US3271193A - Electrical resistance element and method of making the same - Google Patents

Electrical resistance element and method of making the same Download PDF

Info

Publication number
US3271193A
US3271193A US225134A US22513462A US3271193A US 3271193 A US3271193 A US 3271193A US 225134 A US225134 A US 225134A US 22513462 A US22513462 A US 22513462A US 3271193 A US3271193 A US 3271193A
Authority
US
United States
Prior art keywords
glass
film
metal
resinate
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US225134A
Inventor
Otis F Boykin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTS Corp
Original Assignee
CTS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTS Corp filed Critical CTS Corp
Priority to US225134A priority Critical patent/US3271193A/en
Application granted granted Critical
Publication of US3271193A publication Critical patent/US3271193A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06526Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals

Definitions

  • This invention relates to electrical resistance elements generally and in particular to an electrical resistance element which comprises a thin film of glass with particles of conductive metal dispersed therein supported by a nonconductive high temperature resistance base and the method of making the same.
  • the resistive elements of the type to which this invention relates are commonly called cermet resistive elements.
  • the name of course implies a mixture of ceramic and metallic materials.
  • the elements are formed from a mixture of finely divided glass powder and either finely ground metal particles or metal resinates. This mixture is placed on .a nonconductive substrate and fired to decompose the resinate if it is used and to fuse the glass powder into a solid glass film containing the metal particles.
  • the distribution of the metal throughout the film is not uniform.
  • the film gives the appearance of being homogeneous, but under electron microscopic analysis, the metal particles are found to be randomly deposited and of varying size. In fact, some metal particles appear to be 10 to 20 times the size of others indicating that the metal particles tend to agglomerate during the firing process as a result of their uneven dispersion in the tired composition.
  • This nonuniform distribution of the metal particles in the film causes the contact resistance to vary as the concentration of metal particles in or near the surface of the film varies.
  • the invention comprises the use of a mixture of resinates containing glass producing ingredients instead of the prepared glass frit used in manufacturing the prior art resistive elements.
  • cermet resistive elements were 3,Z7l,l% Patented Sept. 6, 1966 heretofore made 'by combining the metal used to conduct the electricity with a ground frit of the desired glass.
  • the metal was added to the glass frit either as finely ground particles or as metal resinate which decomposed during the firing process leaving the metal dispersed in the glass film.
  • the ingredients were thoroughly mixed mechanically, screened on a substrate and fired.
  • the glass frit would always have .a finite particle size, which when fired, would serve to space the metal particles at least as far apart as the diameter of the particles.
  • the distribution of metal throughout the film depended on both the particle size of the glass and the thoroughness 'with which the ingredients were mixed. Also affecting the distribution was the fact that the particle size varied considerably throughout any given mixture.
  • FIGURE 1 is a fragmentary isometric view of an electrical resistance element made in accord with the present invention.
  • FIGURE 1a is a grossly enlarged cross section of a portion of the resistance element of FIGURE 1 showing the uniformly dispersed noble metal particles in a glass matrix;
  • FIGURE 2 is a diagrammatical representation of the invention.
  • an electrical resistance element generally designated at 10 comprising a substrate 11 of dielectric material such as alumina or steatite. Deposited onto a surface of the substrate 11 are uniformly dispersed noble metal particles 12, i.e., gold, silver, platinum, palladium, rhodium, iridium, osmium, and ruthenium in a glass matrix 13.
  • noble metal particles 12 i.e., gold, silver, platinum, palladium, rhodium, iridium, osmium, and ruthenium in a glass matrix 13.
  • a resistive element 10 may be made as follows:
  • Example I The following ingredients are tho-roughly mixed together.
  • the screening agent can be one of any of those commercially available such as ethyl cellulose.
  • the mixture is screened on a ceramic substrate 11 which will not soften appreciably during the firing process.
  • a ceramic is alumina; another is steatite either of which is suitable.
  • the substrate with the mixture screened thereon is fired at a temperature of about 800 C. for approximately 25 minutes. At this temperature all volatile liquids are driven olf; the resinates are decomposed with the hydrocarbon being burned off leaving the metal.
  • the lead and boron will oxidize and combine to form a lead borate glass throughout which the silver, palladium, and rhodium are evenly distributed. After firing, the film is made up as follows:
  • the film produced by this combination has a resistance per square of approximately ten ohms.
  • Example 11 The following liquid resinates and screening agent are thoroughly mixed together in the proportions shown and screened on a ceramic substrate.
  • Example 111 The following ingredients are thoroughly mixed together:
  • Bismuth resinate (0.05 gm./cc.) cc 3.8 Lead resinate (0.3 gm./cc.) cc 4.1 Silicon resinate (.15 gm./cc.) cc 1.25 Manganese resinate (.135 gm./cc.) cc 0.2 Boron resinate (.05 gm./cc.) cc 4.75 Ruthenium resinate (.04 gm./cc.) cc 2.5 Screening medium gms 25 This mixture when screened onto a substrate and fired produces a lead boro-silicate glass which also contains bismuth and manganese.
  • the ruthenium here as in Example II furnishes the electrically conductive metal which is disposed uniformly throughout the glass formed by the other metals.
  • each metal is calculated without considering the fact that they are either completely or paritally oxidized during the firing process.
  • To form glass of course, it requires the oxides of the metals and since a glass is obtained it can be safely assumed that the metals which form the glass do oxidize after they are separated from resinates.
  • the invention eliminates the glass frit, which possibly tended to shield the noble metal during the firing operation and retard its oxidation and due to the extreme thinness of this film being in the range of 5 to 20 microns, it is now believed that certain noble metals such as ruthenium, rhodium, and palladium do oxidize when fired.
  • the amount of oxidation is not known, however, with some noble metals it could be This, of course, partially accounts for the change in electrical properties which occurs with changes in the firing time.
  • the resistance of the element after only one layer of the mixture is fired is generally too high. In fact, in some occasions it is non-conductive. To lower the resistance additional layers are fired. Each layer lowers the resistance until the desired value is obtained. It is usually desirable to have from two to five layers so that the element will have some thickness.
  • the resistance desired also determines what metals are used to form the element and their percentage of concentration.
  • silver and palladium were the conducting metals and they constituted slightly over 60% by weight of the total meterial in the film. The resistance of this element would naturally be low with such a high concentration of good conductors.
  • Example II ruthenium was the conducting metal and the percentage of metal to glass was reduced so the resistance of the element was higher.
  • eight to twelve ohms per square was obtained after firing four layers while in Example II and III, four layers were fired to obtain 8000 to 12000 ohms per square and 2000 to 5000 ohms per square respectively.
  • resistive elements are very smooth since they are obtained from liquid ingredients. For the same reason, they are completely homogeneous.
  • contact pressure can be reduced due to their uniformity. The reduction in contact pressure combines with the smoothness of the element to greatly lengthen both the element and contact life of the control.
  • uniform distribution of the metal throughout the glass tends to reduce the voltage coefficient. This feature also increases the reproducibility of the elements during the manufacturing process.
  • a method of manufacturing a resistive element comprising the steps of admixing a composition of a thermally decomposable organic metal compound containing at least one of the noble metals in solution and thermally decomposable glass-forming organic metal compounds in solution; applying a film of the composition onto the surface of a high-temperature-resistant, electrically nonconductive base; firing the mixture and the base at from 750- 900 C. to thermally decompose the organic metal compounds; and cooling the film and the base to solidify the 2.
  • the resistive element as produced in accord with the process of claim 1.
  • a method of making a resistive element comprising the steps of preparing a completely homogeneous composition of organic metal compounds in solution having at least one noble metal and several glass-forming compounds attached to the organic compounds; applying a film of the composition to a high-temperature-resistant, electrically nonconductive base; firing the mixture at from 750900 C. for from 5-30 minutes to reduce the organic metal compounds and to combine the glass-forming compounds in situ to form a glass; and cooling the film and the base to solidify the film.
  • a method of making a resistance element comprising the steps of: admixing a composition of a thermally decomposable organic metal compound containing at least one of the noble metals selected from the group consisting of ruthenium, rhodium, iridium and palladium in solution and thermally decomposable glass-forming organic metal compounds in solution; applying a film 'of the composition onto the surface of a high-temperature-resistant, electrically nonconductive base; fin'ng the film and the base at from 750-900 C. to thermally decompose the organic metal compounds and simultaneously forming in situ a glass and an oxide of the noble metal uniformly dispersed in the glass; cooling the film and the base to solidify the film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Description

O. F. BOYKIN Sept. 6, 1966 ELECTRICAL RESISTANCE ELEMENT AND METHOD OF MAKING THE SAME Filed Sept. 20, 1962 IO-RESISTANCE ELEMENT [2-UNIFORMLY DISPERSED NOBLE METAL PARTICLES FIGURE- l0 :l- SUBSTRATE IO-RESlSTANCE I l-suasmma FIGURE- I OTIS F. BOYKIN R O T N E V W m m R N U T U 0 A o E T E M M w M E S 0% A M TL 65 T E s RT I- T L U M X B T. E m G EOAG Ms UC F T M F S M A m W0 m SR R C R N6 m0 T. l 0 E OR SM N F LC 0 L A .L IA G UH M 8 F MES T S M M fi U G m u m mw m m mm U0 MO m Lm HN PT ICM l O oal D-N m o VAN o MCAB A0 FDC OI CS FIGURE-2 BY ATTORNEY 3,271,193 ELECTRHCAL RESISTANQE ELEMENT AND METHUD 9F MAKING THE SAME Otis F. Boyltin, Chicago, lill., assignor to CTS Corporation, Elkhart, had, a corporation of lndiana Filed Sept. 20, 1962, Ser. No. 225,134 Qlaims. (Cl. 117-227) This invention relates to electrical resistance elements generally and in particular to an electrical resistance element which comprises a thin film of glass with particles of conductive metal dispersed therein supported by a nonconductive high temperature resistance base and the method of making the same.
The resistive elements of the type to which this invention relates are commonly called cermet resistive elements. The name of course implies a mixture of ceramic and metallic materials. The elements are formed from a mixture of finely divided glass powder and either finely ground metal particles or metal resinates. This mixture is placed on .a nonconductive substrate and fired to decompose the resinate if it is used and to fuse the glass powder into a solid glass film containing the metal particles.
Since the glass particles are relatively large and are of varying sizes, the distribution of the metal throughout the film is not uniform. The film gives the appearance of being homogeneous, but under electron microscopic analysis, the metal particles are found to be randomly deposited and of varying size. In fact, some metal particles appear to be 10 to 20 times the size of others indicating that the metal particles tend to agglomerate during the firing process as a result of their uneven dispersion in the tired composition. This nonuniform distribution of the metal particles in the film causes the contact resistance to vary as the concentration of metal particles in or near the surface of the film varies.
Variations in contact resistance produces noise. To keep the noise to a minimum the contact pressure is increased in an effort to reduce the contact resistance. This in turn greatly reduces the rotational life of the unit by increasing the friction between the contact and the element.
The contact resistance of these cermet" resistive elements would be greatly improved if the size of the metal particles and their distribution throughout the glass were more uniform. Therefore it is a principal object of this invention to provide a cermet element in which the electrically conductive metal particles are dispersed uniformly throughout the glass.
It is an additional object of this invention to provide a method of producing a cermet resistive element in which all the ingredients which make up the element are mixed as liquids which are completely miscible so that a homogeneous product results when the mixture is fired.
It is an additional object of this invention to provide a method of manufacturing a resistive element in which the glass is formed concomitantly with the reduction of the metal containing resinate during the firing operation to thereby produce a completely homogeneous mixture of electrically conductive metal particles and glass deposited on a nonconductive base.
It is a further object of this invention and an important feature thereof to provide a method of manufacturing a resistive element which does not necessitate the use of a ground glass frit.
Briefly, the invention comprises the use of a mixture of resinates containing glass producing ingredients instead of the prepared glass frit used in manufacturing the prior art resistive elements.
As pointed out above cermet resistive elements were 3,Z7l,l% Patented Sept. 6, 1966 heretofore made 'by combining the metal used to conduct the electricity with a ground frit of the desired glass.
The metal was added to the glass frit either as finely ground particles or as metal resinate which decomposed during the firing process leaving the metal dispersed in the glass film. The ingredients were thoroughly mixed mechanically, screened on a substrate and fired.
Regardless of how well these ingredients were mixed together, the glass frit would always have .a finite particle size, which when fired, would serve to space the metal particles at least as far apart as the diameter of the particles. As a result, the distribution of metal throughout the film depended on both the particle size of the glass and the thoroughness 'with which the ingredients were mixed. Also affecting the distribution was the fact that the particle size varied considerably throughout any given mixture.
This was a haphazard system and not only contributed to the contact resistance problem described above but also increased the production costs of the elements since the characteristics of elements manufactured from the same mixture were dilferent and highly unpredictable.
By using a mixture of resinates to replace the glass frit and a resinate containing the desired metal, all of which are liquid and therefore completely miscible in each other, a homogeneous mixture of the basic ingredients can be obtained which in turn produces a homogeneous resistive element.
For a better understanding of the present invention reference may be had to the accompanying drawing wherein the same reference numerals have been applied to like parts and wherein:
FIGURE 1 is a fragmentary isometric view of an electrical resistance element made in accord with the present invention;
FIGURE 1a is a grossly enlarged cross section of a portion of the resistance element of FIGURE 1 showing the uniformly dispersed noble metal particles in a glass matrix; and
FIGURE 2 is a diagrammatical representation of the invention.
Referring now to the drawings, there is illustrated an electrical resistance element generally designated at 10 comprising a substrate 11 of dielectric material such as alumina or steatite. Deposited onto a surface of the substrate 11 are uniformly dispersed noble metal particles 12, i.e., gold, silver, platinum, palladium, rhodium, iridium, osmium, and ruthenium in a glass matrix 13.
By way of examples, a resistive element 10 according to this invention may be made as follows:
Example I The following ingredients are tho-roughly mixed together.
Silver resinate (.2 gm. Ag/cc.) cc 5.0 Palladium resinate (.09 gm. Pd/cc.) cc 11.1 Rhodium resinate (.05 gm. Rh/cc.) cc 0.4 Lead resinate (.278 gm. Pb/cc.) cc 4.0 Boron resinate (.038 gm. B/cc.) cc 4.0 Screening agent gms 25.0
The percentage of metal shown for each resinate is percent by weight which will be true for all percentages shown throughout this specification unless otherwise indicated.
All of the above listed ingredients are all liquids with the exception of the screening agent which may be an emulsoid. Since it is added after the other ingredients are mixed together and is driven off first during the firing operation it has no effect on the homogeneity of the mixture of the liquid ingredients. They are completely miscible so a homogeneous mixture can always be obtained with a minimum of mixing. The screening agent can be one of any of those commercially available such as ethyl cellulose.
Next, the mixture is screened on a ceramic substrate 11 which will not soften appreciably during the firing process. One such ceramic is alumina; another is steatite either of which is suitable.
The substrate with the mixture screened thereon is fired at a temperature of about 800 C. for approximately 25 minutes. At this temperature all volatile liquids are driven olf; the resinates are decomposed with the hydrocarbon being burned off leaving the metal. The lead and boron will oxidize and combine to form a lead borate glass throughout which the silver, palladium, and rhodium are evenly distributed. After firing, the film is made up as follows:
Percent by weight Silver 30.5
Palladium 30.43
Rhodium .61
Lead 33.83
Boron 4.63
The film produced by this combination has a resistance per square of approximately ten ohms.
Example 11 The following liquid resinates and screening agent are thoroughly mixed together in the proportions shown and screened on a ceramic substrate.
Ruthenium resinate (.04 gm. Ru/cc.) cc 2.0 Lead resinate (.278 gm. Pb/cc.) cc 1.0 Boron resinate (.032 gm. B/cc.) cc 2.9 Silicon resinate (.15 gm. Si/cc.) cc 0.6 Screening agent gms 40.0
Ruthenium 14.35
Lead 49.80
Boron 19.70
Silicon 16.15
Example 111 The following ingredients are thoroughly mixed together:
Bismuth resinate (0.05 gm./cc.) cc 3.8 Lead resinate (0.3 gm./cc.) cc 4.1 Silicon resinate (.15 gm./cc.) cc 1.25 Manganese resinate (.135 gm./cc.) cc 0.2 Boron resinate (.05 gm./cc.) cc 4.75 Ruthenium resinate (.04 gm./cc.) cc 2.5 Screening medium gms 25 This mixture when screened onto a substrate and fired produces a lead boro-silicate glass which also contains bismuth and manganese. The ruthenium here as in Example II furnishes the electrically conductive metal which is disposed uniformly throughout the glass formed by the other metals.
In all of the examples given the percentage by weight of each metal is calculated without considering the fact that they are either completely or paritally oxidized during the firing process. To form glass, of course, it requires the oxides of the metals and since a glass is obtained it can be safely assumed that the metals which form the glass do oxidize after they are separated from resinates.
Also since the invention eliminates the glass frit, which possibly tended to shield the noble metal during the firing operation and retard its oxidation and due to the extreme thinness of this film being in the range of 5 to 20 microns, it is now believed that certain noble metals such as ruthenium, rhodium, and palladium do oxidize when fired. The amount of oxidation is not known, however, with some noble metals it could be This, of course, partially accounts for the change in electrical properties which occurs with changes in the firing time.
The resistance of the element after only one layer of the mixture is fired is generally too high. In fact, in some occasions it is non-conductive. To lower the resistance additional layers are fired. Each layer lowers the resistance until the desired value is obtained. It is usually desirable to have from two to five layers so that the element will have some thickness.
The resistance desired also determines what metals are used to form the element and their percentage of concentration. In Example I, silver and palladium were the conducting metals and they constituted slightly over 60% by weight of the total meterial in the film. The resistance of this element would naturally be low with such a high concentration of good conductors.
In Examples II and III, ruthenium was the conducting metal and the percentage of metal to glass was reduced so the resistance of the element was higher. In Example I, eight to twelve ohms per square was obtained after firing four layers while in Example II and III, four layers were fired to obtain 8000 to 12000 ohms per square and 2000 to 5000 ohms per square respectively.
These resistive elements are very smooth since they are obtained from liquid ingredients. For the same reason, they are completely homogeneous. When used in a variable resistor the contact pressure can be reduced due to their uniformity. The reduction in contact pressure combines with the smoothness of the element to greatly lengthen both the element and contact life of the control. When used as a fixed resistor, the uniform distribution of the metal throughout the glass tends to reduce the voltage coefficient. This feature also increases the reproducibility of the elements during the manufacturing process.
While there has been illustrated and described What is at present considered to be a preferred embodiment of the present invention and -a method of' making the same and a single modification thereof, it will be appreciated that numerous changes and modifications are likely to occur to those skilled in the art, and it is intended in the appended claims to cover all those changes and the modifications which fall within the true spirit and scope of the present invention.
The invention claimed is:
ll. A method of manufacturing a resistive element comprising the steps of admixing a composition of a thermally decomposable organic metal compound containing at least one of the noble metals in solution and thermally decomposable glass-forming organic metal compounds in solution; applying a film of the composition onto the surface of a high-temperature-resistant, electrically nonconductive base; firing the mixture and the base at from 750- 900 C. to thermally decompose the organic metal compounds; and cooling the film and the base to solidify the 2. The resistive element as produced in accord with the process of claim 1.
3. A method of making a resistive element comprising the steps of preparing a completely homogeneous composition of organic metal compounds in solution having at least one noble metal and several glass-forming compounds attached to the organic compounds; applying a film of the composition to a high-temperature-resistant, electrically nonconductive base; firing the mixture at from 750900 C. for from 5-30 minutes to reduce the organic metal compounds and to combine the glass-forming compounds in situ to form a glass; and cooling the film and the base to solidify the film.
4. A method of making a resistance element comprising the steps of: admixing a composition of a thermally decomposable organic metal compound containing at least one of the noble metals selected from the group consisting of ruthenium, rhodium, iridium and palladium in solution and thermally decomposable glass-forming organic metal compounds in solution; applying a film 'of the composition onto the surface of a high-temperature-resistant, electrically nonconductive base; fin'ng the film and the base at from 750-900 C. to thermally decompose the organic metal compounds and simultaneously forming in situ a glass and an oxide of the noble metal uniformly dispersed in the glass; cooling the film and the base to solidify the film.
5. The resistive element as produced in accord with the process of claim 4.
1,977,625 10/1934 Ernst 117-123 2,440,691 5/ 1948 Iira 117-227 2,490,399 12/ 1 949 Ballard 106-1 2,551,712 5/1951 Soby 117-123 2,733,167 1/1956 Stooky 117-123 2,786,925 3/1957 Kahan 117-227 2,842,457 7/1958 Morgan et a1 106-1 2,855,493 10/ 1958 Tierman 117-227 2,924,540 2/ 1960 DAndrea 252-514 2,950,996 8/1960 Place et al. 117-227 3,052,573 9/1962 Dumesnil 252-514 3,149,002 9/1964 Place et al 117-227 FOREIGN PATENTS 577,384 6/1959 Canada.
699,019 11/ 1940 Germany.
625,198 6/ 1949 Great Britain.
ALFRED L. LEAVITT, Primary Examiner.
RICHARD D. NEVIUS, Examiner.
W. L. JARVIS, Assistant Examiner.

Claims (1)

1. A METHOD OF MANUFACTURING A RESISTIVE ELEMENT COMPRISING THE STEPS OF ADMIXING A COMPOSITION OF A THERMALLY DECOMPOSABLE ORGANIC METAL COMPOUND CONTAINING AT LEAST ONE OF THE NOBLE METALS IN SOLUTION AND THERMALLY DECOMPOSABLE GLASS-FORMING ORGANIC METAL COMPOUNDS IN SOLUTION; APPLYING A FILM OF THE COMPOSITION ONTO THE SURFACE OF A HIGH-TEMPERATURE-RESISTANT, ELECTRICALLY NONCONDUCTIVE BASE; FIRING THE MIXTURE AND THE BASE AT FROM 750900*C. TO THERMALLY DECOMPOSE THE ORGANIC METAL COMPOUNDS; AND COOLING THE FILM AND THE BASE TO SOLIDIFY THE FILM.
US225134A 1962-09-20 1962-09-20 Electrical resistance element and method of making the same Expired - Lifetime US3271193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US225134A US3271193A (en) 1962-09-20 1962-09-20 Electrical resistance element and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US225134A US3271193A (en) 1962-09-20 1962-09-20 Electrical resistance element and method of making the same

Publications (1)

Publication Number Publication Date
US3271193A true US3271193A (en) 1966-09-06

Family

ID=22843674

Family Applications (1)

Application Number Title Priority Date Filing Date
US225134A Expired - Lifetime US3271193A (en) 1962-09-20 1962-09-20 Electrical resistance element and method of making the same

Country Status (1)

Country Link
US (1) US3271193A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365291A (en) * 1965-04-28 1968-01-23 Glaverbel Process for producing glass/metal compositions
US3479216A (en) * 1964-11-04 1969-11-18 Beckman Instruments Inc Cermet resistance element
US3539392A (en) * 1966-06-14 1970-11-10 Plessey Co Ltd Resistors
US3673117A (en) * 1969-12-19 1972-06-27 Methode Dev Co Electrical resistant material
JPS5030094A (en) * 1972-07-08 1975-03-26
US3957497A (en) * 1969-03-11 1976-05-18 Owens-Illinois, Inc. Polymeric based composition
US4262040A (en) * 1978-08-30 1981-04-14 Engelhard Minerals & Chemicals Corporation Decoration for ceramics having the appearance of gold
JPS6063174A (en) * 1983-09-17 1985-04-11 Alps Electric Co Ltd Manufacture of thermal head
US4651126A (en) * 1985-05-02 1987-03-17 Shailendra Kumar Electrical resistor material, resistor made therefrom and method of making the same
WO1989005232A1 (en) * 1987-12-10 1989-06-15 Matsushita Electric Industrial Co., Ltd. Thermal head and production thereof
JPH029640A (en) * 1988-06-29 1990-01-12 Matsushita Electric Ind Co Ltd Thermal head and manufacture thereof
US5250958A (en) * 1987-12-10 1993-10-05 Matsushita Electric Industrial Co., Ltd. Thermal head and manufacturing method thereof
US5800932A (en) * 1995-02-28 1998-09-01 The Furukawa Electric Co., Ltd. Electric contact material and a manufacturing method therefor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977625A (en) * 1931-11-11 1934-10-23 Du Pont Process of decorating glass
DE699019C (en) * 1937-11-24 1940-11-21 Patra Patent Treuhand Process for applying metallic, in particular solderable, layers to glass bodies, quartz glass bodies or ceramic bodies
US2440691A (en) * 1945-03-07 1948-05-04 Continental Carbon Inc Alloy metal film resistor
GB625198A (en) * 1947-04-02 1949-06-23 Johnson Matthey Co Ltd Improvements in and relating to electrical resistors
US2490399A (en) * 1947-09-13 1949-12-06 Du Pont Gold compounds and ceramic-decorating compositions containing same
US2551712A (en) * 1945-06-12 1951-05-08 Emi Ltd Process of metallizing surfaces
US2733167A (en) * 1956-01-31 Method of adhering gold to a non-
US2786925A (en) * 1952-12-31 1957-03-26 Sprague Electric Co Metal film resistor
US2842457A (en) * 1957-05-17 1958-07-08 Du Pont Decorating compositions
US2855493A (en) * 1953-06-16 1958-10-07 Sprague Electric Co Metal film resistor
CA577384A (en) * 1959-06-09 E.I. Du Pont De Nemours And Company Vitrifiable flux and silver compositions containing same
US2924540A (en) * 1958-05-23 1960-02-09 Du Pont Ceramic composition and article
US2950996A (en) * 1957-12-05 1960-08-30 Beckman Instruments Inc Electrical resistance material and method of making same
US3052573A (en) * 1960-03-02 1962-09-04 Du Pont Resistor and resistor composition
US3149002A (en) * 1957-03-18 1964-09-15 Beckman Instruments Inc Method of making electrical resistance element

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733167A (en) * 1956-01-31 Method of adhering gold to a non-
CA577384A (en) * 1959-06-09 E.I. Du Pont De Nemours And Company Vitrifiable flux and silver compositions containing same
US1977625A (en) * 1931-11-11 1934-10-23 Du Pont Process of decorating glass
DE699019C (en) * 1937-11-24 1940-11-21 Patra Patent Treuhand Process for applying metallic, in particular solderable, layers to glass bodies, quartz glass bodies or ceramic bodies
US2440691A (en) * 1945-03-07 1948-05-04 Continental Carbon Inc Alloy metal film resistor
US2551712A (en) * 1945-06-12 1951-05-08 Emi Ltd Process of metallizing surfaces
GB625198A (en) * 1947-04-02 1949-06-23 Johnson Matthey Co Ltd Improvements in and relating to electrical resistors
US2490399A (en) * 1947-09-13 1949-12-06 Du Pont Gold compounds and ceramic-decorating compositions containing same
US2786925A (en) * 1952-12-31 1957-03-26 Sprague Electric Co Metal film resistor
US2855493A (en) * 1953-06-16 1958-10-07 Sprague Electric Co Metal film resistor
US3149002A (en) * 1957-03-18 1964-09-15 Beckman Instruments Inc Method of making electrical resistance element
US2842457A (en) * 1957-05-17 1958-07-08 Du Pont Decorating compositions
US2950996A (en) * 1957-12-05 1960-08-30 Beckman Instruments Inc Electrical resistance material and method of making same
US2924540A (en) * 1958-05-23 1960-02-09 Du Pont Ceramic composition and article
US3052573A (en) * 1960-03-02 1962-09-04 Du Pont Resistor and resistor composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479216A (en) * 1964-11-04 1969-11-18 Beckman Instruments Inc Cermet resistance element
US3365291A (en) * 1965-04-28 1968-01-23 Glaverbel Process for producing glass/metal compositions
US3539392A (en) * 1966-06-14 1970-11-10 Plessey Co Ltd Resistors
US3957497A (en) * 1969-03-11 1976-05-18 Owens-Illinois, Inc. Polymeric based composition
US3673117A (en) * 1969-12-19 1972-06-27 Methode Dev Co Electrical resistant material
JPS5030094A (en) * 1972-07-08 1975-03-26
US4262040A (en) * 1978-08-30 1981-04-14 Engelhard Minerals & Chemicals Corporation Decoration for ceramics having the appearance of gold
JPS6063174A (en) * 1983-09-17 1985-04-11 Alps Electric Co Ltd Manufacture of thermal head
JPH0144152B2 (en) * 1983-09-17 1989-09-26 Alps Electric Co Ltd
US4651126A (en) * 1985-05-02 1987-03-17 Shailendra Kumar Electrical resistor material, resistor made therefrom and method of making the same
WO1989005232A1 (en) * 1987-12-10 1989-06-15 Matsushita Electric Industrial Co., Ltd. Thermal head and production thereof
US5250958A (en) * 1987-12-10 1993-10-05 Matsushita Electric Industrial Co., Ltd. Thermal head and manufacturing method thereof
JPH029640A (en) * 1988-06-29 1990-01-12 Matsushita Electric Ind Co Ltd Thermal head and manufacture thereof
JPH0755564B2 (en) 1988-06-29 1995-06-14 松下電器産業株式会社 Thermal head and manufacturing method thereof
US5800932A (en) * 1995-02-28 1998-09-01 The Furukawa Electric Co., Ltd. Electric contact material and a manufacturing method therefor

Similar Documents

Publication Publication Date Title
US3271193A (en) Electrical resistance element and method of making the same
US2950995A (en) Electrical resistance element
US3304199A (en) Electrical resistance element
US3682840A (en) Electrical resistor containing lead ruthenate
US3149002A (en) Method of making electrical resistance element
US4104421A (en) Method of making a glass containing resistor having a sub-micron metal film termination
US3573229A (en) Cermet resistor composition and method of making same
US4091144A (en) Article with electrically-resistive glaze for use in high-electric fields and method of making same
US3630969A (en) Resistor compositions containing pyrochlore-related oxides and platinum
US3776772A (en) Electrical resistance composition and resistance element
US3673117A (en) Electrical resistant material
US3560410A (en) Resistor compositions containing pyrochlore-related oxides and cadmium oxide
US3717837A (en) Potentiometer
US3619287A (en) Process of producing an electrical resistor
US4278725A (en) Cermet resistor and method of making same
US3200010A (en) Electrical resistance element
US3232886A (en) Resistor compositions
US3634334A (en) Electrical resistance material and method of making the same
CA1197022A (en) Process for the manufacture of thick layer varistors on a hybrid circuit substrate
RU2086027C1 (en) Method for manufacturing of thick-film resistors
US3326645A (en) Cermet resistance element and material
US3324049A (en) Precision resistance element and method of making the same
US3639274A (en) Electrical resistance composition
US3416960A (en) Cermet resistors, their composition and method of manufacture
US3386165A (en) Method of making cermet resistance element and terminal connections therefor