JPH0147897B2 - - Google Patents

Info

Publication number
JPH0147897B2
JPH0147897B2 JP21209981A JP21209981A JPH0147897B2 JP H0147897 B2 JPH0147897 B2 JP H0147897B2 JP 21209981 A JP21209981 A JP 21209981A JP 21209981 A JP21209981 A JP 21209981A JP H0147897 B2 JPH0147897 B2 JP H0147897B2
Authority
JP
Japan
Prior art keywords
silicon
silicon layer
layer
single crystal
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21209981A
Other languages
Japanese (ja)
Other versions
JPS58116764A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21209981A priority Critical patent/JPS58116764A/en
Publication of JPS58116764A publication Critical patent/JPS58116764A/en
Publication of JPH0147897B2 publication Critical patent/JPH0147897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Recrystallisation Techniques (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、立体的構造を有する半導体装置を製
造するのに好適な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method suitable for manufacturing a semiconductor device having a three-dimensional structure.

近年、多結晶或いは非晶質のシリコンにレー
ザ・ビームを照射してアニールを行ない該シリコ
ンを単結晶化する技術が開発され、これに依ると
絶縁物上に単結晶シリコン層を得ることができる
ので、所謂SOS(silicon on saphire)構造と類
似の構造が安価に得られること、単結晶シリコン
層を絶縁層を介して多層に形成して装置を立体的
に構成できることなど多くの利点があるとされて
いる。
In recent years, a technology has been developed in which polycrystalline or amorphous silicon is irradiated with a laser beam and annealed to make the silicon into a single crystal. According to this technology, a single crystal silicon layer can be obtained on an insulator. Therefore, it has many advantages, such as the ability to obtain a structure similar to the so-called SOS (silicon on saphire) structure at low cost, and the ability to form devices three-dimensionally by forming multiple single-crystal silicon layers with insulating layers in between. has been done.

ところで、前記のように半導体装置を立体的に
構成するには単結晶シリコン層を介して多層に形
成し、それ等の単結晶シリコン層をビア・ホール
(via hole)を通して電気的に結合しなければら
ない。この実例が第1図に表わされている。
By the way, in order to configure a semiconductor device three-dimensionally as described above, it is necessary to form multiple layers with single crystal silicon layers interposed therebetween, and to electrically connect these single crystal silicon layers through via holes. It doesn't fall apart. An example of this is depicted in FIG.

第1図は従来技術を説明する為の半導体装置の
要部断面図である。
FIG. 1 is a sectional view of a main part of a semiconductor device for explaining the prior art.

図に於いて、1は基板、2は二酸化シリコン絶
縁体、3は第1層目単結晶シリコン層、3Aは二
酸化シリコン絶縁領域、4は第1層目二酸化シリ
コン絶縁縁層、4Aはビア・ホール、5はn+
シリコン、6は第2層目単結晶シリコン層、6A
は拡散領域をそれぞれ示す。
In the figure, 1 is a substrate, 2 is a silicon dioxide insulator, 3 is a first-layer single-crystal silicon layer, 3A is a silicon dioxide insulating region, 4 is a first-layer silicon dioxide insulating edge layer, 4A is a via. Hole, 5 is n + type silicon, 6 is second single crystal silicon layer, 6A
indicate the diffusion area, respectively.

図から明らかなように、第1層目単結晶シリコ
ン層3と第2層目単結晶シリコン層6とは第1層
目二酸化シリコン絶縁層4に形成されたビア・ホ
ール4Aに充填されたn+型シリコン5に依つて
結合されている。尚、n+型シリコン5としては、
通常、多結晶シリコンを使用しているが、このよ
うなシリコンに代えて金属シリサイドも使用され
ている。
As is clear from the figure, the first monocrystalline silicon layer 3 and the second monocrystalline silicon layer 6 are formed by filling the via hole 4A formed in the first silicon dioxide insulating layer 4. They are coupled via + type silicon 5. In addition, as n + type silicon 5,
Usually, polycrystalline silicon is used, but metal silicide is also used instead of such silicon.

ところで、前記のように、ビア・ホール4Aを
n+型シリコン5で充填した後、第2層目多結晶
シリコン層6を形成するには、先ず、例えば
CVD法にて多結晶シリコン層を形成し、それに
レーザ・ビームなどのエネルギ線を照射してアニ
ーリングを行なうことに依り単結晶化するもので
あるが、その際、ビア・ホール4A内のn+型シ
リコン5も溶融することになるので、そこに含有
されているn型不純物が第2層目単結晶化シリコ
ン層6内に拡散され領域6Aが形成されてしま
う。尚、液状シリコン中での不純物拡散速度は固
体中のそれに比較して著しく速い。
By the way, as mentioned above, via hole 4A
After filling with n + type silicon 5, in order to form the second polycrystalline silicon layer 6, first, for example,
A polycrystalline silicon layer is formed using the CVD method, and is made into a single crystal by annealing it by irradiating it with an energy beam such as a laser beam . Since the type silicon 5 is also melted, the n-type impurity contained therein is diffused into the second monocrystalline silicon layer 6, forming a region 6A. Note that the impurity diffusion rate in liquid silicon is significantly faster than that in solid silicon.

このような不所望の拡散が行なわれ、しかも、
その拡散は非制御状態の下でなされるものである
から、どの程度に広がつているのか予測すること
もできず、第2層目単結晶シリコン層6に素子を
形成する際に大きな障害になる。これは、ビア・
ホール4Aに金属シリサイドを充填した場合にも
金属が第2層目単結晶シリコン層6中に拡散され
るので同様な欠点を生ずる。
This kind of undesired diffusion takes place, and furthermore,
Since the diffusion occurs under uncontrolled conditions, it is impossible to predict the extent to which it has spread, and this can be a major hindrance when forming elements in the second monocrystalline silicon layer 6. Become. This is beer
Even when the hole 4A is filled with metal silicide, the metal is diffused into the second monocrystalline silicon layer 6, resulting in a similar drawback.

本発明は、多層の単結晶シリコン層に素子を形
成した立体構造の半導体装置を製造する際にビ
ア・ホールに充填された材料の含有物質が前記単
結晶シリコン層中に不所望に拡散されることを防
止し、特性良好な半導体装置を得られるようにす
るもので、以下これを詳細に説明する。
The present invention provides a method for manufacturing a semiconductor device having a three-dimensional structure in which elements are formed in a multi-layered single-crystal silicon layer, in which substances contained in a material filled in a via hole are undesirably diffused into the single-crystal silicon layer. This will be explained in detail below.

第2図は本発明一実施例を説明する為の工程要
所に於ける半導体装置の要部断面図であり、第1
図に関して説明した部分と同部分を同記号で指示
してある。
FIG. 2 is a sectional view of a main part of a semiconductor device at key points in the process for explaining one embodiment of the present invention.
The same parts as those explained in relation to the figures are indicated by the same symbols.

本実施例では、第1層目二酸化シリコン絶縁層
4にビア・ホール4Aを形成し、次に、例えば化
学気相堆積法にて不純物含有多結晶シリコン層を
形成し、次に、ビア・ホール4A内に充填された
n+型シリコン5を残して他を全てエツチングす
ることに依り除去し、次に、n+型シリコン5の
表面に例えば熱酸化法にて二酸化シリコン膜7を
形成し、次に、再び化学気相堆積法にて多結晶シ
リコン層を成長させ、これにレーザ・ビームを照
射してアニールすることに依り単結晶シリコン層
6とするものである。
In this example, a via hole 4A is formed in the first silicon dioxide insulating layer 4, and then an impurity-containing polycrystalline silicon layer is formed by, for example, chemical vapor deposition. filled in 4A
Leaving the n + type silicon 5, all the others are removed by etching, then a silicon dioxide film 7 is formed on the surface of the n + type silicon 5 by, for example, a thermal oxidation method, and then again by chemical oxidation. A polycrystalline silicon layer is grown by a phase deposition method, and a single crystalline silicon layer 6 is formed by annealing it by irradiating it with a laser beam.

このようにすると、n+型シリコン5は二酸化
シリコン膜7で覆われているので、レーザ・ビー
ムのアニールを行なつてもn型不純物が単結晶シ
リコン層6中に拡散されることはない。尚、二酸
化シリコン膜7は熱酸化法でなく、化学気相堆積
法にて形成することができ、また、窒化シリコン
膜で代替しても良い。
In this way, since the n + -type silicon 5 is covered with the silicon dioxide film 7, n-type impurities will not be diffused into the single-crystal silicon layer 6 even if laser beam annealing is performed. Note that the silicon dioxide film 7 can be formed by a chemical vapor deposition method instead of a thermal oxidation method, and a silicon nitride film may be used instead.

さて、この後、素子の形成には種々の技法を採
ることができ、その一例を第3図について説明す
る。
Now, various techniques can be used to form the element, one example of which will be explained with reference to FIG.

第3図に於いて、第2層目単結晶シリコン層6
をパターニングしてメサ部を形成する。尚、単結
晶シリコン層6は適当な段階、例えばレーザ・ア
ニール時にp型化されているものとする。
In FIG. 3, the second single crystal silicon layer 6
is patterned to form a mesa part. It is assumed that the single crystal silicon layer 6 has been made p-type at an appropriate stage, for example, during laser annealing.

熱酸化法にて薄い二酸化シリコン絶縁膜を形成
し、次に、化学気相堆積法にて多結晶シリコン膜
を形成する。
A thin silicon dioxide insulating film is formed by thermal oxidation, and then a polycrystalline silicon film is formed by chemical vapor deposition.

フオト・リソグラフイ技術にて前記多結晶シリ
コン膜をパターニングしてシリコンン・ゲート電
極8を形成し、それをマスクにして前記薄い二酸
化シリコン膜のパターニングを行ないゲート絶縁
膜9を形成する。尚、この際同時に二酸化シリコ
ン膜7を除去し、多結晶シリコン5の表面を露出
する。
The polycrystalline silicon film is patterned using photolithography to form a silicon gate electrode 8, and using this as a mask, the thin silicon dioxide film is patterned to form a gate insulating film 9. Incidentally, at this time, the silicon dioxide film 7 is also removed to expose the surface of the polycrystalline silicon 5.

適宜の技法、例えばイオン注入法、気相拡散法
などに依りn型不純物の導入を行ない、ソース領
域いはドレイン領域となるn+型領域10,11
を形成する。
N type impurities are introduced by an appropriate technique such as ion implantation or vapor phase diffusion to form n + type regions 10 and 11 which will become source regions or drain regions.
form.

通常の技法にて、アルミニウムなどの金属電極
12,13を形成する。尚、電極12は領域10
と多結晶シリコン5を結んでいる。
Metal electrodes 12, 13, such as aluminum, are formed using conventional techniques. Note that the electrode 12 is in the region 10
and polycrystalline silicon 5.

第4図は素子形成する場合の他の実施例を表わ
すものであり、第3図に関して説明した部分と同
部分は同記号で指示してある。
FIG. 4 shows another embodiment in which elements are formed, and the same parts as those explained with reference to FIG. 3 are indicated by the same symbols.

この実施例では、電界効果トランジスタ部分を
メサ状にしていない。従つて、第2図に見られる
二酸化シリコン膜7を除去する為には第2層目単
結晶シリコン層6に窓を形成し、それを介して行
なわなければならない。そして、二酸化シリコン
膜7の除去が終つた後、窓には多結晶シリコン1
2を充填しておくものとする。
In this embodiment, the field effect transistor portion is not mesa-shaped. Therefore, in order to remove the silicon dioxide film 7 shown in FIG. 2, it is necessary to form a window in the second monocrystalline silicon layer 6 and perform the process through the window. After the silicon dioxide film 7 is removed, the window is filled with polycrystalline silicon 1.
2 shall be filled.

以上の説明で判るように、本発明に依れば、絶
縁層に形成されたビア・ホールを導電性材料で埋
め、それ等の上に多結晶或いは非晶質のシリコン
層を形成し、そのシリコン層にレーザ・ビームを
照射して単結晶化するに際し、前記導電材料表面
を該材料の含有物質が外方拡散を防止する被膜で
覆つてあるので、単結晶化されたシリコン層中に
不所望の物質が拡散されることは皆無であり、従
つて、該シリコン層には設計通りの素子を再現性
良く作り込むことができる。
As can be seen from the above description, according to the present invention, via holes formed in an insulating layer are filled with a conductive material, and a polycrystalline or amorphous silicon layer is formed on top of the via holes. When a silicon layer is irradiated with a laser beam to form a single crystal, the surface of the conductive material is covered with a coating that prevents out-diffusion of substances contained in the material. There is no possibility that the desired substance will be diffused, and thus designed elements can be fabricated in the silicon layer with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術を説明する為の半導体装置の
要部断面図、第2図乃至第4図は本発明を説明す
る為の半導体装置の要部断面図である。 図に於いて、1は基板、2は絶縁体、3は第1
層目単結晶シリコン層、3Aは絶縁領域、4は第
1層目二酸化シリコン絶縁領域、5は多結晶シリ
コン、6は第2層目単結晶シリコン層、7は二酸
化シリコン膜である。
FIG. 1 is a sectional view of a main part of a semiconductor device for explaining the prior art, and FIGS. 2 to 4 are sectional views of main parts of a semiconductor device for explaining the present invention. In the figure, 1 is the substrate, 2 is the insulator, and 3 is the first
3A is an insulating region, 4 is a first silicon dioxide insulating region, 5 is polycrystalline silicon, 6 is a second single crystal silicon layer, and 7 is a silicon dioxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 下地である単結晶シリコン層上にビア・ホー
ルを有する絶縁層を形成し、次に、該ビア・ホー
ルを導電材料で埋め、次に、該導電材料の表面を
該導電材料の外方拡散防止被膜で覆い、次に、多
結晶或いは非晶質のシリコン層を形成し、次に、
該シリコン層にレーザ・ビームを照射して単結晶
化する工程が含まれてなることを特徴とする半導
体装置の製造方法。
1. An insulating layer having via holes is formed on the underlying single crystal silicon layer, the via holes are then filled with a conductive material, and the surface of the conductive material is covered with out-diffusion of the conductive material. Cover with a protective coating, then form a polycrystalline or amorphous silicon layer, and then
A method for manufacturing a semiconductor device, comprising the step of irradiating the silicon layer with a laser beam to form a single crystal.
JP21209981A 1981-12-30 1981-12-30 Manufacture of semiconductor device Granted JPS58116764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21209981A JPS58116764A (en) 1981-12-30 1981-12-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21209981A JPS58116764A (en) 1981-12-30 1981-12-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58116764A JPS58116764A (en) 1983-07-12
JPH0147897B2 true JPH0147897B2 (en) 1989-10-17

Family

ID=16616859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21209981A Granted JPS58116764A (en) 1981-12-30 1981-12-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58116764A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950862B2 (en) * 2011-02-28 2015-02-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for an ophthalmic lens with functional insert layers
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices

Also Published As

Publication number Publication date
JPS58116764A (en) 1983-07-12

Similar Documents

Publication Publication Date Title
JP4173629B2 (en) Self-aligned power field effect transistor on silicon carbide.
US4954855A (en) Thin film transistor formed on insulating substrate
US4395433A (en) Method for manufacturing a semiconductor device having regions of different thermal conductivity
US4415383A (en) Method of fabricating semiconductor devices using laser annealing
US4131909A (en) Semiconductor integrated circuit isolated through dielectric material and a method for manufacturing the same
JPH0147897B2 (en)
KR980012600A (en) Method of manufacturing semiconductor device and thin film transistor
JPH03116875A (en) Thin film field effect transistor and method of manufacturing the same
JPH0523056B2 (en)
JPH04275436A (en) Soimos transistor
JPH0526341B2 (en)
KR20000075706A (en) Semiconductor and method relating to semiconductors
JPH0750418A (en) Manufacturing method of semiconductor device
JPH0467336B2 (en)
JPH02864B2 (en)
JPH02130961A (en) Field-effect transistor
JPH08204204A (en) Manufacture of thin film transistor
US6130120A (en) Method and structure for crystallizing a film
JP2695812B2 (en) Semiconductor device
JPH0147022B2 (en)
JPS5948532B2 (en) Manufacturing method of semiconductor device
JPH02214135A (en) Semiconductor device and manufacture thereof
JPH0574218B2 (en)
JPS6028383B2 (en) Selective impurity diffusion method into semiconductor substrate
JPS60227417A (en) Manufacture of semiconductor device