ
ルギーの創造を目的として種々の創エネルギーの
研究がなされてきている。 その中でも資源が豊富で比較的地球上に普遍的
に存在し、しかも石油系と類似の製品が得られる
等の理由から石炭の液化が最も有望視され、その
研究が盛んに行なわれてきている。 一般に石炭の液化は粉砕した石炭を溶剤ととも
にスラリーとし、予熱器で430〜470℃程度まで昇
温し、反応塔において150〜300気圧の水素下で石
炭を液化し、高温高圧分離塔でガス・軽質油と溶
剤・固形分とに分離され、さらに低圧分離塔で減
圧され、液化物は固液分離工程で溶剤・液化油と
灰分・末反応炭等の固形分(以下「液化残渣」と
称する)とに分離される。ここで固液分離工程と
は以後の用途に応じて、液化物を蒸留・遠心分
離・重力沈降等によつて液体分と固体分とに分離
する工程である。 石炭の液化法としては種々挙げられ、各々工夫
をこらして液化油の収率向上に努力しているが、
最近の傾向としては液化工程を一次液化工程と二
次液化工程とに分けて行なう二段液化法、液化物
の減圧蒸留残渣(減圧ボトム)を液化工程へ再循
環するボトムリサイクル法、液化工程に触媒を添
加する方法が主流となつている。なかでも、液化
工程に触媒を添加する方法は技術的に比較的容易
なため最近多くの研究がみられる様になつてきて
いる。触媒としては、H−Coal法などでみられ
る石油系の水素化脱硫・脱窒・分解触媒として用
いられているNi−Mo、Co−Mo、Ni−W、Co−
W、Ni−Co−Mo系の触媒などが使われる場合も
あるが、安価で比較的活性が高く、回収する必要
のない鉄系触媒が用いられている。特に、アルミ
ニウム工業から排出される赤泥は有名でドイツな
どでは古くから使われている。 これら鉄系の触媒は粉体で懸濁状で液化工程に
添加されるが、一般には触媒作用を発揮するのは
硫化鉄の形であるといわれており、通常は単体硫
黄も同時に添加される。 その触媒作用は下式に示す様な硫化鉄の形態変
化によつて生成する発生期の水素が効いていると
か硫化鉄に原子状に吸着した水素が効いていると
かいわれているが詳細は未だ不明である。 〔硫化鉄の形態変化機構〕 Fe2O3+3S+3H2→Fe2S3+3H2O ……(1) Fe2S3+H2S→2FeS2+2H・ ……(2) 2FeS2+H2→Fe2S3+H2S ……(3) 〔硫化鉄上への水素の吸着機構〕 xFe2O3+2yS+3xH2→2FexSy+3xH2O ……(4) FexSy+zH2→FexSyH2z(吸着) ……(5) FexSyH2z+nCoal→FexSyH(2z-o)+nH−Coal ……(6) FexSyH(2z-o)+n/2H2→FexSyH2z ……(7) FexSyH2z→FexS(y-z)+zH2S↑(減圧による硫化水素
脱離)……(8) 液化残渣中の硫化鉄の形態を調べるとほとんど
ピロータイトとなつていることから、吸着機構の
方が妥当と思われるが、いずれにしても鉄と同様
に硫黄が重要な役割をしていることがわかる。 このように重要な硫黄であるが、最近、発明者
らが石炭液化における硫黄のバランスを検討した
ところによると、鉄系触媒とともに添加した硫黄
の80〜90%は硫化鉄として未反応石炭、灰分など
とともに液化残渣の方へ移行し、循環水素ガスラ
インへは10〜20%程度しか残存しないことが判明
した。 したがつて、石炭液化の系外から硫黄を持ち込
んで添加していたのでは液化プロセスとしては成
立しないため、当然ながら液化残渣から硫黄ない
しは硫化鉄の回収が望まれる。しかしながら、液
化残渣から硫化鉄として回収するのは石炭灰分と
の分離、硫化鉄表面上への炭素質、石炭灰分の付
着による触媒活性の低下等の難しい問題が有り、
事実上不可能である。 したがつて、通常は液化工程内で必要とされる
水素の製造のためガス化される液化残渣のガス化
工程より硫黄を回収する必要があるが、溶融金属
浴によるガス化法の場合、製鉄における転炉に類
似したガス化炉で液化残渣をガス化するため、ガ
ス化と同時に触媒金属が金属浴に溶解するため触
媒金属の回収ができるし、高温ガス化のため発生
する金属のヒユームによる微細なダストがまた石
炭液化の触媒として利用できるという利点がある
が、液化残渣中の灰分の溶解およびその流動性を
増加させる目的で滓化剤としてCaOを添加するた
め、液化残渣中の硫黄分は大部分がCaSとしてス
ラグ中に捕捉され、ほとんどガス中に移行せず、
硫黄分の回収が全くできないという欠点がある。 本発明は、このような観点に立つて発明された
もので、触媒として鉄系触媒及び単体硫黄を使用
し、液化残渣は溶融金属浴でガス化する石炭液化
法において、液化残渣中または石炭スラリー中の
硫黄濃度に応じて、滓化剤CaOないしMgOを添
加し、形成するスラグの塩基度(CaO/SiO2
いしはMgO/SiO2)を1以下(重量比)に調整
することによつて、液化残渣中の硫黄分を発生ガ
ス中に積極的に移行させ、ついで、該ガス中より
硫黄分を硫化水素ないしは単体硫黄として回収し
液化工程に再利用することを特徴としている。 スラグの塩基度とは、スラグ中の塩基成分CaO
と酸成分SiO2との重量比であり、塩基度の調整
はCaO/SiO2比を変化させることによつて行な
うが、場合によつては、CaOをMgOと変換する
ことによつても行なえる。形成するスラグの塩基
度は、液化残渣中または石炭スラリー中の硫黄濃
度に応じて調整するが、便宜上、使用石炭の硫黄
濃度によつて調整することもできる。ガス中より
の硫化水素の回収については、モノエタノールア
ミン法、熱炭酸カリ法などの既存の方法が、ま
た、単体硫黄として回収する方法としてはクラウ
ス法などがあげられる。尚、該ガス中の硫黄分の
回収に際しては、該ガス中には液化に際して必要
な触媒として用いるダストが同時に回収され、そ
れらの両方とも液化工程に入れられる。 次に、本発明を実施例によつて、説明する。 実施例 1 石炭処理量8t/dayの溶融鉄浴ガス化炉におい
て、スラグの塩基度をそれぞれCaO/SiO2比1.5、
0.8、MgO/SiO2比0.8と保ちながら、200メツシ
ユ以下に粉砕した表1に示す組成の液化残渣を
330Kg/hrの速度で4.7Kg/hrのスチームと190N
m3/hrの酸化とともにガス化したところそれぞれ
98%以上のガス化効率で表2の結果のガスが得ら
れた。
The present invention relates to the recovery and reuse of sulfur from a liquefied residue in a coal liquefaction method in which an iron-based catalyst and elemental sulfur are used as catalysts and the liquefied residue is gasified in a molten metal bath. In recent years, there has been much talk of the depletion of petroleum resources, and various energy creation studies have been conducted with the aim of creating alternative energy to petroleum. Among these, coal liquefaction is seen as the most promising because it is an abundant resource, relatively ubiquitous on the earth, and can produce products similar to petroleum-based coal, and research on it has been actively conducted. . Coal liquefaction generally involves making pulverized coal into a slurry with a solvent, raising the temperature to about 430-470°C in a preheater, liquefying the coal under hydrogen at 150-300 atm in a reaction tower, and then converting it into gas in a high-temperature, high-pressure separation tower. Light oil is separated into solvent and solids, which are further depressurized in a low-pressure separation tower, and the liquefied product is separated from the solvent, liquefied oil, and solids such as ash and end-reacted carbon (hereinafter referred to as "liquefaction residue") in the solid-liquid separation process. ) and are separated into Here, the solid-liquid separation step is a step in which a liquefied product is separated into a liquid component and a solid component by distillation, centrifugation, gravity sedimentation, etc., depending on the subsequent use. There are various methods for liquefying coal, and each method is devised to improve the yield of liquefied oil.
Recent trends include a two-stage liquefaction method in which the liquefaction process is divided into a primary liquefaction process and a secondary liquefaction process, a bottom recycling method in which the vacuum distillation residue (vacuum bottom) of the liquefied product is recycled to the liquefaction process, and a liquefaction process. The mainstream method is to add a catalyst. Among these methods, the method of adding a catalyst to the liquefaction process is technically relatively easy and has recently been the subject of much research. Catalysts include Ni-Mo, Co-Mo, Ni-W, and Co-, which are used as petroleum-based hydrodesulfurization, denitrification, and decomposition catalysts such as in the H-Coal method.
Although W and Ni-Co-Mo catalysts are sometimes used, iron-based catalysts are used because they are inexpensive, have relatively high activity, and do not need to be recovered. In particular, red mud discharged from the aluminum industry is famous and has been used for a long time in Germany and other countries. These iron-based catalysts are added to the liquefaction process in the form of a powder suspension, but it is generally said that it is in the form of iron sulfide that exerts the catalytic action, and elemental sulfur is also usually added at the same time. . The catalytic action is said to be caused by the nascent hydrogen produced by the change in the form of iron sulfide as shown in the equation below, or by the hydrogen adsorbed atomically on iron sulfide, but the details are still unclear. It is unknown. [Mechanism of morphological change of iron sulfide] Fe 2 O 3 +3S+3H 2 →Fe 2 S 3 +3H 2 O ......(1) Fe 2 S 3 +H 2 S→2FeS 2 +2H・ ...(2) 2FeS 2 +H 2 →Fe 2 S 3 +H 2 S ......(3) [Adsorption mechanism of hydrogen on iron sulfide] xFe 2 O 3 +2yS+3xH 2 →2FexSy+3xH 2 O ......(4) FexSy+zH 2 →FexSyH 2z (adsorption) ...(5) FexSyH 2z +nCoal→FexSyH (2z-o) +nH−Coal ……(6) FexSyH (2z-o) +n/2H 2 →FexSyH 2z ……(7) FexSyH 2z →FexS (yz) +zH 2 S↑(due to reduced pressure Hydrogen sulfide desorption)...(8) When examining the form of iron sulfide in the liquefaction residue, it is mostly pyrrhotite, so an adsorption mechanism seems more appropriate, but in any case, it is similar to iron. It can be seen that sulfur plays an important role. Although sulfur is important in this way, the inventors recently investigated the balance of sulfur in coal liquefaction and found that 80 to 90% of the sulfur added with iron-based catalysts is lost to unreacted coal and ash as iron sulfide. It was found that the hydrogen gas migrated to the liquefied residue along with other substances, and only about 10 to 20% remained in the circulating hydrogen gas line. Therefore, if sulfur is brought in from outside the coal liquefaction system and added, the liquefaction process will not work, so naturally it is desirable to recover sulfur or iron sulfide from the liquefaction residue. However, recovering iron sulfide from liquefaction residue has difficult problems such as separation from coal ash, carbonaceous matter on the surface of iron sulfide, and reduction in catalyst activity due to adhesion of coal ash.
It is virtually impossible. Therefore, normally it is necessary to recover sulfur from the gasification process of the liquefied residue, which is gasified to produce the hydrogen required in the liquefaction process. Since the liquefied residue is gasified in a gasification furnace similar to the converter in Fine dust also has the advantage that it can be used as a catalyst for coal liquefaction, but since CaO is added as a sludge agent for the purpose of dissolving ash in the liquefaction residue and increasing its fluidity, the sulfur content in the liquefaction residue increases. is mostly captured in the slag as CaS, with almost no migration into the gas.
The drawback is that the sulfur content cannot be recovered at all. The present invention was invented based on this viewpoint, and is used in a coal liquefaction method in which an iron-based catalyst and elemental sulfur are used as catalysts, and the liquefied residue is gasified in a molten metal bath. By adding a slag agent CaO or MgO depending on the sulfur concentration in the slag and adjusting the basicity (CaO/SiO 2 or MgO/SiO 2 ) of the slag to be 1 or less (weight ratio), The method is characterized in that the sulfur content in the liquefied residue is actively transferred to the generated gas, and then the sulfur content is recovered from the gas as hydrogen sulfide or elemental sulfur and reused in the liquefaction process. The basicity of slag is the basic component CaO in slag.
The basicity is adjusted by changing the CaO/SiO 2 ratio , but in some cases it can also be done by converting CaO to MgO. Ru. The basicity of the formed slag is adjusted depending on the sulfur concentration in the liquefied residue or coal slurry, but for convenience, it can also be adjusted depending on the sulfur concentration of the coal used. Existing methods such as the monoethanolamine method and hot potassium carbonate method are available for recovering hydrogen sulfide from gas, and methods for recovering elemental sulfur include the Claus method. Note that when recovering the sulfur content in the gas, dust used as a catalyst necessary for liquefaction is simultaneously recovered from the gas, and both of them are put into the liquefaction process. Next, the present invention will be explained using examples. Example 1 In a molten iron bath gasifier with a coal throughput of 8 t/day, the basicity of the slag was set to a CaO/SiO 2 ratio of 1.5 and 1.5, respectively.
The liquefied residue with the composition shown in Table 1 was crushed to 200 mesh or less while maintaining the MgO/SiO 2 ratio of 0.8 and 0.8.
4.7Kg/hr steam and 190N at a rate of 330Kg/hr
When gasified with oxidation of m 3 /hr, each
The gases shown in Table 2 were obtained with a gasification efficiency of 98% or more.

【表】【table】

【表】 実施例 2 容積4の反応塔を持つ連続式の石炭液化装置
で、100メツシユ以下に粉砕した表3に示す性状
の石炭を水添した溶剤(吸収油+アントラセン油
50+50)とともに溶剤比2でスラリー化し、表4
の条件下で液化し表6の結果を得た。ただし、触
媒としては実施例1のガス化炉より発生した表5
に示す組成のダストを200メツシユ以下に粉細し
たものを用い、添加量は石炭当り2.2%とした。
スラグの塩基度はMgO/SiO2比0.8に保つた。
[Table] Example 2 Hydrogenated coal with properties shown in Table 3 that was pulverized to 100 mesh or less in a continuous coal liquefaction equipment having a reaction tower with a volume of 4 was used as a solvent (absorbing oil + anthracene oil).
50 + 50) at a solvent ratio of 2 and slurried with
It was liquefied under the following conditions and the results shown in Table 6 were obtained. However, as a catalyst, Table 5 generated from the gasifier of Example 1 was used.
Dust having the composition shown in the following was used, pulverized to 200 mesh or less, and the amount added was 2.2% per coal.
The basicity of the slag was kept at a MgO/ SiO2 ratio of 0.8.

【表】 * 乾燥炭ベース
[Table] * Dry charcoal base

【表】【table】

【表】【table】

【表】 実施例1から明らかなように、スラグの塩基度
を0.8に調整した場合には、塩基度を1.5にした場
合に比して、硫黄分のガス化率を大幅に高めるこ
とができ、液化残渣中の硫黄分を硫化水素として
発生ガス中から回収再利用することができた。 実施例2においても、スラグの塩基度を0.8に
調整することによつて、回収再利用した硫化水素
と、クラウス法硫黄によつて、市販の硫黄の場合
と同様に、無触媒時に比して約10〜13%の液化油
の向上がみられた。 本発明によれば、従来回収不可能であつた硫黄
分を発生ガスから高い割合で回収し、触媒として
再利用することができ、しかも石炭液化の効果も
極めてすぐれている。
[Table] As is clear from Example 1, when the basicity of the slag was adjusted to 0.8, the gasification rate of sulfur content could be significantly increased compared to when the basicity was adjusted to 1.5. The sulfur content in the liquefied residue could be recovered and reused as hydrogen sulfide from the generated gas. In Example 2, by adjusting the basicity of the slag to 0.8, recovered and reused hydrogen sulfide and Claus process sulfur were used, as in the case of commercially available sulfur, compared to when no catalyst was used. An improvement of approximately 10-13% in liquefied oil was observed. According to the present invention, a high proportion of sulfur content, which was conventionally unrecoverable, can be recovered from generated gas and reused as a catalyst, and the effect of coal liquefaction is also extremely excellent.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒として鉄系触媒及び単体硫黄を使用し、
液化残渣は溶融金属浴でガス化する石炭液化法に
おいて、液化残渣中または石炭スラリー中の硫黄
濃度に応じて、滓化剤CaOないしMgOを添加し、
形成するスラグの塩基度(CaO/SiO2ないしは
MgO/SiO2)を1以下(重量比)に調整するこ
とによつて、液化残渣中の硫黄分を発生ガス中に
積極的に移行させ、ついで、該ガス中より硫黄分
を硫化水素ないしは単体硫黄として回収し液化工
程に再利用することを特徴とする石炭液化法。
1 Using an iron-based catalyst and elemental sulfur as a catalyst,
In the coal liquefaction method in which the liquefied residue is gasified in a molten metal bath, a sludge agent CaO or MgO is added depending on the sulfur concentration in the liquefied residue or coal slurry.
The basicity of the slag that forms (CaO/SiO 2 or
By adjusting MgO/SiO 2 ) to 1 or less (weight ratio), the sulfur content in the liquefied residue is actively transferred to the generated gas, and then the sulfur content from the gas is converted into hydrogen sulfide or simple substances. A coal liquefaction method characterized by recovering sulfur and reusing it in the liquefaction process.
JP17102182A 1982-10-01 1982-10-01 Coal liquefaction Granted JPS5962692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17102182A JPS5962692A (en) 1982-10-01 1982-10-01 Coal liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17102182A JPS5962692A (en) 1982-10-01 1982-10-01 Coal liquefaction

Publications (2)

Publication Number Publication Date
JPS5962692A JPS5962692A (en) 1984-04-10
JPH0149191B2 true JPH0149191B2 (en) 1989-10-23

Family

ID=15915615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17102182A Granted JPS5962692A (en) 1982-10-01 1982-10-01 Coal liquefaction

Country Status (1)

Country Link
JP (1) JPS5962692A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343703A (en) * 1976-09-30 1978-04-20 Exxon Research Engineering Co Process for converting residual oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343703A (en) * 1976-09-30 1978-04-20 Exxon Research Engineering Co Process for converting residual oil

Also Published As

Publication number Publication date
JPS5962692A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
RU1836408C (en) Method of obtaining liquid products from carbon-containing meterials
JPH02187495A (en) Hydrocracking of heavy oil
GB1569308A (en) Gas treatment
JPS5827837B2 (en) Processing method for sulfur-containing heavy oil
US4437974A (en) Coal liquefaction process
GB1418014A (en) Coal-conversion process
CN107267186B (en) The method that coal mild hydrogenation pyrolysis prepares liquid hydrocarbon
CN110819390B (en) Method and system for low-rank coal fractional conversion
JPS6142590A (en) Preparation of high-concentration hydrogen gas with thermal cracking of heavy oil
CN109880654A (en) A method of utilizing volatile matter Fischer Tropsch waxes in low-order coal
US4011153A (en) Liquefaction and desulfurization of coal using synthesis gas
JPS6126836B2 (en)
JPH0149191B2 (en)
JPS5832193B2 (en) Hydrocracking method for heavy hydrocarbons using reaction by-product coke as a catalyst
US3617474A (en) Low sulfur fuel oil from coal
CN111620321B (en) Method for preparing carbon nano tube by using high-sulfur high-sodium coal
JPS58180587A (en) Coal conversion
JPS5839193B2 (en) Coal liquefaction method
JPH0149318B2 (en)
JPH10298556A (en) Liquefaction of coal
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
CN110903853B (en) Method for preparing natural gas and co-producing hydrogen
JPS58108289A (en) Liquefaction of coal
JPS6160115B2 (en)
JPS58215483A (en) Hydrocracking of heavy oil