JPH0144152B2 - - Google Patents

Info

Publication number
JPH0144152B2
JPH0144152B2 JP58170587A JP17058783A JPH0144152B2 JP H0144152 B2 JPH0144152 B2 JP H0144152B2 JP 58170587 A JP58170587 A JP 58170587A JP 17058783 A JP17058783 A JP 17058783A JP H0144152 B2 JPH0144152 B2 JP H0144152B2
Authority
JP
Japan
Prior art keywords
paste
resistive layer
organic compound
thermal head
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58170587A
Other languages
Japanese (ja)
Other versions
JPS6063174A (en
Inventor
Teruyoshi Kubokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP58170587A priority Critical patent/JPS6063174A/en
Publication of JPS6063174A publication Critical patent/JPS6063174A/en
Publication of JPH0144152B2 publication Critical patent/JPH0144152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Landscapes

  • Electronic Switches (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はサーマルヘツドの製法に係り、特にそ
れの厚膜抵抗層の形成方法に関する。 従来の厚膜抵抗層材料としては、酸化ルテニウ
ムや他のルテニウム化合物とガラスフリツトとの
混合物、または銀−パラジウム合金とガラスフリ
ツトとの混合物などがある。 ところが、これら従来の厚膜抵抗層材料では、
金属化合物とガラスフリツトというある程度の大
きさの粒径を持つた粒子が含有されているため、
これらの材料からなる厚膜抵抗層形成用のペース
トをスクリーン印刷により基板上に印刷して行な
つた場合、焼成後の膜厚を薄くしようとしてもそ
れには限界があり、所望の抵抗値を維持したまま
出来るだけ膜厚を薄くしようとしても6〜10μm
程度が限度である。 そのため、フオトリソグラフイを用いてエツチ
ングによりパターンニングを行なつても、膜厚が
大きいため、それほど細かなパターンを切ること
ができず、その結果としてドツト密度の高いきめ
細かなプリントを可能とするようなサーマルヘツ
ドを形成することができないという欠点があつ
た。 本発明の目的は、上記従来技術の欠点を解消
し、微細なパターンを形成することができる厚膜
抵抗層を量産性よく生産でき、ドツト密度の高い
プリントが可能なサーマルヘツドの製法を提供す
ることにある。 この目的を達成するため、本発明は、貴金属有
機化合物と、卑金属有機化合物と、これら有機化
合物を溶解する有機液体との混合組成物から厚膜
抵抗層形成用ペーストを基板上に塗布し焼成して
抵抗層を形成し、しかるのちその抵抗層をホトリ
ソグラフイで所望の形状にパターンニングしたこ
とを特徴とするものである。 本発明の製法によれば、厚膜抵抗層形成用のペ
ースト中に大きな粒径を持つ粒子が存在しないこ
とに加えてペースト中に有機成分が多いため、焼
成後の膜厚を1μm以下と著しく薄くすることが
でき、微細なパターンの形成が可能になる。 また、貴金属有機化合物の貴金属成分は大気中
で焼成後導電体成分となり、一方卑金属有機化合
物中の卑金属は焼成後金属酸化物となつて不導体
成分となるのでこれらの混合比率を変えることに
より任意の体積固有抵抗率を持つた抵抗層を形成
することができる。 本発明で用いられる貴金属有機化合物としては
金−白金有機金属化合物が好適である。この有機
化合物はバルサム、ロジン、テレビン油の混合樹
脂にイオウを作用して得た硫化樹脂と、塩化金な
らびに塩化合金の混合物を化学反応させることに
よつて得られる。前記バルサムとは種々の植物か
ら分泌される粘稠性の液体で、固形樹脂が揮発油
に溶解したものであり、代表的なものは松脂で、
それはカナダバルサム、ペルーバルサム、トール
バルサムなどがある。 本発明で用いられる卑金属有機化合物として
は、樹脂酸クロム、樹脂酸ビスマス、アルミニウ
ムアセチルアセトナート、インジウムアセチルア
セトナート、エトキシシランなどが用いられる。
前記樹脂酸クロムは、ロジンと硝酸クロムを反応
させた金属石ケンの1種で、主成分はアビエチン
酸クロムとα−ピマール酸クロムである。 本発明で用いられる有機液体(溶媒)として
は、ブチルカルビトール、ブチルアルビトール、
植物精油(ラベンダー油、樟脳油、ローズマリー
油、ローズ油、テレビン油)などがある。 本発明に係るペーストの厚膜スクリーン印刷性
を向上するため、ニトロセルロースなどを添加す
るとよい。 次に本発明の実施例について説明する。 カナダバルサム、ロジン、テレビン油の混合樹
脂にイオウを加え、加熱反応させて硫化樹脂を作
る。この樹脂と塩化金および塩化白金を、それぞ
れ金含有率が8重量%、白金含有率が4重量%に
なるように配合し、150〜170℃で加熱反応させて
金−白金有機金属化合物をつくる。この樹脂状化
合物をラベンダー油、ローズマリー油などの溶剤
に溶解し、金−白金含有率が6重量%になるよう
に調整する。こうして得られたものをペースト
とする。 一方、卑金属有機化合物として樹脂酸クロム、
アルミニウムアセチルアセトナート、エトキシシ
ランを用い、ニトロセルロースを添加し、ブチル
カルビトールやブチルカルビトールアセテートな
どに溶解して、ペーストをつくる。 ペーストならびにペーストの主要成分の含
有率を次の表1、表2に示す。
The present invention relates to a method for manufacturing a thermal head, and more particularly to a method for forming a thick film resistive layer thereon. Conventional thick film resistive layer materials include mixtures of ruthenium oxide or other ruthenium compounds with glass frit, or mixtures of silver-palladium alloys with glass frit. However, with these conventional thick film resistance layer materials,
Because it contains particles of a certain size, such as metal compounds and glass frit,
When paste for forming a thick film resistor layer made of these materials is printed on a substrate by screen printing, there is a limit to how thin the film can be after firing, and it is difficult to maintain the desired resistance value. Even if you try to make the film thickness as thin as possible, it will still be 6 to 10 μm.
The extent is the limit. Therefore, even if patterning is performed by etching using photolithography, the film thickness is large, so it is not possible to cut very fine patterns, and as a result, it is difficult to make fine prints with high dot density. The disadvantage was that it was not possible to form an accurate thermal head. It is an object of the present invention to provide a method for manufacturing a thermal head that eliminates the drawbacks of the above-mentioned conventional techniques, allows mass production of thick film resistive layers capable of forming fine patterns, and enables printing with high dot density. There is a particular thing. In order to achieve this object, the present invention applies a paste for forming a thick film resistive layer on a substrate from a mixed composition of a noble metal organic compound, a base metal organic compound, and an organic liquid that dissolves these organic compounds, and then bakes the paste. The method is characterized in that a resistive layer is formed using a method of manufacturing a resistor, and then the resistive layer is patterned into a desired shape using photolithography. According to the manufacturing method of the present invention, in addition to the absence of particles with large particle sizes in the paste for forming a thick film resistance layer, the paste contains many organic components, so the film thickness after firing is significantly reduced to 1 μm or less. It can be made thinner and allows the formation of fine patterns. In addition, the noble metal component of the noble metal organic compound becomes a conductor component after firing in the atmosphere, while the base metal in the base metal organic compound becomes a metal oxide and a nonconductor component after firing, so by changing the mixing ratio of these, it is possible to It is possible to form a resistive layer having a specific volume resistivity of . As the noble metal organic compound used in the present invention, a gold-platinum organic metal compound is suitable. This organic compound is obtained by chemically reacting a sulfurized resin obtained by reacting sulfur with a mixed resin of balsam, rosin, and turpentine, and a mixture of gold chloride and chloride alloy. The balsam is a viscous liquid secreted by various plants, and is a solid resin dissolved in volatile oil, the typical one being pine resin.
These include Canadian balsam, Peruvian balsam, and tall balsam. Examples of the base metal organic compound used in the present invention include chromium resinate, bismuth resinate, aluminum acetylacetonate, indium acetylacetonate, and ethoxysilane.
The chromium resinate is a type of metal soap made by reacting rosin with chromium nitrate, and its main components are chromium abietate and chromium α-pimarate. The organic liquid (solvent) used in the present invention includes butyl carbitol, butyl arbitol,
Plant essential oils include lavender oil, camphor oil, rosemary oil, rose oil, and turpentine oil. In order to improve the thick film screen printability of the paste according to the present invention, nitrocellulose or the like may be added. Next, examples of the present invention will be described. Sulfur is added to a mixed resin of Canadian balsam, rosin, and turpentine oil, and a sulfurized resin is created by heating and reacting. This resin is mixed with gold chloride and platinum chloride so that the gold content is 8% by weight and the platinum content is 4% by weight, respectively, and the mixture is heated and reacted at 150 to 170°C to produce a gold-platinum organometallic compound. . This resinous compound is dissolved in a solvent such as lavender oil or rosemary oil, and the gold-platinum content is adjusted to 6% by weight. The material thus obtained is made into a paste. On the other hand, chromium resinate as a base metal organic compound,
A paste is made by using aluminum acetylacetonate and ethoxysilane, adding nitrocellulose, and dissolving in butyl carbitol or butyl carbitol acetate. The contents of the paste and the main components of the paste are shown in Tables 1 and 2 below.

【表】【table】

【表】 このペーストとペーストを所定の割合に配
合し、よく混練して抵抗材ペーストをつくる。各
配合比の抵抗材ペーストを基板に厚膜スクリーン
法で印刷し、700〜850℃で焼成して得られた厚膜
抵抗層のシート抵抗値を測定した結果を第1図に
示す。図中のA点はペーストとペーストの配
合重量比が:=1:4、B点は同様に2:
4、C点は3:4、D点は4:4、E点は4:
3、F点は4:2、G点は4:1、H点は4:0
のものの各抵抗層のシート抵抗値である。この図
から明らかなように、ペーストとペーストの
配合比を調整することにより、約30Ω〜200MΩ
までの極めて広範囲の抵抗値を有する抵抗層を得
ることができる。 なお、上記A点からH点で示したペーストと
ペーストの各配合比における焼成後の各成分の
重量比は次の表3に示すとおりである。
[Table] Mix these pastes in a predetermined ratio and knead them thoroughly to make a resistance material paste. FIG. 1 shows the results of measuring the sheet resistance values of the thick film resistive layers obtained by printing resistive material pastes of various compounding ratios on substrates by the thick film screen method and baking them at 700 to 850°C. At point A in the figure, the weight ratio of paste to paste is 1:4, and at point B, the ratio is 2:
4. Point C is 3:4, point D is 4:4, point E is 4:
3. F point is 4:2, G point is 4:1, H point is 4:0
This is the sheet resistance value of each resistance layer. As is clear from this figure, by adjusting the mixing ratio of paste and paste, approximately 30Ω to 200MΩ can be achieved.
It is possible to obtain a resistive layer having a very wide range of resistance values. The weight ratios of each component after firing at each paste-to-paste compounding ratio shown from point A to point H above are as shown in Table 3 below.

【表】 * クロム、アルミニウム、シリコンは焼成
後、酸化物となる。
第2図は、前記ペーストとペーストの配合
重量比が:=4:4(D点)、4:3(E点)、
4:2(F点)の各抵抗層の温度係数(TCR)を
示す図で、各特性の抵抗層が得られる。 第3図は、各抵抗層におけるシート抵抗値の信
頼性を示す図である。すなわち、同図イは前記ペ
ーストとペーストの配合重量比が:=
3:4、同図ロは4:4、同図ハは4:3、同図
ニは4:2、同図ホは4:1の各抵抗層のシート
抵抗値の経時変化ΔRを測定したものである。各
図とも曲線Xは耐湿試験(試験条件40℃、60%
RH、負荷330mW/mm2)、曲線Yは耐熱試験(試
験条件80℃、300mW/mm2)の特性値である。 この図から明らかなように、各組成の抵抗層と
も抵抗値の変化が極めて小さく、安定した高信頼
性の抵抗層が得られる。 第4図は本発明に係るサーマルヘツドの一部平
面図、第5図はその断面図である。アルミナから
なる絶縁基板1のほぼ全面に二酸化ケイ素からな
るアンダーグレーズ層2を50〜100μmの厚さで印
刷し、900〜1200℃で焼成し、次に電極3,3を
印刷して、700〜900℃で焼成する。しかるのち一
方の電極3から他方の電極3に掛るように前述の
厚膜抵抗層形成用ペーストをスクリーン印刷し、
700〜850℃で焼成して、その後ホトリソグラフイ
の技術でパターンニングして所望の形状の抵抗層
4を得る。 第6図イ,ロはこのようにして形成された抵抗
層の表面状態を示す図である。同図イ,ロは抵抗
層の任意の個所の表面状態を表わしており、イの
ものは膜厚Tが3400Å、ロのものは2700Åでいず
れの個所も表面粗さは200Å以下と極めて平滑で
寸法精度が高い。 本発明は、前述のような構成となつているため
抵抗値の変化が極めて小さく、安定した高信頼性
の抵抗層が量産性に優れた厚膜スクリーン印刷法
で形成可能である。 しかも、抵抗層の膜厚を従来に比べて著しく薄
くすることができるので、フオトリングラフイに
より微細なパターンを形成することができ、安価
な方法でドツト密度の高いサーマルヘツドを製造
することが可能となる。
[Table] *Chromium, aluminum, and silicon are fired.
After that, it becomes an oxide.
Figure 2 shows that the blending weight ratio of the paste and paste is: = 4:4 (point D), 4:3 (point E),
This is a diagram showing the temperature coefficient (TCR) of each resistance layer of 4:2 (point F), and resistance layers with each characteristic are obtained. FIG. 3 is a diagram showing the reliability of sheet resistance values in each resistance layer. That is, in Figure A, the blending weight ratio of the paste and the paste is:=
The change over time ΔR in the sheet resistance value of each resistance layer was measured. It is something. In each figure, curve
RH, load 330 mW/mm 2 ), and curve Y is the characteristic value of the heat resistance test (test conditions 80°C, 300 mW/mm 2 ). As is clear from this figure, the change in resistance value of the resistance layer of each composition is extremely small, and a stable and highly reliable resistance layer can be obtained. FIG. 4 is a partial plan view of a thermal head according to the present invention, and FIG. 5 is a sectional view thereof. An underglaze layer 2 made of silicon dioxide is printed on almost the entire surface of an insulating substrate 1 made of alumina to a thickness of 50 to 100 μm, fired at 900 to 1200°C, then electrodes 3 are printed, Bake at 900℃. Thereafter, the thick film resistor layer forming paste described above is screen printed so as to extend from one electrode 3 to the other electrode 3.
The resistive layer 4 is baked at 700 to 850° C. and then patterned using photolithography to obtain a resistive layer 4 having a desired shape. FIGS. 6A and 6B are diagrams showing the surface condition of the resistive layer formed in this manner. Figures A and B show the surface conditions at arbitrary locations on the resistive layer. The film thickness T in A is 3400 Å, and in B 2700 Å, the surface roughness of both locations is extremely smooth with less than 200 Å. High dimensional accuracy. Since the present invention has the above-described structure, a stable and highly reliable resistance layer with extremely small change in resistance value can be formed by a thick film screen printing method which is excellent in mass production. Furthermore, since the thickness of the resistive layer can be made significantly thinner than in the past, fine patterns can be formed using photolithography, making it possible to manufacture thermal heads with high dot density at low cost. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るペーストを用いた各抵抗
層のシート抵抗値特性図、第2図はその抵抗層の
温度係数特性図、第3図イ〜ホはその抵抗層の信
頼特性図、第4図は本発明に係るサーマルヘツド
の一部平面図、第5図はそのサーマルヘツドの一
部断面図、第6図イ,ロはその抵抗層の表面粗さ
を示す図である。 1……絶縁基板、2……アンダグレーズ層、3
……電極、4……抵抗層。
FIG. 1 is a sheet resistance value characteristic diagram of each resistance layer using the paste according to the present invention, FIG. 2 is a temperature coefficient characteristic diagram of the resistance layer, and FIG. 3 A to H are reliability characteristic diagrams of the resistance layer. FIG. 4 is a partial plan view of a thermal head according to the present invention, FIG. 5 is a partial sectional view of the thermal head, and FIGS. 6A and 6B are diagrams showing the surface roughness of the resistive layer. 1... Insulating substrate, 2... Underglaze layer, 3
...electrode, 4...resistance layer.

Claims (1)

【特許請求の範囲】 1 貴金属有機化合物と、卑金属有機化合物と、
これら有機化合物を溶解する有機液体との混合組
成物からなる厚膜抵抗層形成用ペーストを基板上
に塗布し焼成して抵抗層を形成し、しかるのちそ
の抵抗層をホトリソグラフイで所望の形状にパタ
ーンニングしたことを特徴とするサーマルヘツド
の製法。 2 特許請求の範囲第1項記載において、前記貴
金属有機化合物が金−白金有機金属化合物である
ことを特徴とするサーマルヘツドの製法。 3 特許請求の範囲第1項記載において、前記卑
金属有機化合物が樹脂酸クロム、樹脂酸ビスマ
ス、アルミニウムアセチルアセトナート、インジ
ウムアセチルアセトナート、エトキシシランのグ
ループから選択された化合物であることを特徴と
するサーマルヘツドの製法。
[Claims] 1. A noble metal organic compound, a base metal organic compound,
A thick film resistive layer forming paste made of a mixed composition with an organic liquid that dissolves these organic compounds is applied onto a substrate and baked to form a resistive layer, and then the resistive layer is shaped into a desired shape by photolithography. A method for manufacturing a thermal head characterized by patterning. 2. The method for producing a thermal head according to claim 1, wherein the noble metal organic compound is a gold-platinum organic metal compound. 3. In claim 1, the base metal organic compound is a compound selected from the group consisting of chromium resinate, bismuth resinate, aluminum acetylacetonate, indium acetylacetonate, and ethoxysilane. Thermal head manufacturing method.
JP58170587A 1983-09-17 1983-09-17 Manufacture of thermal head Granted JPS6063174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170587A JPS6063174A (en) 1983-09-17 1983-09-17 Manufacture of thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170587A JPS6063174A (en) 1983-09-17 1983-09-17 Manufacture of thermal head

Publications (2)

Publication Number Publication Date
JPS6063174A JPS6063174A (en) 1985-04-11
JPH0144152B2 true JPH0144152B2 (en) 1989-09-26

Family

ID=15907596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170587A Granted JPS6063174A (en) 1983-09-17 1983-09-17 Manufacture of thermal head

Country Status (1)

Country Link
JP (1) JPS6063174A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102708B2 (en) * 1986-06-11 1995-11-08 松下電器産業株式会社 Thermal head
JP2699381B2 (en) * 1987-04-28 1998-01-19 富士ゼロックス株式会社 Manufacturing method of resistor
JPH0755564B2 (en) * 1988-06-29 1995-06-14 松下電器産業株式会社 Thermal head and manufacturing method thereof
JP2548314B2 (en) * 1988-07-22 1996-10-30 松下電器産業株式会社 Manufacturing method of thermal head
JPH02147254A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Production of thermal head
JP2626036B2 (en) * 1989-03-16 1997-07-02 松下電器産業株式会社 Manufacturing method of thermal head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271193A (en) * 1962-09-20 1966-09-06 Cts Corp Electrical resistance element and method of making the same
GB1166992A (en) * 1965-08-27 1969-10-15 Plessey Co Ltd Improvements in or relating to Electrical Conductors
US3676087A (en) * 1971-03-15 1972-07-11 Bell Telephone Labor Inc Technique for the fabrication of a photolithographically definable,glass covered gold conductor pattern
JPS5316640A (en) * 1976-07-29 1978-02-15 Nec Corp Manufacture of thermal head
JPS583201A (en) * 1981-06-30 1983-01-10 アルプス電気株式会社 Resistance paste, thick film integrated circuit produced with same paste, thermal head and method of producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271193A (en) * 1962-09-20 1966-09-06 Cts Corp Electrical resistance element and method of making the same
GB1166992A (en) * 1965-08-27 1969-10-15 Plessey Co Ltd Improvements in or relating to Electrical Conductors
US3676087A (en) * 1971-03-15 1972-07-11 Bell Telephone Labor Inc Technique for the fabrication of a photolithographically definable,glass covered gold conductor pattern
JPS5316640A (en) * 1976-07-29 1978-02-15 Nec Corp Manufacture of thermal head
JPS583201A (en) * 1981-06-30 1983-01-10 アルプス電気株式会社 Resistance paste, thick film integrated circuit produced with same paste, thermal head and method of producing same

Also Published As

Publication number Publication date
JPS6063174A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
KR100306554B1 (en) Thick Film Resistor and the Manuring Method Thereof
KR0142577B1 (en) Reristance masses for firing under nirogen
JPH0337281B2 (en)
JPS63184301A (en) Paint for thick film resistor and resistor made of the paint
JPH01220402A (en) Resistor, manufacture thereof and thermal head using same
JPH0144152B2 (en)
KR0130831B1 (en) Thick film resistor composition
JPH02296734A (en) Electrically conductive pyrochlore-type oxide and resistor material containing it
KR880002063B1 (en) Air-fireable thick film inks
JP2526431B2 (en) Resistor and manufacturing method thereof
JP3246245B2 (en) Resistor
JPH023523B2 (en)
KR100284785B1 (en) Memory data processing system and method and communication system having system
JPH01304702A (en) Manufacture of resistor, paste resistor, and resistive elements and thermal head
JP2644017B2 (en) Resistance paste
JPH08186004A (en) Resistor material, resistor paste and resistor using the same
JPS6049601A (en) Paste for forming thick film resistance layer
JP2933136B2 (en) Method of manufacturing resistor and method of manufacturing thermal head
JPS62238605A (en) Manufacture of resistance element
JPS60102701A (en) Thick film resistance layer forming paste
JPH04188603A (en) Resistor and manufacture thereof
JP2001118706A (en) Paste, film, and parts of negative temperature coefficient thermistor
JPH01304703A (en) Manufacture of resistor, paste resistor, and resistor elements and thermal head
JPH03211706A (en) Resistor
JPH02166702A (en) Resistor and its manufacture, resistant paste and thermal head