JPH0145994B2 - - Google Patents

Info

Publication number
JPH0145994B2
JPH0145994B2 JP23732983A JP23732983A JPH0145994B2 JP H0145994 B2 JPH0145994 B2 JP H0145994B2 JP 23732983 A JP23732983 A JP 23732983A JP 23732983 A JP23732983 A JP 23732983A JP H0145994 B2 JPH0145994 B2 JP H0145994B2
Authority
JP
Japan
Prior art keywords
green sheet
block
piezoelectric
layer
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23732983A
Other languages
Japanese (ja)
Other versions
JPS60128682A (en
Inventor
Takeo Katsura
Minoru Murata
Masanori Kogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP58237329A priority Critical patent/JPS60128682A/en
Publication of JPS60128682A publication Critical patent/JPS60128682A/en
Publication of JPH0145994B2 publication Critical patent/JPH0145994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、内部電極を面全体に施した圧電セラ
ミツクスを層状に多数に積層した圧電アクチユエ
ータの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a piezoelectric actuator in which a large number of piezoelectric ceramics having internal electrodes formed on the entire surface are laminated in layers.

従来、電磁式アクチユエータに比べ、小形・軽
量・省電力の圧電式アクチユエータが注目されて
いる。圧電アクチユエータには、圧電横効果を利
用した圧電バイモルフ型及び大きな変位量が得ら
れる圧電縦効果を利用した積層型がある。
Conventionally, piezoelectric actuators are attracting attention because they are smaller, lighter, and more energy efficient than electromagnetic actuators. Piezoelectric actuators include a piezoelectric bimorph type that utilizes a piezoelectric transverse effect and a stacked type that utilizes a piezoelectric longitudinal effect that allows a large amount of displacement to be obtained.

積層型の圧電アクチユエータとしては、積層セ
ラミツクコンデンサの製造技術を応用して製造さ
れている。すなわちセラミツクス粉末を有機バイ
ンダに有機溶剤と共に溶かしてスラリーを得、次
に例ばドクターブレード法により有機フイルム上
にグリーンシートを形成し、第1図に示すごと
く、グリーンシート1上に内部電極2となる二成
分化合物(Pd−Ag)等の金属ペーストを更に印
刷塗布し、所定の大きさに切断される。
The laminated piezoelectric actuator is manufactured by applying the manufacturing technology of laminated ceramic capacitors. That is, ceramic powder is dissolved in an organic binder together with an organic solvent to obtain a slurry, and then a green sheet is formed on an organic film by, for example, a doctor blade method, and as shown in FIG. A metal paste such as a two-component compound (Pd-Ag) is further applied by printing, and then cut into a predetermined size.

そして、上下の層の電極パターンが180゜展開す
るようにして層状に積層し、更に熱を加えながら
上下方向に加圧し、900〜1250℃位の温度範囲で
焼結し、両側面に銀ペーストなどにて外部電極を
形成することにより、得ることができる。
Then, the electrode patterns of the upper and lower layers are stacked in layers so that they unfold 180 degrees, and then pressure is applied in the vertical direction while applying heat to sinter at a temperature range of about 900 to 1250 degrees Celsius, and silver paste is applied to both sides. This can be obtained by forming an external electrode using a method such as the following.

ところで、上記のような工程によれば、グリー
ンシートを1枚1枚打ち抜いて層状に積層してい
るが、その膜厚は数十ないし数百μmであるため、
機械的強度が小さく、作業上格別の考慮が必要と
なる。しかも、電極パターンを180゜展開する必要
があるため、夫々の膜の位置合わせを充分に留意
するなどに起因して、生産効率が極めて低下する
欠点がある。
By the way, according to the above process, green sheets are punched out one by one and laminated in layers, but the thickness of the film is tens to hundreds of μm, so
It has low mechanical strength and requires special consideration when working. Moreover, since it is necessary to develop the electrode pattern by 180 degrees, there is a drawback that the production efficiency is extremely reduced due to the necessity of paying sufficient attention to the alignment of each film.

また第2図に示すごとく、内部電極2が全面に
形成されていないために、圧電的に不活性の箇所
(図中A参照)が存在するために、素子ブロツク
内の内部応力が不均一となり、電界を加えて繰り
返し作動させた場合は、歪みの分布が不均一にな
り易い。特に、活性部分と不活性部分との境界に
おいては、大きな歪みが発生し、結局、この種素
子の繰り返し疲労による積層圧電素子の破壊とな
つてしまう欠点がある。
Furthermore, as shown in Fig. 2, since the internal electrodes 2 are not formed over the entire surface, there are piezoelectrically inactive areas (see A in the figure), so the internal stress within the element block becomes non-uniform. , when repeatedly activated by applying an electric field, the strain distribution tends to become non-uniform. Particularly, a large strain occurs at the boundary between the active part and the inactive part, which has the disadvantage that the laminated piezoelectric element eventually breaks down due to repeated fatigue of this type of element.

本発明はかかる点に鑑み、上記グリーンシート
の積層の手順を変更して内部電極を全面電極にす
ることにより、上記不活性な部分を除去し、かつ
工数を低減することができ、長寿命のこの種のア
クチユエータ素子の製造方法を提供することを主
たる目的とする。
In view of this, the present invention changes the procedure for laminating the green sheets to make the internal electrodes full-surface electrodes, thereby eliminating the inert parts and reducing the number of man-hours, resulting in a long service life. The main objective is to provide a method for manufacturing this type of actuator element.

以下本発明の一実施例について図面を参照しな
がら詳細に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

まずグリーンシートを従来法と同様に形成した
後、第3図に示すごとく、グリーンシート10の
全面に内部電極11となる導電膜をスクリーン印
刷により形成する。その後、必要により乾燥を施
し、第4図に示すごとく、熱源を有する棒12又
は熱伝導性の良好な棒12にグリーンシート10
を有機フイルムから剥離してスパイラル状に巻回
し、第5図に示すごとく、側方から加圧すると共
に、加熱してスパイラル状に熱圧着する。
First, a green sheet is formed in the same manner as in the conventional method, and then, as shown in FIG. 3, a conductive film that will become the internal electrodes 11 is formed on the entire surface of the green sheet 10 by screen printing. Thereafter, the green sheet 10 is dried if necessary, and the green sheet 10 is placed on a rod 12 having a heat source or a rod 12 with good thermal conductivity, as shown in FIG.
The film is peeled off from the organic film and wound into a spiral shape, and as shown in FIG. 5, pressure is applied from the side and the film is heated to be thermocompressed into a spiral shape.

この場合、必要により周囲から加熱して熱圧着
し、第6図に示すごとく、棒12の軸方向と同方
向に切断(図中A−A線)することにより、第7
図に示すごとく、層状に内部電極11が形成され
たブロツク材15が得られることになる。
In this case, if necessary, the 7th
As shown in the figure, a block material 15 having internal electrodes 11 formed in layers is obtained.

次に、このブロツク材15を圧電セラミツクス
及び内部電極の材質によつて決定される最適な温
度にて焼結し、第8図に示すごとく、内部電極の
端部を一層おきに交互にガラス、SiO2、アルミ
ナ、又は樹脂などの絶縁物16で絶縁処理し、更
に銀ペースト又は導電性スパツタ膜により外部電
極17を形成することにより、アクチユエータ2
0を得ることができる。
Next, this block material 15 is sintered at an optimal temperature determined by the piezoelectric ceramic and the material of the internal electrodes, and as shown in FIG. The actuator 2 is insulated with an insulator 16 such as SiO 2 , alumina, or resin, and further formed with an external electrode 17 using silver paste or a conductive sputtered film.
You can get 0.

第9図は、本発明の製造方法の他の例を示す工
程図である。本例においては、大量処理かつ自動
化を図るため、連続供給されてくる有機フイルム
21上にドクターブレード法によつてグリーンシ
ート22を形成して赤外線ランプ23にて乾燥
し、印刷機24により導電ペースト25を塗布
し、有機フイルム21を剥離しながら加熱した棒
27にグリーンシート22を巻きとるようにした
例を示している。
FIG. 9 is a process diagram showing another example of the manufacturing method of the present invention. In this example, in order to achieve mass processing and automation, a green sheet 22 is formed by a doctor blade method on a continuously supplied organic film 21, dried with an infrared lamp 23, and then printed with a conductive paste by a printing machine 24. 25 is applied, and the green sheet 22 is wound around a heated rod 27 while peeling off the organic film 21.

従つて、上記の製法と同様の作用効果が得られ
る。
Therefore, the same effects as the above manufacturing method can be obtained.

尚、比較検討のため、ブロツクを構成するグリ
ーンシートの断面積(So)と内部電極の面積
(Si)との比Si/Soを1、0.8、0.5の3種を試作
し、これらブロツク材に、500V/mmを印加した
場合の変位量は、夫々3μm、2.2μm、1.2μmであ
つた。
For comparative study, three types of prototypes were fabricated with the ratio Si/So of the cross-sectional area (So) of the green sheet constituting the block to the area (Si) of the internal electrodes of 1, 0.8, and 0.5, and these block materials were , the displacement amounts when 500V/mm were applied were 3 μm, 2.2 μm, and 1.2 μm, respectively.

またこれら3種の素子ブロツクに、直流電圧
50Vのオン・オフを繰り返して駆動試験を実施し
たところ、その繰り返し回数は、Si/So=0.5、
Si/So=0.8では6億回以下であつたのに対して、
本発明素子の繰り返し回数Si/So=1すなわち
全面電極を形成した素子によれば、8億回以上繰
り返して動作する能力を得ることができる。
In addition, DC voltage is applied to these three types of element blocks.
When we conducted a drive test by repeatedly turning on and off 50V, the number of repetitions was Si/So=0.5,
While it was less than 600 million times when Si/So=0.8,
If the number of repetitions of the device of the present invention is Si/So=1, that is, if the device has electrodes formed on the entire surface, it is possible to obtain the ability to operate repeatedly over 800 million times.

尚、外部電極の形成は、上記実施例に限定され
るものではなく、絶縁層として樹脂、ガラスアル
ミナ膜を形成し、その上面に上記導電膜をスパツ
タリングによつて形成することにより、上記実施
例と同様の効果を得ることができる。
Note that the formation of the external electrode is not limited to the above example, but can be performed by forming a resin or glass alumina film as an insulating layer and forming the above conductive film on the upper surface by sputtering. You can get the same effect as .

以上述べたごとく本発明によれば、圧電セラミ
ツクス材を主体とするグリーンシートの表面全面
に内部電極を形成し、該グリーンシートを熱源と
する剛体に多層に巻回して外部から熱圧着し、該
被圧着ブロツクを層方向に切断する工程と、該被
圧着ブロツクを焼結する工程と、該焼結ブロツク
の両側面に機械加工を施す工程と、上記両側面の
端部を一層おきに樹脂にて絶縁処理し、該被処理
物の上から夫々の面に導電層を形成する工程とよ
り構成したので、 従来のように、この種素子に全面電極を形成し
得ないものに比べて、繰り返し駆動に対する能力
が格段にすぐれたアクチユエータ素子を提供する
ことができる。
As described above, according to the present invention, an internal electrode is formed on the entire surface of a green sheet mainly made of piezoelectric ceramic material, the green sheet is wound in multiple layers around a rigid body that uses a heat source, and is thermocompression bonded from the outside. A process of cutting the press-bonded block in the layer direction, a process of sintering the press-bonded block, a process of machining both sides of the sintered block, and a process of applying resin to the ends of the both sides every other layer. This method consists of the steps of insulating the object and forming a conductive layer on each surface from above the object to be processed, so compared to conventional devices in which electrodes cannot be formed on the entire surface of this type of device, it is easier to repeat the process. It is possible to provide an actuator element with significantly superior drive capability.

しかも本発明によれば、従来のセラミツクコン
デンサのように、内部電極を交互に180゜転回した
内部電極パターンとする作業工程を不要とするこ
とができるので、本発明素子の自動化を図ること
ができる。
Moreover, according to the present invention, unlike conventional ceramic capacitors, there is no need for the process of creating an internal electrode pattern in which the internal electrodes are alternately rotated by 180 degrees, so the device of the present invention can be automated. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の積層圧電素子の構造
を示す図、第3図、第4図、第5図、第6図及び
第7図は本発明の工程の一例を示す図、第8図は
本発明方法により得られたアクチユエータ素子の
一例を示す斜視図、第9図は本発明アクチユエー
タ素子の製法の他の例を示す図である。 10……グリーンシート、11……内部電極、
12……熱源を有する棒、15……素子ブロツク
材、17……外部電極、20……圧電アクチユエ
ータ。
1 and 2 are diagrams showing the structure of a conventional laminated piezoelectric element, and FIGS. 3, 4, 5, 6, and 7 are diagrams showing an example of the process of the present invention. FIG. 8 is a perspective view showing an example of an actuator element obtained by the method of the present invention, and FIG. 9 is a diagram showing another example of the method of manufacturing the actuator element of the present invention. 10... Green sheet, 11... Internal electrode,
12... Rod having a heat source, 15... Element block material, 17... External electrode, 20... Piezoelectric actuator.

Claims (1)

【特許請求の範囲】 1 圧電セラミツクス材を主体とするグリーンシ
ートの表面全面に内部電極を形成し、該グリーン
シートを熱源とする剛体に多層に巻回して外部か
ら熱圧着し、該被圧着ブロツクを層方向に切断す
る工程と、 該被圧着ブロツクを焼結する工程と、 該被焼結ブロツクの両側面に機械加工を施す工
程と、 上記両側面の端部を一層おきに樹脂にて絶縁処
理し、該被処理物の上から夫々の面に導電層を形
成する工程とより成ることを特徴とする積層型圧
電アクチユエータの製造方法。
[Scope of Claims] 1. An internal electrode is formed on the entire surface of a green sheet mainly made of piezoelectric ceramic material, the green sheet is wound in multiple layers around a rigid body that uses a heat source, and is thermally pressed from the outside, and the pressed block is A step of cutting the press-bonded block in the layer direction, a step of sintering the press-bonded block, a step of machining both sides of the sintered block, and insulating the ends of the both sides with resin every other layer. 1. A method for manufacturing a laminated piezoelectric actuator, comprising the steps of: treating the object to be treated, and forming a conductive layer on each surface from above the object to be treated.
JP58237329A 1983-12-15 1983-12-15 Manufacture of laminating type piezoelectric actuator Granted JPS60128682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237329A JPS60128682A (en) 1983-12-15 1983-12-15 Manufacture of laminating type piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237329A JPS60128682A (en) 1983-12-15 1983-12-15 Manufacture of laminating type piezoelectric actuator

Publications (2)

Publication Number Publication Date
JPS60128682A JPS60128682A (en) 1985-07-09
JPH0145994B2 true JPH0145994B2 (en) 1989-10-05

Family

ID=17013755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237329A Granted JPS60128682A (en) 1983-12-15 1983-12-15 Manufacture of laminating type piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPS60128682A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296868U (en) * 1985-12-10 1987-06-20
JP2738706B2 (en) * 1988-07-15 1998-04-08 株式会社日立製作所 Manufacturing method of laminated piezoelectric element
DE4201937C2 (en) * 1991-01-25 1997-05-22 Murata Manufacturing Co Piezoelectric laminated actuator
US7233099B2 (en) 2003-12-25 2007-06-19 Tdk Corporation Multilayer piezoelectric element

Also Published As

Publication number Publication date
JPS60128682A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
KR100655094B1 (en) Method for the production of piezoelectric actuators and a piezoelectric actuator
WO2006073018A1 (en) Method for manufacturing piezoelectric actuator, and piezoelectric actuator
JP4843948B2 (en) Multilayer piezoelectric element
JP2504223B2 (en) Manufacturing method of multilayer capacitor
US5266862A (en) Piezoelectric actuator
JP2000082852A (en) Multilayered piezoelectric actuator and manufacture thereof
KR100695374B1 (en) Piezo Element with a Multiple-Layer Structure Produced by Folding
JPH04253382A (en) Electrostrictive effect element
JPH0145994B2 (en)
JPH09190947A (en) Laminated ceramic electronic component
JP2007019420A (en) Stacked piezoelectric element
JPH10241993A (en) Laminated ceramic electronic component
JPH0132759Y2 (en)
JPS63142875A (en) Piezoelectric laminated actuator
JP2006229068A (en) Manufacturing method of laminated piezo-electric element
JPH06151999A (en) Manufacture of laminated piezoelectric/electrostrictive actuator element
JP4468510B2 (en) Piezoelectric element and multilayer piezoelectric actuator
JPH043511Y2 (en)
JPS60128683A (en) Manufacture of laminating type piezoelectric actuator
JPH04295286A (en) Piezoelectric actuator and manufacture thereof
JPS62290187A (en) Cylindrical piezoelectric actuator and manufacture thereof
JP2000332312A (en) Manufacture of laminated piezoelectric ceramic part
JPH0745971Y2 (en) Electrostrictive effect element
JPH01184968A (en) Manufacture of laminar piezoelectric element
JPH02132870A (en) Laminated piezoelectric element