JPH0147902B2 - - Google Patents

Info

Publication number
JPH0147902B2
JPH0147902B2 JP56014141A JP1414181A JPH0147902B2 JP H0147902 B2 JPH0147902 B2 JP H0147902B2 JP 56014141 A JP56014141 A JP 56014141A JP 1414181 A JP1414181 A JP 1414181A JP H0147902 B2 JPH0147902 B2 JP H0147902B2
Authority
JP
Japan
Prior art keywords
type
region
well
substrate
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56014141A
Other languages
Japanese (ja)
Other versions
JPS57128967A (en
Inventor
Tadahide Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56014141A priority Critical patent/JPS57128967A/en
Publication of JPS57128967A publication Critical patent/JPS57128967A/en
Publication of JPH0147902B2 publication Critical patent/JPH0147902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は集積化半導体装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated semiconductor device.

以下、集積化半導体装置の典型的な一例として
絶縁ゲート型電界効果トランジスタ(以後、
MOSトランジスタと記す)を用いたインバータ
回路を例に従来技術及び本発明について具体的に
説明するが、これは説明の便宜であり、本発明を
限定するものではない。
Below, an insulated gate field effect transistor (hereinafter referred to as
The prior art and the present invention will be specifically explained using an inverter circuit using MOS transistors as an example, but this is for convenience of explanation and does not limit the present invention.

さて、MOSトランジスタを用いたインバータ
回路は、基板上に集積化された負荷用MOSトラ
ンジスタとドライブ用MOSトランジスタを接続
した構成になつている。このようなMOSインバ
ータ装置の一例は、例えばアイ・イー・イー・イ
ー ジヤーナル オブ ソリツドステート サー
キツト(IEEE JOURNAL OF SOLID−
STATE CIRCUITS)誌のSC−13巻、第600〜
606頁(1978年)に所載された64K×1ビツト
ダイナミツク ED−MOS RAM(“A64K×1Bit
Dynamic ED−MOS RAM”)と題するToshio
Wada氏等の論文等にも記載されており、基板の
活性領域上に形成された負荷用MOSトランジス
タのソースと、ドライブ用MOSトランジスタの
ドレインとを共通にして構成されるのが普通であ
つた。
Now, an inverter circuit using MOS transistors has a configuration in which a load MOS transistor and a drive MOS transistor integrated on a substrate are connected. An example of such a MOS inverter device is, for example, the IEEE JOURNAL OF SOLID-
STATE CIRCUITS) SC-13, No. 600~
64K x 1 bit published on page 606 (1978)
Dynamic ED-MOS RAM (“A64K×1Bit
Toshio titled “Dynamic ED-MOS RAM”)
This is also described in papers by Dr. Wada et al., and it was common for the source of the load MOS transistor formed on the active region of the substrate to be made common to the drain of the drive MOS transistor. .

ところが、集積化半導体装置の大容量化、高性
能化に伴つて、より以上の高密度化が要求される
ようになつてきた。このため、上記のような従来
型のインバータ回路においても、負荷用MOSト
ランジスタを縦型に高集積化する試みがなされる
ようになつた。その一例は、1980年2月に開催さ
れたアイ・イー・イー・イー インターナシヨナ
ル ソリツドステート サーキツツ コンフアレ
ンス(1980 IEEE INTERNATIONAL SOLID
−STATE CIRCUITS CONFERENCE)のダ
イジエスト オブ テクニカル ペーパーズ
(ISSCC DIGEST OF TECHNICAL
PAPERS)の第56〜57頁(1980年2月会議時に
同時頒布)に所載された「MOS埋込み負荷論理
(“MOS Buried Load Logic”)」と題する
Yoshio Sakai氏等の論文述べられている。この
インバータ装置の断面図を第1図に示す。第1図
において、1はn型の基板、2は絶縁分離フイー
ルド酸化膜、3はp型ウエル、4,5はn型不純
物領域、6はゲート酸化膜、7はゲート電極をそ
れぞれ示す。この装置において、ドライブ用
MOSトランジスタは、ゲート電極7、ドレイン
電極として機能するn型領域5、ソース電極とし
て機能するn型領域4から構成される従来型の
MOSトランジスタであるのに対し、負荷用MOS
トランジスタは、ゲート電極として機能するp型
ウエル3、ドレイン電極として機能するn型基板
1、ソース電極として機能するn型領域5とから
構成されるジヤンクシヨン電界効果トランジスタ
(J−FET)になつている。この結果、従来型の
インバータ装置に比べて、負荷トランジスタの基
板上の面積を省き大幅な集積度の向上に成功した
のである。
However, as integrated semiconductor devices have increased in capacity and performance, higher density has been required. For this reason, even in the conventional inverter circuit as described above, attempts have been made to increase the integration of the load MOS transistors in a vertical manner. One example is the 1980 IEEE INTERNATIONAL SOLID Conference held in February 1980.
−STATE CIRCUITS CONFERENCE) Digest of Technical Papers (ISSCC DIGEST OF TECHNICAL
PAPERS), pages 56-57 (distributed simultaneously at the February 1980 conference), entitled “MOS Buried Load Logic”.
A paper by Yoshio Sakai et al. A sectional view of this inverter device is shown in FIG. In FIG. 1, 1 is an n-type substrate, 2 is an insulating field oxide film, 3 is a p-type well, 4 and 5 are n-type impurity regions, 6 is a gate oxide film, and 7 is a gate electrode. In this device, for the drive
The MOS transistor is a conventional type consisting of a gate electrode 7, an n-type region 5 that functions as a drain electrode, and an n-type region 4 that functions as a source electrode.
Although it is a MOS transistor, it is a load MOS transistor.
The transistor is a junction field effect transistor (J-FET) consisting of a p-type well 3 that functions as a gate electrode, an n-type substrate 1 that functions as a drain electrode, and an n-type region 5 that functions as a source electrode. . As a result, compared to conventional inverter devices, the area of the load transistors on the substrate has been saved and the degree of integration has been significantly improved.

この点でこのYoshio Sakai氏等の試みは優れ
たものであつたが、p型ウエル3の開口部面積で
定まる縦型J−FETの負荷電流を所定の値に制
御するのが難しく、p型ウエルへの不純物拡散及
び押し込み時間等々全製造プロセスに課すべき制
御精度を非常に厳しくしなければならず、さらに
は負荷用トランジスタとしてJ−FETを用いる
ことからインバータ特性がどうしても悪くなる。
等々の新らたな問題を引き起したのである。
The attempt by Yoshio Sakai et al. was excellent in this respect, but it was difficult to control the load current of the vertical J-FET, which is determined by the opening area of the p-type well 3, to a predetermined value. Control accuracy must be imposed on the entire manufacturing process, such as impurity diffusion into the well and push-in time, etc., and furthermore, since a J-FET is used as a load transistor, the inverter characteristics inevitably deteriorate.
This gave rise to new problems such as:

本発明は、前記Yoshio Sakai氏等の試みによ
つてもたらされた利点は活かしたままその欠点を
除き、充分な高集積化、高密度化を達成し、イン
バータ回路のみならず広く大容量集積化論理回
路、メモリ回路等々に適用し得る集積化半導体装
置を提供するものである。その構成上の特徴は、
第1導電型の半導体基板と、該基板の表層部に設
けられた第2導電型のウエルと、前記基板の表層
部に上記ウエルを囲むようにしかも周辺に向つて
その膜厚を漸増さすように設けた分離絶縁体膜
と、前記ウエルの内部にあつて前記基板の表層部
に間隔をおいて設けられた第1導電型の第1及び
第2の半導体領域と、該第1及び第2の半導体領
域に接するかあるいは重なるように設けた薄い絶
縁体膜と、該薄い絶縁体膜上に設けられた第1の
電極と一端が前記第1の半導体領域あるいは第2
の半導体領域のいずれか一方の表面に接し他端が
前記ウエルから前記分離絶縁体膜上にかかるよう
に設けられた第2の電極とを備え、該第2の電極
の下に位置する前記ウエルと前記分離絶縁体膜と
の境界領域に導電チヤネルを形成するようにし
た、点にある。
The present invention takes advantage of the advantages brought about by the efforts of Mr. Yoshio Sakai and others while eliminating the drawbacks, achieves sufficient integration and density, and enables large-capacity integration not only for inverter circuits but also for a wide range of applications. The present invention provides an integrated semiconductor device that can be applied to logic circuits, memory circuits, and the like. Its structural features are
A semiconductor substrate of a first conductivity type, a well of a second conductivity type provided in a surface layer of the substrate, and a film formed on the surface of the substrate so as to surround the well and gradually increase in thickness toward the periphery. an isolation insulator film provided in the well, first and second semiconductor regions of a first conductivity type provided at intervals on a surface layer portion of the substrate within the well; a thin insulating film provided so as to be in contact with or overlap with the semiconductor region; and a first electrode provided on the thin insulating film, one end of which is connected to the first semiconductor region or the second semiconductor region.
and a second electrode provided so as to be in contact with one surface of the semiconductor region and with the other end extending from the well to the isolation insulator film, the well being located below the second electrode. A conductive channel is formed in a boundary region between the semiconductor device and the isolation insulator film.

本発明の集積化半導体装置において、例えば、
第1の導電型としてn型を、第2の導電型として
p型を選ぶと、nチヤネルMOSトランジスタに
よるインバータ回路が実現できる。つまり、ドラ
イブ用MOSトランジスタは、ゲート電極となる
第1の電極と、ソース及びドレイン電極となる第
1及び第2半導体領域とから構成され、負荷用
MOSトランジスタは、ゲート電極となる第2の
電極と、ソース電極となる上記第2の半導体領域
及びドレイン電極となる半導体基板とから構成さ
れる。しかも、負荷用MOSトランジスタは活性
分離酸化膜のテーパー領域を使うので、このイン
バータ装置の基板表面の占有面積はドライブ用
MOSトランジスタのみで決まり、従来型のMOS
トランジスタを使つたインバータ装置に比べて約
半分の面積で済む。すなわち前記Yoshio Sakai
氏等の試みの利点は全て完全に再現できた。更
に、本発明の構成の場合は、p型のウエルを不純
物の拡散あるいはイオン注入で作ることが可能で
あるので、従来と同じプロセス工程を使つて実現
できるのみならず、負荷用MOSトランジスタと
してデイプリーシヨン型のMOSトランジスタを
使用するので、動作マージンの広いE−D型のイ
ンバータ装置を作れる利点が得られ、前記
Yoshio Sakai氏等の試みでは達成し得なかつた
新らたな卓絶した効果が容易に実現できるのであ
る。
In the integrated semiconductor device of the present invention, for example,
If n-type is selected as the first conductivity type and p-type is selected as the second conductivity type, an inverter circuit using n-channel MOS transistors can be realized. In other words, the drive MOS transistor is composed of a first electrode serving as a gate electrode, first and second semiconductor regions serving as source and drain electrodes, and a load MOS transistor.
The MOS transistor includes a second electrode that serves as a gate electrode, the second semiconductor region that serves as a source electrode, and a semiconductor substrate that serves as a drain electrode. Moreover, since the load MOS transistor uses the tapered region of the active isolation oxide film, the area occupied on the substrate surface of this inverter device is limited to the drive area.
Determined only by MOS transistors, conventional MOS
The area is about half that of an inverter device using transistors. Namely, the said Yoshio Sakai
All the advantages of their attempt could be completely reproduced. Furthermore, in the case of the structure of the present invention, the p-type well can be created by impurity diffusion or ion implantation, so it can not only be realized using the same process steps as conventional methods, but also can be used as a load MOS transistor. Since the MOS transistors of the pletion type are used, there is an advantage that an E-D type inverter device with a wide operating margin can be created.
New and outstanding effects that could not be achieved with the attempts of Yoshio Sakai and others can be easily achieved.

以下、図面を参照して、本発明の一実施例につ
いて具体的に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings.

第2図は本発明の集積化半導体装置の一つの実
施例の斜視断面図である。図中、1はn型の半導
体基板、2は分離絶縁体膜であるフイールド酸化
膜、30は本発明によつて変形したp型ウエル、
4は第1の半導体領域であるn型領域、5は第2
の半導体領域であるn型領域、6はゲート酸化
膜、7は第1の電極である多結晶シリコン膜、8
は第2の電極である多結晶シリコン膜、9はp型
ウエルと分離絶縁体膜との間に形成させた導電チ
ヤネルを、それぞれ示す。第2図の等価回路を第
3図に示す。第2図及び第3図に示した本実施例
は、負荷用デイプリーシヨントランジスタT2
と、ドライブ用エンハンスメントトランジスタT
1から成るインバータ装置であり、ドライブ用ト
ランジスタT1はゲート電極となる多結晶シリコ
ン膜7と、ソース電極となるn型領域4と、ドレ
イン電極となるn型領域5とから構成され、負荷
用トランジスタT2はゲート電極となる多結晶シ
リコン膜8と、ソース電極となるn型領域5と、
ドレイン電極となるn型基板1とから構成され
る。インバータ回路として動作させるには、n型
基板1を電源線VDDに、n型領域4を接地線GND
に、多結晶シリコン膜7を入力端子INに、n型
領域5あるいは多結晶シリコン膜8を出力端子
OUTにそれぞれ接続すればよい。こうすること
によつてMOSトランジスタT1は通常のnチヤ
ネルMOSエンハンスメント型MOSトランジスタ
として動作し、他方、MOSトランジスタT2は
ゲート電極とソース電極が接続されているので、
デイプリーシヨン型のnチヤネルMOSトランジ
スタとして動作する。MOSトランジスタT2の
チヤネルはフイールド酸化膜2のテーパー部直下
のpウエル3の境界領域9にできる。このトラン
ジスタT2の閾値電圧を負にするために、n型領
域5はn型領域4よりも深い所まで形成されても
よいし、又チヤネルとなる境界領域9にn型の不
純物が注入されてもよい。入力端子INに正の高
電圧を入力すると、MOSトランジスタT1が導
通し、出力端子OUTの電圧はほぼ接地レベルに
等しくなる。逆に、入力端子INの電圧を接地レ
ベルにするとMOSトランジスタT1が非導通と
なるため、負荷用トランジスタT2を通して基板
1から出力端子OUTに電流が供給され、出力電
圧は電源電圧VDDになる。
FIG. 2 is a perspective sectional view of one embodiment of the integrated semiconductor device of the present invention. In the figure, 1 is an n-type semiconductor substrate, 2 is a field oxide film which is an isolation insulator film, 30 is a p-type well modified according to the present invention,
4 is the n-type region which is the first semiconductor region, and 5 is the second semiconductor region.
6 is a gate oxide film, 7 is a polycrystalline silicon film which is a first electrode, 8 is an n-type region which is a semiconductor region of
9 indicates a polycrystalline silicon film which is a second electrode, and 9 indicates a conductive channel formed between the p-type well and the isolation insulator film. The equivalent circuit of FIG. 2 is shown in FIG. In this embodiment shown in FIGS. 2 and 3, the load depletion transistor T2
and drive enhancement transistor T
1, the drive transistor T1 is composed of a polycrystalline silicon film 7 serving as a gate electrode, an n-type region 4 serving as a source electrode, and an n-type region 5 serving as a drain electrode. T2 includes a polycrystalline silicon film 8 which becomes a gate electrode, an n-type region 5 which becomes a source electrode,
It is composed of an n-type substrate 1 which becomes a drain electrode. To operate as an inverter circuit, connect the n-type substrate 1 to the power line V DD and the n-type region 4 to the ground line GND.
, the polycrystalline silicon film 7 is used as the input terminal IN, and the n-type region 5 or the polycrystalline silicon film 8 is used as the output terminal.
Just connect each to OUT. By doing this, the MOS transistor T1 operates as a normal n-channel MOS enhancement type MOS transistor, while the gate electrode and source electrode of the MOS transistor T2 are connected, so that
It operates as a depletion type n-channel MOS transistor. The channel of the MOS transistor T2 is formed in the boundary region 9 of the p-well 3 directly under the tapered portion of the field oxide film 2. In order to make the threshold voltage of this transistor T2 negative, the n-type region 5 may be formed deeper than the n-type region 4, or an n-type impurity may be implanted into the boundary region 9 that will become a channel. Good too. When a positive high voltage is input to the input terminal IN, the MOS transistor T1 becomes conductive, and the voltage at the output terminal OUT becomes approximately equal to the ground level. Conversely, when the voltage at the input terminal IN is set to the ground level, the MOS transistor T1 becomes non-conductive, so a current is supplied from the substrate 1 to the output terminal OUT through the load transistor T2, and the output voltage becomes the power supply voltage VDD .

以上の説明からも明らかなように、本発明の集
積化半導体装置でインバータ回路を構成した場合
フイールド酸化膜のテーパー部直下に負荷用
MOSトランジスタを構成することになるため、
インバータ回路の基板表面の占有面積はほぼ
MOSトランジスタ1ケ分となり、従来から実用
化されているnチヤネルMOSトランジスタに比
べて格段に小面積になる。又、前記Yoshio
Sakai氏等の試みによつて構成された縦型J−
FETを用いたインバータ装置に比べて、面積的
には同等であるが、本発明の集積化半導体装置に
よるときはデイプリーシヨン型の負荷トランジス
タを使用するので、インバータ特性のすぐれた回
路ができるという新らたな利点を得る。
As is clear from the above explanation, when an inverter circuit is constructed using the integrated semiconductor device of the present invention, the load
Since it will constitute a MOS transistor,
The area occupied by the inverter circuit board surface is approximately
The area is equivalent to one MOS transistor, which is much smaller than the N-channel MOS transistor that has been put into practical use. Also, the aforementioned Yoshio
Vertical J- constructed by Mr. Sakai et al.
Compared to an inverter device using FETs, the area is equivalent, but since the integrated semiconductor device of the present invention uses depletion type load transistors, it is possible to create a circuit with excellent inverter characteristics. Gain new advantages.

次に、本発明の構成を得るための製造方法の一
例を第4図を用いて簡単に説明する。まず、n型
基板1上に酸化膜SiO2(図示せず)及び窒化膜
Si3N4(図示せず)を成長させた後、フオトレジ
スト(図示せず)をその上に塗布し、写真食刻法
によつて、活性部以外の前記窒化膜をエツチング
によつて除去する。次に、数時間のウエツト酸化
によつて、フイルド酸化膜2を形成する。その後
前記活性部に残した窒化膜及び酸化膜を除去して
第4図aの構造を形成する。次に、不純物として
例えばボロン熱拡散又はイオン注入及び押し込み
酸化等々の方法によつて選択的に添加し、本発明
の特徴を有するp型ウエル30を形成する。そし
て厚さ数100Å程度のゲート酸化膜となすべき酸
化膜(図示せず)を形成する。更に、第1層目の
配線例えばここではゲート配線となすべき多結晶
シリコン膜(図示せず)を形成した後、マスク酸
化膜(図示せず)を成長させる。次いで所謂写真
食刻法によつて例えば第1ゲート電極部を構成す
る多結晶シリコン膜7及び酸化膜6を残留させる
ようにその余の部位をエツチング除去する。この
状態が第4図bの構造である。
Next, an example of a manufacturing method for obtaining the structure of the present invention will be briefly explained using FIG. 4. First, an oxide film SiO 2 (not shown) and a nitride film are formed on the n-type substrate 1.
After growing Si 3 N 4 (not shown), a photoresist (not shown) is applied thereon, and the nitride film other than the active area is removed by photolithography. do. Next, a field oxide film 2 is formed by wet oxidation for several hours. Thereafter, the nitride film and oxide film remaining in the active region are removed to form the structure shown in FIG. 4a. Next, an impurity is selectively added by a method such as boron thermal diffusion, ion implantation, and forced oxidation to form a p-type well 30 having the characteristics of the present invention. Then, an oxide film (not shown) to be used as a gate oxide film with a thickness of about 100 Å is formed. Furthermore, after forming a polycrystalline silicon film (not shown) to be used as a first layer wiring, for example, a gate wiring in this case, a mask oxide film (not shown) is grown. Next, the remaining portions are etched away by a so-called photolithography method so that, for example, the polycrystalline silicon film 7 and oxide film 6 constituting the first gate electrode portion remain. This state is the structure shown in FIG. 4b.

次に、トランジスタT1のソース・ドレイン領
域4及び5をリン又はヒ素のイオン注入によつて
形成する。この状態が第4図cの構造である。次
に、全面を熱酸化して、第1層目の多結晶シリコ
ン膜の上に厚い酸化膜を形成する。その後、写真
食刻法によつて、ドレイン領域上の酸化膜を除去
した後、第2層目の多結晶シリコン膜を形成す
る。その後、多結晶シリコン膜上にCVD酸化膜
を成長させ、写真食刻法によつて、第2ゲート電
極部8以外の酸化膜、多結晶シリコン膜をエツチ
ングで除去する。この状態が第4図dの構造であ
る。その後は、PSG酸化膜(図示せず)を全面
に成長し、コンタクト部をエツチングした後、ア
ルミ配線(図示せず)を行なう。もし、MOSト
ランジスタT2の閾値電圧を負にすることを望む
ならば、例えば、境界領域9にn型不純物、例え
ばヒ素をイオン注入し導電チヤネル領域50を形
成することも有効である。この場合の本発明の断
面図を第5図に示す。このイオン注入工程は、第
4図aにおけるフイールド酸化膜2の形成前に
MOSトランジスタT2のチヤネルとなる領域に
行なつてもよいし、あるいは第4図cのトランジ
スタT1のソース・ドレイン領域形成後に高いイ
オン打ち込み加速電圧でイオン注入することでも
処理できる。あるいは、更に、他の製造方法とし
て、第4図cのソース・ドレイン領域4及び5形
成時に、ドレイン領域5をソース領域4とは別に
拡散あるいはイオン注入によつて、ソース領域4
よりも深くn型不純物を押し込むことによつても
実現できる。この場合の本発明の断面図を第6図
に示す。この場合には、ヒ素をソース領域4に、
リン原子をドレイン領域5にイオン注入すること
によつて、浅いn型ソース層4と深いn型ドレイ
ン層500を形成することで処理することができ
る。
Next, source/drain regions 4 and 5 of transistor T1 are formed by ion implantation of phosphorus or arsenic. This state is the structure shown in FIG. 4c. Next, the entire surface is thermally oxidized to form a thick oxide film on the first layer polycrystalline silicon film. Thereafter, the oxide film on the drain region is removed by photolithography, and then a second layer of polycrystalline silicon film is formed. Thereafter, a CVD oxide film is grown on the polycrystalline silicon film, and the oxide film and polycrystalline silicon film other than the second gate electrode portion 8 are removed by photolithography. This state is the structure shown in FIG. 4d. Thereafter, a PSG oxide film (not shown) is grown over the entire surface, contact areas are etched, and then aluminum wiring (not shown) is formed. If it is desired to make the threshold voltage of the MOS transistor T2 negative, it is also effective to ion-implant an n-type impurity, such as arsenic, into the boundary region 9 to form the conductive channel region 50. A sectional view of the present invention in this case is shown in FIG. This ion implantation step is performed before the formation of the field oxide film 2 in FIG. 4a.
The process may be carried out in the region that will become the channel of the MOS transistor T2, or by performing ion implantation at a high ion implantation acceleration voltage after forming the source and drain regions of the transistor T1 as shown in FIG. 4c. Alternatively, as another manufacturing method, when forming the source/drain regions 4 and 5 shown in FIG.
This can also be achieved by pushing the n-type impurity deeper than the above. A sectional view of the present invention in this case is shown in FIG. In this case, arsenic is added to the source region 4,
The process can be performed by ion-implanting phosphorus atoms into the drain region 5 to form a shallow n-type source layer 4 and a deep n-type drain layer 500.

以上の説明からもわかるように、本発明の集積
化半導体装置実現するに要する製造プロセスは、
従来からある2層多結晶シリコンプロセスとほぼ
同じでよく、製造方法が簡単であることも本発明
の重要な利点の一つである。
As can be seen from the above explanation, the manufacturing process required to realize the integrated semiconductor device of the present invention is as follows:
One of the important advantages of the present invention is that the manufacturing method is simple, as it is substantially the same as the conventional two-layer polycrystalline silicon process.

このように、本発明の集積化半導体装置は、製
造技術として充分に確立された従来のプロセスを
駆使すれば即実施でき、高集積・高密度で、しか
も、動作マージンの広いインバータ回路が実現で
きることだけを考えてみても、実用上非常に有用
であることは明白であるが、本発明の用途は一つ
インバータ回路に留まるものではなく、1ケの負
荷用MOSトランジスタに2ケ以上の直列に絡が
つたドライブ用MOSトランジスタを接続すれば
NAND回路に、また1ケの負荷用MOSトランジ
スタに2ケ以上の並列に絡がつたドライブ用
MOSトランジスタを接続すればNOR回路に、2
ケのインバータ回路を交差結合すればフリツプフ
ロツプ回路に、等々広く論理回路、メモリ回路に
適用し得るものであり、その産業上の効果は誠に
大なるものがある。
As described above, the integrated semiconductor device of the present invention can be implemented immediately by making full use of conventional processes that are well established as manufacturing technology, and can realize an inverter circuit that is highly integrated and dense, and has a wide operating margin. Although it is clear that it is extremely useful in practice, the present invention is not limited to one inverter circuit, but is used to connect two or more load MOS transistors in series to one load MOS transistor. If you connect the tangled drive MOS transistors,
For drives with two or more connected in parallel to a NAND circuit or one load MOS transistor
If you connect a MOS transistor, it becomes a NOR circuit, 2
If these inverter circuits are cross-coupled, it can be widely applied to flip-flop circuits, logic circuits, memory circuits, etc., and its industrial effects are truly great.

尚、本発明においては、説明の便宜上、nチヤ
ネルMOSトランジスタを仮定して行なつたが、
当然pチヤネルMOSトランジスタにも適用でき
るものであり、その場合には、第1導電型をp型
に、また第2の導電型をn型にすることになる。
In the present invention, for convenience of explanation, an n-channel MOS transistor is assumed, but
Naturally, it can also be applied to a p-channel MOS transistor, in which case the first conductivity type is p-type and the second conductivity type is n-type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の縦型J−FETを負荷用トラン
ジスタとして用いたインバータ装置を説明するた
めの断面図であり、第2図は本発明の集積化半導
体装置を第1図と同様のインバータ装置に適用し
た実施の一例を説明するための斜視図であり、第
3図は第2図の実施例の等価回路図であり、第4
図a,b,c,dはこの実施例を具現化するに要
する製造方法の一例を示す図である。 図中、1は第1導電型の半導体基板、2はフイ
ールド酸化膜、3は第2導電型のウエル、4,5
は第1導電型の第1及び第2の半導体領域、6は
ゲート酸化膜、7,8は第1及び第2の電極、9
は導電チヤネル形成領域、VDDは電源線、GNDは
接地線、INは入力端子、OUTは出力端子、Tは
MOSトランジスタをそれぞれ示す。 第1図に示した従来例と第2図乃至第6図に示
した本発明の一実施例との間にある構成上の大き
な変化は、第2導電型ウエルが互いに独立した3
から30のように単一のものに変り、制御された導
電チヤネル形成領域9が新設された点にある。そ
して導電チヤネル形成領域制御の変形として第1
導電型不純物添加領域50を設ける構成を第5図
に、また第1導電型の第2の半導体領域5を50
0のように深く形成する構成を第6図に例示し
た。
FIG. 1 is a cross-sectional view for explaining an inverter device using a conventional vertical J-FET as a load transistor, and FIG. 2 is a cross-sectional view showing an inverter device similar to that shown in FIG. FIG. 3 is an equivalent circuit diagram of the embodiment of FIG. 2, and FIG.
Figures a, b, c, and d show an example of the manufacturing method required to realize this embodiment. In the figure, 1 is a semiconductor substrate of the first conductivity type, 2 is a field oxide film, 3 is a well of the second conductivity type, 4, 5
are first and second semiconductor regions of the first conductivity type, 6 is a gate oxide film, 7 and 8 are first and second electrodes, 9
is the conductive channel forming area, V DD is the power line, GND is the ground line, IN is the input terminal, OUT is the output terminal, T is the
Each MOS transistor is shown. The major difference in structure between the conventional example shown in FIG. 1 and the embodiment of the present invention shown in FIGS. 2 to 6 is that the second conductivity type wells are separated into three
30, and a controlled conductive channel forming region 9 is newly provided. The first modification of conductive channel formation area control is
FIG. 5 shows a structure in which a conductive type impurity doped region 50 is provided, and a first conductive type second semiconductor region 5 is provided with a conductive type impurity doped region 50.
FIG. 6 shows an example of a configuration in which the holes are formed deeply as shown in FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体基板と、該基板の表層部
に設けられた第2導電型のウエルと、前記基板の
表層部に前記ウエルを囲むようにしかも周辺に向
つてその膜厚を漸増さすように設けた分離絶縁体
膜と、前記ウエルの内部にあつて前記基板の表層
部に間隔をおいて設けられた第1導電型の第1及
び第2の半導体領域と、該第1及び第2の半導体
領域に接するかあるいは重なるように設けた薄い
絶縁体膜と、該薄い絶縁体膜上に設けられた第1
の電極と、一端が前記第1の半導体領域あるいは
第2の半導体領域のいずれか一方の表面に接し他
端が前記ウエルから前記分離絶縁体膜上にかかる
ように設けられた第2の電極とを備え、該第2の
電極の下に位置する前記ウエルと前記分離絶縁体
膜との境界領域に導電チヤネルを形成するように
したことを特徴とする集積化半導体装置。
1. A semiconductor substrate of a first conductivity type, a well of a second conductivity type provided in a surface layer of the substrate, and a film thickness of the semiconductor substrate gradually increasing toward the periphery so as to surround the well in the surface layer of the substrate. first and second semiconductor regions of a first conductivity type provided at intervals on the surface layer of the substrate within the well; a thin insulating film provided in contact with or overlapping the second semiconductor region; and a first insulating film provided on the thin insulating film.
and a second electrode provided such that one end is in contact with the surface of either the first semiconductor region or the second semiconductor region and the other end extends from the well onto the isolation insulator film. An integrated semiconductor device comprising: a conductive channel formed in a boundary region between the well located under the second electrode and the isolation insulator film.
JP56014141A 1981-02-02 1981-02-02 Integrated semiconductor device Granted JPS57128967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56014141A JPS57128967A (en) 1981-02-02 1981-02-02 Integrated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56014141A JPS57128967A (en) 1981-02-02 1981-02-02 Integrated semiconductor device

Publications (2)

Publication Number Publication Date
JPS57128967A JPS57128967A (en) 1982-08-10
JPH0147902B2 true JPH0147902B2 (en) 1989-10-17

Family

ID=11852865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56014141A Granted JPS57128967A (en) 1981-02-02 1981-02-02 Integrated semiconductor device

Country Status (1)

Country Link
JP (1) JPS57128967A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2014296C (en) * 1989-04-21 2000-08-01 Nobuo Mikoshiba Integrated circuit

Also Published As

Publication number Publication date
JPS57128967A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
US4907058A (en) Complementary semiconductor device having a double well
US4536947A (en) CMOS process for fabricating integrated circuits, particularly dynamic memory cells with storage capacitors
JP2001352077A (en) Soi field effect transistor
JPH03145761A (en) Semiconductor device
JPH01282857A (en) Semiconductor device and manufacture of the same
US5191401A (en) MOS transistor with high breakdown voltage
US4505026A (en) CMOS Process for fabricating integrated circuits, particularly dynamic memory cells
KR960000713B1 (en) Semiconductor device
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
GB1563863A (en) Igfet inverters and methods of fabrication thereof
US5945715A (en) Semiconductor memory device having a memory cell region and a peripheral circuit region and method of manufacturing the same
KR970000425B1 (en) Bicmos type field effect transistor and manufacturing method thereof
JP2690242B2 (en) Semiconductor fixed storage device
JPH02246264A (en) Semiconductor device and manufacture thereof
JPH0147902B2 (en)
JPH0695528B2 (en) Method for manufacturing semiconductor device
JPS62136867A (en) Semiconductor device
EP0114061A2 (en) Semiconductor device having CMOS structures
JPS6110268A (en) Complementary mos semiconductor device and manufacture thereof
JPH0147903B2 (en)
JPS643065B2 (en)
JPS58116760A (en) Complementary mos semiconductor device
JPH0461377A (en) Semiconductor memory
JP3535542B2 (en) Semiconductor memory device and method of manufacturing the same
JPS61214557A (en) Manufacture of semiconductor integrated circuit device