JPH0145965B2 - - Google Patents

Info

Publication number
JPH0145965B2
JPH0145965B2 JP58209803A JP20980383A JPH0145965B2 JP H0145965 B2 JPH0145965 B2 JP H0145965B2 JP 58209803 A JP58209803 A JP 58209803A JP 20980383 A JP20980383 A JP 20980383A JP H0145965 B2 JPH0145965 B2 JP H0145965B2
Authority
JP
Japan
Prior art keywords
gas
tank
cooler
pump
condensable gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58209803A
Other languages
Japanese (ja)
Other versions
JPS60102713A (en
Inventor
Michitada Endo
Hide Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20980383A priority Critical patent/JPS60102713A/en
Priority to US06/668,872 priority patent/US4562702A/en
Priority to DE8484307808T priority patent/DE3473081D1/en
Priority to EP84307808A priority patent/EP0142972B1/en
Publication of JPS60102713A publication Critical patent/JPS60102713A/en
Publication of JPH0145965B2 publication Critical patent/JPH0145965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸発冷却式ガス絶縁電気装置、特
に、冷却効率の向上と冷却器の小型軽量化とを目
的とした冷却器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an evaporatively cooled gas insulated electrical device, and particularly to a cooler aimed at improving cooling efficiency and reducing the size and weight of the cooler.

〔従来技術〕[Prior art]

従来、変圧器などの電気機器において、その内
部発熱を放熱する効率のよい手段として相変化を
伴う冷媒を利用した、いわゆる、蒸発冷却方式が
あり、その一例を第1図示す。
BACKGROUND ART Conventionally, there has been a so-called evaporative cooling method that utilizes a refrigerant that undergoes a phase change as an efficient means of dissipating internal heat generation in electrical equipment such as transformers. An example of this method is shown in FIG.

図において、発熱を伴なう電気機器1がタンク
2の中に収納されており、冷却器3とタンク2と
は上下の各ヘツダー4a,4bを介して連通して
いる。また、タンク内には非凝縮性の気体9(以
下、ガスと称す)と熱の授受に際して気液相変化
をする冷媒とがある割合で充填されており、液相
冷媒5はタンク底部に溜つていて、これを液体ポ
ンプ6により、配管7を通じてタンク2内へ吐出
させ、発熱する電気機器1へ散布する。電気機器
1に散布された液相冷媒5の一部は電気機器1よ
りの熱を奪うと同時に気化して冷媒蒸気8となる
が、この冷媒蒸気8の比重がガス9の比重よりも
大きい場合には冷媒蒸気8は下方に沈んで停滞す
ると共に下部連通管12及び下部ヘツダー4bを
通じて冷却ダクト10にも入つて行く。従つて、
この冷却ダクト10にて放熱と同時に冷媒蒸気8
の液化が生じて、冷却器の放熱能力に応じた放熱
が、この冷媒を熱輸送体として行なわれる。この
ような冷却系においては、比重差により冷媒蒸気
8は下方に停滞し、ガス9は上方に追い上げられ
るので、タンク2内及び冷却器3内では冷媒蒸気
8とガス9との境界面13が発生する。ただし、
発熱した電気機器から絶えず冷媒蒸気8が発生す
るので、タンク2内では実際には明確な境界面1
3は発生しにくくなるが、その圧力に応じた冷媒
蒸気ガスそれぞれの体積比で仮想される境界面を
ここでは境界面13と呼ぶこととする。この境界
面13は第1図の構成すなわちタンク2と冷却器
3とが上下ヘツダー4a,4b及び上下部連通管
14,12を通じて連通している場合には、冷却
器3側とタンク2内側とで常に同一の高さH0
あり、境界面13より上の部分は熱輸送能力の低
いガス9により充満しているために、冷却器3の
冷却ダクト10は、境界面13の高さH0までし
か有効な放熱に寄与しないことになる。従つて、
大きな冷却器を設置しても、その冷却面積の利用
率が非常に低いという欠点があつた。なお、符号
11は放熱の為の送風機である。
In the figure, an electric device 1 that generates heat is housed in a tank 2, and a cooler 3 and the tank 2 communicate with each other via upper and lower headers 4a and 4b. The tank is filled with a non-condensable gas 9 (hereinafter referred to as gas) and a refrigerant that undergoes a gas-liquid phase change when heat is transferred, and the liquid refrigerant 5 is stored at the bottom of the tank. The liquid is discharged into the tank 2 through the piping 7 by the liquid pump 6, and sprayed onto the electric equipment 1 which generates heat. A part of the liquid phase refrigerant 5 sprayed on the electrical equipment 1 absorbs heat from the electrical equipment 1 and at the same time vaporizes to become refrigerant vapor 8, but if the specific gravity of this refrigerant vapor 8 is greater than the specific gravity of the gas 9. At this time, the refrigerant vapor 8 sinks downward and stagnates, and also enters the cooling duct 10 through the lower communication pipe 12 and the lower header 4b. Therefore,
This cooling duct 10 releases heat and at the same time refrigerant vapor 8
The refrigerant is liquefied, and heat is radiated according to the heat radiating capacity of the cooler using this refrigerant as a heat transporter. In such a cooling system, the refrigerant vapor 8 stagnates downward due to the difference in specific gravity, and the gas 9 is forced upward. Occur. however,
Since refrigerant vapor 8 is constantly generated from electrical equipment that generates heat, there is actually a clear boundary 1 inside the tank 2.
3 is less likely to occur, but the boundary surface that is imagined based on the volume ratio of each refrigerant vapor gas depending on the pressure will be referred to as the boundary surface 13 here. In the configuration shown in FIG. 1, that is, when the tank 2 and the cooler 3 are in communication through the upper and lower headers 4a and 4b and the upper and lower communication pipes 14 and 12, this boundary surface 13 is formed between the cooler 3 side and the inside of the tank 2. The cooling duct 10 of the cooler 3 is always at the same height H 0 of the boundary surface 13, and the part above the boundary surface 13 is filled with gas 9 with low heat transport ability. This means that it contributes to effective heat dissipation only up to 0 . Therefore,
Even if a large cooler was installed, the drawback was that the utilization rate of the cooling area was extremely low. Note that the reference numeral 11 is a blower for heat radiation.

〔発明の概要〕[Summary of the invention]

本発明は、上記の従来装置における欠点を除去
して上記冷却面積の利用率を向上させ、これによ
つて小形で放熱能力の大きい蒸発冷却式ガス絶縁
電気装置を得ることを目的とするものであつて、
上部連通管の管路途中に非凝縮性気体を上部ヘツ
ダーからタンクへ向かつてのみ流す逆止弁と、非
凝縮性気体を上部ヘツダーからタンクへ排出する
気体ポンプとを設けることにより、常時、冷却器
内の冷却ダクトに冷媒蒸気をできるだけ多く存在
させて放熱効率を高め、これによつて、冷却器の
小形化を図るようにした蒸発冷却式ガス絶縁電気
装置を提供するものである。
The present invention aims to eliminate the drawbacks of the conventional device described above, improve the utilization rate of the cooling area, and thereby obtain a small evaporative cooling type gas insulated electrical device with a large heat dissipation capacity. It's hot,
Constant cooling is achieved by installing a check valve in the middle of the upper communication pipe that allows non-condensable gas to flow only from the upper header to the tank, and a gas pump that discharges non-condensable gas from the upper header to the tank. To provide an evaporative cooling type gas insulated electrical device in which as much refrigerant vapor as possible is present in a cooling duct within the device to increase heat radiation efficiency, thereby reducing the size of the cooler.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をその実施例を示す図に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on figures showing examples thereof.

先ず、第2図において、上部ヘツダー4aとタ
ンク2とを結ぶ上部連通管14の管路途中には逆
止弁21が設けられており、この逆止弁21は上
部ヘツダー4aからタンク2へは通気するが、タ
ンク2から上部ヘツダー4aには通気ができない
ようにした弁である。また、気体ポンプ22は上
部ヘツダー4a中の非凝縮性気体をタンク2へ送
る気体ポンプである。
First, in FIG. 2, a check valve 21 is provided in the middle of the upper communication pipe 14 that connects the upper header 4a and the tank 2. This valve allows ventilation, but prevents ventilation from the tank 2 to the upper header 4a. Further, the gas pump 22 is a gas pump that sends non-condensable gas in the upper header 4a to the tank 2.

本発明はこのように構成されているが、その動
作について次に述べる。
The present invention is configured as described above, and its operation will be described next.

先ず、気体ポンプ22が停止している状態にお
いて冷却系の動作について述べる。
First, the operation of the cooling system when the gas pump 22 is stopped will be described.

この状態で電気機器1が負荷をとり、発熱する
と液相冷媒5が電気機器1に散布されて電気機器
1の熱を吸収し気化して冷媒蒸気8を発生し、ガ
ス9と冷媒蒸気8とは比重差により分離してガス
9と冷媒蒸気8との間に境界面13が発生する。
この状態で蒸気温度が上昇するに従つて蒸気圧力
が高くなり、これによつてガス9は上方へ押し上
げられてくるが、逆止弁21が設けられているた
めに、タンク2側のガス容積と冷却器3のガス容
積とは夫々別個に圧縮されることになる。従つ
て、夫々の容積の圧縮率は同一であるが、冷却器
3の冷却ダクト10の容積に比べて上部ヘツダー
4aの容積を大きく、例えば、10倍程度にとつて
おくと、冷却器3側の境界面13が冷却ダクト1
0の上端にとどくまでは、冷媒蒸気圧上昇による
境界面13の高さ変化を、タンク2側で△hとす
ると冷却ダクト10内では約10△hだけ境界面高
さが上昇をすることになり、わずかの圧力上昇
で、冷却ダクト10内は冷媒蒸気で充満すること
になる。従つて、第1図で示す従来装置に比べて
冷却器3の有効冷却面積を大きくすることができ
る。
In this state, when the electrical equipment 1 takes on a load and generates heat, the liquid phase refrigerant 5 is sprayed onto the electrical equipment 1, absorbs the heat of the electrical equipment 1, vaporizes, and generates refrigerant vapor 8. are separated due to the difference in specific gravity, and an interface 13 is generated between the gas 9 and the refrigerant vapor 8.
In this state, as the steam temperature rises, the steam pressure increases, and the gas 9 is pushed upward. However, because the check valve 21 is provided, the gas volume on the tank 2 side and the gas volume of the cooler 3 are each compressed separately. Therefore, although the compression ratio of each volume is the same, if the volume of the upper header 4a is set larger, for example, about 10 times the volume of the cooling duct 10 of the cooler 3, the volume of the cooler 3 side The boundary surface 13 of the cooling duct 1
Until reaching the upper end of 0, if the height change of the boundary surface 13 due to the increase in refrigerant vapor pressure is △h on the tank 2 side, the boundary surface height will rise by about 10△h in the cooling duct 10. Therefore, with a slight increase in pressure, the inside of the cooling duct 10 is filled with refrigerant vapor. Therefore, the effective cooling area of the cooler 3 can be increased compared to the conventional device shown in FIG.

しかしながら、このような状態では次に述べる
ような欠点がある。すなわち、 (1) 上記のように冷却ダクト10をすべて冷媒蒸
気で充満させるためには、大容積の上部ヘツダ
ー4aを設ける必要があり、その結果、装置の
寸法増大を招く。
However, such a state has the following drawbacks. That is, (1) In order to completely fill the cooling duct 10 with refrigerant vapor as described above, it is necessary to provide a large-volume upper header 4a, which results in an increase in the size of the device.

(2) タンク2側から下部連通管12を通じてガス
9が冷媒蒸気と共に少しずつ冷却器3内に入り
込み、経時的に蓄積して冷却器3内の境界面1
3を低下させ、次第に放熱量が低下する。
(2) Gas 9 gradually enters the cooler 3 along with refrigerant vapor from the tank 2 side through the lower communication pipe 12, accumulates over time, and forms the boundary surface 1 inside the cooler 3.
3, and the amount of heat dissipation gradually decreases.

このような状態になつた場合には、ガス9を排
出することが必要となるが、そのために、一時的
に気体ポンプ22を動作させた場合について次に
述べる。
When such a state occurs, it is necessary to discharge the gas 9, and a case where the gas pump 22 is temporarily operated for this purpose will be described below.

第3図に示すように、気体ポンプ22を作動さ
せて上部ヘツダー4a内のガス9をタンク2内に
移送すれば、それに替つて冷媒蒸気が冷却ダクト
10中を上方に上つてくるので、冷却器3の有効
冷却面積を大きくとることができる。この状態を
第4図に示す。これによると、気体ポンプ22に
より、上部ヘツダー4a中のガス9はタンク2内
に移送されるので、上部ヘツダー4aの容積を冷
却ダクト10の容積との比率で決める必要がなく
なり、小形の上部ヘツダー4aでも差し支えなく
なる。また、経時間に蓄積してくるガス9も、気
体ポンプ22により再度タンク2内へ移送される
ので、境界面の低下はなく、従つて、連続して装
置の運転が可能となる。
As shown in FIG. 3, when the gas pump 22 is operated to transfer the gas 9 in the upper header 4a into the tank 2, the refrigerant vapor rises upward in the cooling duct 10 instead, causing cooling. The effective cooling area of the container 3 can be increased. This state is shown in FIG. According to this, the gas 9 in the upper header 4a is transferred into the tank 2 by the gas pump 22, so there is no need to determine the volume of the upper header 4a by the ratio of the volume of the cooling duct 10, and the small upper header Even 4a will be fine. Moreover, since the gas 9 that accumulates over time is transferred again into the tank 2 by the gas pump 22, there is no deterioration of the boundary surface, and therefore, continuous operation of the apparatus is possible.

また、タンク2内及び冷却器3内の圧力は、位
置水頭を無視すれば、如何なる部分においても同
一であり、言いかえれば、冷媒蒸気層内でも、ま
た、ガス層内でも同一である。従つて、ガスを移
送した後、気体ポンプ22を停止しても、圧力平
衡は崩れないので、下部連通管12を通じて新た
なガス9が冷却器3内に供給されない限り、境界
面13は引き上げられたままで下降しない。
Moreover, the pressures in the tank 2 and the cooler 3 are the same everywhere, if the positional head is ignored; in other words, the pressures in the refrigerant vapor layer and the gas layer are the same. Therefore, even if the gas pump 22 is stopped after the gas is transferred, the pressure equilibrium will not be disrupted, so the boundary surface 13 will not be pulled up unless new gas 9 is supplied into the cooler 3 through the lower communication pipe 12. It stays still and does not descend.

更に、気体ポンプ22は連続運転状態において
もよいが、必ずしもその必要はなく、境界面高さ
の維持ができればある一定時間を隔てた間欠運転
でも差し支えない。ただし、気体ポンプ22を連
続運転して常に使用する場合には、ポンプ動作そ
のものに逆流阻止機能があるので、上部ヘツダー
4a内にガス9が蓄積される量に対応するように
気体ポンプ22の吐出量を設定する必要がある。
Furthermore, although the gas pump 22 may be in continuous operation, it is not necessary to do so, and may be operated intermittently at intervals of a certain period of time as long as the interface height can be maintained. However, when the gas pump 22 is continuously operated and always used, the pump operation itself has a backflow prevention function, so the discharge of the gas pump 22 is adjusted to correspond to the amount of gas 9 accumulated in the upper header 4a. It is necessary to set the amount.

次に本発明の別の実施例を第5図A及びBに示
す。この実施例では、逆止弁及び気体ポンプの代
りに上部連通管14の管路途中に、第5図Bに示
すように、その内部のガス通路に逆止弁31aを
組み込んでガス9を移送する容積ポンプ31を挿
入しており、これによると、この冷却系は第2図
に示す本発明の上記実施例と同じ動作をする。な
お、第5図Bにおいて、符号31bはポンプ駆動
のピストンであつて、矢印Xはガス9の流れを示
し、Y側を上部ヘツダー4aに、また、Z側をタ
ンク2に接続している。
Next, another embodiment of the present invention is shown in FIGS. 5A and 5B. In this embodiment, instead of a check valve and a gas pump, a check valve 31a is installed in the internal gas passageway of the upper communication pipe 14, as shown in FIG. 5B, to transfer the gas 9. A positive displacement pump 31 is inserted, whereby the cooling system operates in the same way as in the embodiment of the invention shown in FIG. In FIG. 5B, reference numeral 31b is a pump-driven piston, arrow X indicates the flow of gas 9, the Y side is connected to the upper header 4a, and the Z side is connected to the tank 2.

これによると、タンク2から上部ヘツダー4a
へ向うガス流を阻止する逆止弁31aが、容積ポ
ンプ31の内部にその構成要素として組み込まれ
ているために、別個に連通管路に逆止弁が追設す
る必要がなくなり、従つて、小形軽量化が一層推
進できると共に保守性も向上する利点がある。
According to this, from the tank 2 to the upper header 4a
Since the check valve 31a that blocks the gas flow toward the pump is incorporated as a component inside the volumetric pump 31, there is no need to separately install a check valve in the communication pipe. It has the advantage of further promoting compactness and weight reduction, as well as improving maintainability.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記のように、上部連通管の管路途
中に逆止弁及び気体ポンプを設けて、ガスをタン
クへ排出し且つタンクから冷却器への逆流を阻止
したので、冷却器内を冷媒蒸気によつてできるだ
け充満させることができて冷却効率を向上するこ
とができ、従つて、冷却器を、すなわち、装置を
小形化し得る蒸発冷却式ガス絶縁電気装置を得る
ことができる効果を有している。
As described above, the present invention provides a check valve and a gas pump in the middle of the upper communication pipe to discharge gas into the tank and prevent backflow from the tank to the cooler. The cooling efficiency can be improved by filling the air with refrigerant vapor as much as possible, which has the effect of making it possible to obtain an evaporatively cooled gas-insulated electric device that can downsize the cooler, that is, the device. are doing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸発冷却式ガス絶縁電気装置の
概略断面図、第2図は本発明の実施例の概略断面
図、第3図は第2図の冷媒蒸気の少ない状態の説
明断面図、第4図は第2図の冷媒蒸気が大量に発
生している場合の説明断面図、第5図Aは本発明
の他の実施例の概略断面図、第5図Bは第5図A
のポンプ31の概略断面図である。 1……電気機器、2……タンク、3……冷却
器、4a……上部ヘツダー、4b……下部ヘツダ
ー、5……液相冷媒、6……液体ポンプ、7……
配管、8……冷媒蒸気、9……非凝縮性気体(ガ
ス)、10……冷却ダクト、11……送風器、1
2……下部連通管、13……境界面、14……上
部連通管、21……逆止弁、22……気体ポン
プ、31……容積ポンプ。なお、各図中、同一符
号は同一又は相当部分を示す。
FIG. 1 is a schematic sectional view of a conventional evaporative cooling type gas insulated electric device, FIG. 2 is a schematic sectional view of an embodiment of the present invention, and FIG. 3 is an explanatory sectional view of the state of FIG. FIG. 4 is an explanatory sectional view when a large amount of refrigerant vapor is generated in FIG. 2, FIG. 5A is a schematic sectional view of another embodiment of the present invention, and FIG.
FIG. 3 is a schematic cross-sectional view of the pump 31 of FIG. 1...Electrical equipment, 2...Tank, 3...Cooler, 4a...Upper header, 4b...Lower header, 5...Liquid phase refrigerant, 6...Liquid pump, 7...
Piping, 8... Refrigerant vapor, 9... Non-condensable gas (gas), 10... Cooling duct, 11... Air blower, 1
2...Lower communicating pipe, 13...Boundary surface, 14...Upper communicating pipe, 21...Check valve, 22...Gas pump, 31...Volume pump. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 電気機器とこれを収納するタンクと上記電気
機器から発生する熱を外部へ放熱する冷却器とに
よつて構成されると共に、タンク内に非凝縮性の
気体と、その蒸気比重が上記非凝縮性気体より大
きく且つ気液相変化を伴う冷媒とが充填されてお
り、上記冷却器が複数の直立した冷却ダクトと該
冷却ダクトの上下両端にそれぞれの冷却ダクトを
連通し且つタンク内とを上部及び下部連通管によ
つて連通する上下部ヘツダーとを設けて、冷媒蒸
気と非凝縮性気体とが分離して運転される蒸発冷
却式ガス絶縁電気装置において、上部連通管の管
路途中に非凝縮性気体を上部ヘツダーからタンク
へ向つてのみ通気する逆止弁と非凝縮性気体を上
部ヘツダーからタンク内へ排出する気体ポンプと
を設置していることを特徴とする蒸発冷却式ガス
絶縁電気装置。 2 気体ポンプは、電気機器の運転中、冷却器に
流入する非凝縮性気体の流入量に対応した送気量
によつて常時運転されている特許請求の範囲第1
項に記載の蒸発冷却式ガス絶縁電気装置。 3 上部連通管の管路途中に設けられた逆止弁及
び気体ポンプが、片方向通気弁を組み込んだポン
プである特許請求の範囲第1項又は第2項に記載
の蒸発冷却式ガス絶縁電気装置。
[Claims] 1. Consisting of an electrical device, a tank that houses the same, and a cooler that radiates heat generated from the electrical device to the outside, the tank contains non-condensable gas and its The cooler is filled with a refrigerant having a vapor specific gravity greater than that of the non-condensable gas and which undergoes a gas-liquid phase change, and the cooler communicates with a plurality of upright cooling ducts and the respective cooling ducts at both upper and lower ends of the cooling ducts. In an evaporative cooling type gas insulated electric device in which refrigerant vapor and non-condensable gas are separated and operated by providing upper and lower headers that communicate with the inside of the tank through upper and lower communication pipes, the upper communication pipe A check valve that vents non-condensable gas only from the upper header to the tank and a gas pump that discharges the non-condensable gas from the upper header into the tank are installed in the middle of the pipe. Evaporatively cooled gas insulated electrical equipment. 2. Claim 1, wherein the gas pump is constantly operated with an air supply amount corresponding to the amount of non-condensable gas flowing into the cooler while the electrical equipment is operating.
Evaporatively cooled gas insulated electrical equipment as described in . 3. The evaporative cooling type gas insulated electricity according to claim 1 or 2, wherein the check valve and gas pump provided in the middle of the upper communication pipe are pumps incorporating a one-way ventilation valve. Device.
JP20980383A 1983-11-10 1983-11-10 Evaporative cooling type gas insulating electrical apparatus Granted JPS60102713A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20980383A JPS60102713A (en) 1983-11-10 1983-11-10 Evaporative cooling type gas insulating electrical apparatus
US06/668,872 US4562702A (en) 1983-11-10 1984-11-06 Evaporation cooled gas insulated electrical apparatus
DE8484307808T DE3473081D1 (en) 1983-11-10 1984-11-12 An evaporation cooled gas insulated electrical apparatus
EP84307808A EP0142972B1 (en) 1983-11-10 1984-11-12 An evaporation cooled gas insulated electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20980383A JPS60102713A (en) 1983-11-10 1983-11-10 Evaporative cooling type gas insulating electrical apparatus

Publications (2)

Publication Number Publication Date
JPS60102713A JPS60102713A (en) 1985-06-06
JPH0145965B2 true JPH0145965B2 (en) 1989-10-05

Family

ID=16578852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20980383A Granted JPS60102713A (en) 1983-11-10 1983-11-10 Evaporative cooling type gas insulating electrical apparatus

Country Status (1)

Country Link
JP (1) JPS60102713A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341693U (en) * 1976-09-14 1978-04-11
JPS57103307A (en) * 1980-12-18 1982-06-26 Mitsubishi Electric Corp Transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341693U (en) * 1976-09-14 1978-04-11
JPS57103307A (en) * 1980-12-18 1982-06-26 Mitsubishi Electric Corp Transformer

Also Published As

Publication number Publication date
JPS60102713A (en) 1985-06-06

Similar Documents

Publication Publication Date Title
CN108475573B (en) Transformer with temperature dependent cooling
CN101325118B (en) Dry-type transformer with vapour-liquid two phase heat-radiation loop
CN207301955U (en) A kind of radiator of host computer
CN113266968A (en) Liquid storage tank, refrigerant transfer device and refrigeration system
CN201259816Y (en) Dry transformer having gas-liquid dual phase heat radiation loop
CN111741650A (en) Heat superconducting radiating plate, radiator and 5G base station equipment
JPH0145965B2 (en)
CN219372924U (en) Radiating element and thermosiphon radiator
CN214841841U (en) Liquid storage tank, refrigerant transfer device and refrigeration system
CN106409790A (en) Powerful chip radiator
CN114582597A (en) Gooseneck radiator and oil-free pillow transformer using same
JP2557811B2 (en) Heat dissipation wall member
CN115866972A (en) Radiating element and thermosiphon radiator
CN213901542U (en) Semiconductor heat sink for medical temperature controller
CN211495385U (en) Storage tank cooling device
EP0142972B1 (en) An evaporation cooled gas insulated electrical apparatus
CN207692257U (en) Water-cooling heat radiating device
CN216352193U (en) Heat sink device
JP2003222448A (en) Air conditioning system for high rise building
CN213578316U (en) Cooling water tower for air compressor
JPH0238023Y2 (en)
CN219873501U (en) Heat dissipation device and equipment
CN221151873U (en) Intelligent group control terminal device of central air conditioner AI
CN218735743U (en) Server cooling system based on gravity heat pipe
CN215765762U (en) Air source heat pump all-in-one machine