JPH0143766B2 - - Google Patents

Info

Publication number
JPH0143766B2
JPH0143766B2 JP12878681A JP12878681A JPH0143766B2 JP H0143766 B2 JPH0143766 B2 JP H0143766B2 JP 12878681 A JP12878681 A JP 12878681A JP 12878681 A JP12878681 A JP 12878681A JP H0143766 B2 JPH0143766 B2 JP H0143766B2
Authority
JP
Japan
Prior art keywords
polymer
molecular weight
polymerization
toluene
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12878681A
Other languages
Japanese (ja)
Other versions
JPS5832608A (en
Inventor
Toshinobu Higashimura
Toshio Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12878681A priority Critical patent/JPS5832608A/en
Publication of JPS5832608A publication Critical patent/JPS5832608A/en
Publication of JPH0143766B2 publication Critical patent/JPH0143766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は新規の重合体およびそれを製造する
方法に係わるものであつて、本発明の第1の目的
は2−アルキン類を単量体とする新規の重合体を
提供することにあり、本発明の第2の目的はかゝ
る重合体を高い反応率で製造する方法を提供する
ことにある。しかして上記第1の目的は本発明に
従い、 一般式() CH3−C≡C−R () (この式において、Rはメチル基を除く置換基を
有しないアルキル基を示す)で表わされる2−ア
ルキンを単量体とする一般式() で表わされ、重量平均分子量1万以上の鎖状重合
体によつて達成され、更に上記第2の目的は本発
明に従い、上記()式で表わされる2−アルキ
ンを、五塩化モリブデン又は六塩化タングステン
とホウ素、アルミニウム、ケイ素、錫、鉛、ヒ素
又はアンチモンを含む有機金属還元剤とを組合わ
せてなる触媒の存在下で重合させることによつて
達成される。 従来、非置換アセチレンや、1−ヘキシン、フ
エニルアセチレンなどの末端アセチレンの重合に
はチーグラー型触媒(例えば、チタンテトラ−n
−ブトキシド又は鉄アセチルアセトネートと有機
アルミニウム化合物との混合物)が非常に有効な
触媒となり、高収率で高分子量の重合体が得られ
た。しかし、2−アルキン類などの内部アセチレ
ンは立体障害のためチーグラ触媒により実質的に
重合せず、高分子量の重合体が得られていなかつ
た。 本発明者等は、さきに六塩化タングステンを主
体とする触媒を用いてアセチレン誘導体から重合
体を製造する方法を提案した(特公昭55−23565
号、特公昭55−17042号、特公昭54−43037号、特
公昭55−30722号、特願昭55−106456号)。 本発明者等はさらに内部アセチレンから高重合
体の得られる重合方法について鋭意研究を重ねた
結果、五塩化モリブデン又は六塩化タングステン
と還元剤とを組合わせてなる触媒を用いることに
よつて2−アルキン類の重合が容易に進行し、生
成重合体が可溶性で、その分子量が非常に大(分
子量1万以上、特に10万〜100万)となることを
見出し、この知見に基いて本発明を完成したので
ある。 以下、本発明を詳細に説明する。 本発明の一般式CH3−C≡C−Rで表わされる
2−アルキン類において、式中Rはメチル基を除
く置換基を有しないアルキル基である。 本発明における重合触媒は、五塩化モリブデン
(MoCl5)又は六塩化タングステン(WCl6)を主
触媒とし、これに第二成分として種々の還元剤を
組合わせたものである。 この還元剤としてはホウ素、アルミニウム、ケ
イ素、錫、鉛、ヒ素又はアンチモンを含む有機金
属還元剤が用いられる。 これらの中で、取扱いの容易さ、入手の容易
さ、および有効性の点で、特に好ましいのはテト
ラフエニル錫、テトラ−n−ブチル錫などの有機
錫化合物である。 単量体である2−アルキン類と主触媒との割合
は、重量比で、前者100に対し後者5〜0.2の範囲
が適当であり、還元剤対主触媒の割合はモル比で
0.3〜3の範囲が好ましい。触媒は溶液状で用い
られ、主触媒と還元剤を溶媒(後記の重合反応溶
媒と同様のものが用いられる)に溶解し、30〜60
℃で10〜60分間放置した後に用いるのがよい。 重合反応の溶媒としては、炭化水素、ハロゲン
化炭化水素などを用いるのが好ましい。特に炭化
水素であるベンゼン、トルエン、シクロヘキサン
などが入手の容易さ、および重合において高収率
が達成される点などから好適である。重合反応に
おける単量体の濃度は0.1〜5モル/の範囲が
好ましい。重合反応の温度は通常0〜60℃、反応
時間は数十分〜数十時間の範囲から選択される。 反応終了後、反応系を、反応に用いた溶媒で希
釈したのち、大量のメタノール中に投入すると生
成重合体が沈澱するので、これを別、乾燥す
る。 本発明によるときは、2−アルキン類から新規
の鎖状重合体を高収率で得ることができる。生成
重合体は1万以上、特に10万〜100万という、ア
セチレン類重合体としては非常に高い分子量を有
するうえに、トルエン、シクロヘキサンなどの炭
化水素類に完全に溶解するという特徴を有する。
かくして得られた重合体は半導体、ガス吸着体、
分離膜、フオトレジストなどへの応用が可能であ
る。 次に実施例により本発明をさらに詳しく説明す
る。 実施例 1 乾燥窒素雰囲気下で充分精製したトルエン1
中に、五塩化モリブデン30ミリモルおよびテトラ
フエニル錫30ミリモルを加え、30℃で約15分間熟
成させた。 得られた触媒溶液に2−ヘキシン1.0モルを添
加し、30℃で24時間重合させた。 反応終了後、混合物を5のトルエンに溶解し
たのち、大量のメタノール中に投入して生成重合
体を沈澱させ、別乾燥した。メタノール不溶性
重合体の生成量は、2−ヘキシンの仕込み量に対
して82%であつた。 生成重合体の重量平均分子量は光散乱法によれ
ば110万であり、トルエン中、30℃で測定した固
有粘度は4.55dl/gであつた。 生成重合体は白色の固体であり、ベンゼン、ト
ルエン、シクロヘキサン、n−ヘキサン、テトラ
ヒドロフランに完全に溶解し、四塩化炭素、クロ
ロホルム、ジエチルエーテルに一部可溶、二塩化
エチレン、アセトン、酢酸エチル、ニトロベンゼ
ン、アセトニトリルに不溶であつた。 生成重合体の分析値は次の通りである。 元素分析値〔(C6H10oとして〕; 計算値、C、87.73%;H、12.27% 実測値、C、87.49%;H、12.27% 赤外吸収スペクトル; 3000〜2850(s)、1650〜1580(w)、1470(s)、
1370(m)、1260(w)、1110〜1000(m)、800(w
)、
720(m)cm-1。 紫外吸収スペクトル; (シクロヘキサン)λmax290nm、εmax1700n
m、吸収限界350nm。 炭素13核磁気共鳴スペクトル(重水素化クロロ
ホルム) δ138.0(C3)、132.3(C2)、36.0(C4)、20.5(C1
)、
19.8(C5)、15.0(C6)ppm。 以上の分析結果から、生成重合体は、予期され
る次の構造を有するものと結論される。 (nは重量平均で1万3千) 生成重合体の軟化点は227〜231℃であり、示差
熱分析によれば、軟化点付近において発熱のみが
見られた。この重合体は空気中、室温で数ケ月放
置しても分子量はほとんど低下しなかつた。 実施例 2 主触媒として五塩化モリブデンの代りに六塩化
タングステンを用いる以外は実施例1と同様にし
て2−ヘキシンの重合を行なつた。メタノール不
溶性重合体の生成量は単量体の仕込み量に対して
57%であつた。生成重合体の重量平均分子量は20
万、トルエン中、30℃における固有粘度は0.54
dl/gであつた。 比較例 1 還元剤を用いずに、主触媒である五塩化モリブ
デン又は六塩化タングステンをそれぞれ単独で使
用し、その他は実施例1におけると同様にして反
応を行なわせたところ、いずれもメタノール不溶
性重合体の収率は0%であつた。 実施例 3 主触媒として五塩化モリブデンを用い、還元剤
として、下記表に示す化合物を使用し、実施例1
と同様にして2−ヘキシンの重合を行なつた。生
成重合体の収率および固有粘度(トルエン中、30
℃)を次表に示す。
The present invention relates to a novel polymer and a method for producing the same, and the first object of the present invention is to provide a novel polymer containing 2-alkynes as a monomer. A second object of the invention is to provide a method for producing such polymers at a high reaction rate. According to the present invention, the first object is expressed by the general formula () CH 3 -C≡C-R () (in this formula, R represents an alkyl group having no substituents other than a methyl group). General formula () using 2-alkyne as a monomer The second object is achieved by a chain polymer having a weight average molecular weight of 10,000 or more, and the second object is achieved by converting the 2-alkyne represented by the formula () into molybdenum pentachloride or hexachloride. This is achieved by polymerization in the presence of a catalyst comprising a combination of tungsten chloride and an organometallic reducing agent containing boron, aluminum, silicon, tin, lead, arsenic or antimony. Conventionally, Ziegler-type catalysts (e.g., titanium tetra-n
-butoxide or mixtures of iron acetylacetonate and organoaluminium compounds) were very effective catalysts, giving high yields of high molecular weight polymers. However, internal acetylenes such as 2-alkynes are not substantially polymerized by Ziegler catalysts due to steric hindrance, and high molecular weight polymers have not been obtained. The present inventors previously proposed a method for producing polymers from acetylene derivatives using a catalyst mainly composed of tungsten hexachloride (Japanese Patent Publication No. 55-23565
(Special Publication No. 17042, Special Publication No. 17042, Special Publication No. 43037, Special Publication No. 54-43037, Special Publication No. 30722, Special Publication No. 1983, Special Patent Application No. 1982-106456). The present inventors have further conducted extensive research on polymerization methods for obtaining high polymers from internal acetylene, and have found that 2- It was discovered that the polymerization of alkynes proceeds easily, and the resulting polymer is soluble and has a very large molecular weight (molecular weight of 10,000 or more, especially 100,000 to 1,000,000).Based on this knowledge, the present invention was developed. It was completed. The present invention will be explained in detail below. In the 2-alkynes represented by the general formula CH 3 -C≡C-R of the present invention, R is an alkyl group having no substituents other than a methyl group. The polymerization catalyst used in the present invention has molybdenum pentachloride (MoCl 5 ) or tungsten hexachloride (WCl 6 ) as the main catalyst, and is combined with various reducing agents as a second component. As this reducing agent, an organic metal reducing agent containing boron, aluminum, silicon, tin, lead, arsenic or antimony is used. Among these, organic tin compounds such as tetraphenyltin and tetra-n-butyltin are particularly preferred in terms of ease of handling, availability, and effectiveness. The ratio of the 2-alkynes, which are monomers, to the main catalyst is preferably in the range of 100 for the former to 5 to 0.2 for the latter, and the ratio of the reducing agent to the main catalyst is in the molar ratio.
A range of 0.3 to 3 is preferred. The catalyst is used in the form of a solution, and the main catalyst and reducing agent are dissolved in a solvent (the same as the polymerization reaction solvent described later), and the mixture is heated for 30 to 60 minutes.
It is best to use it after leaving it at ℃ for 10 to 60 minutes. As the solvent for the polymerization reaction, it is preferable to use hydrocarbons, halogenated hydrocarbons, and the like. In particular, hydrocarbons such as benzene, toluene, and cyclohexane are preferred because they are readily available and can achieve high yields in polymerization. The monomer concentration in the polymerization reaction is preferably in the range of 0.1 to 5 mol/mol. The temperature of the polymerization reaction is usually selected from 0 to 60°C, and the reaction time is selected from the range of several tens of minutes to several tens of hours. After the reaction is completed, the reaction system is diluted with the solvent used in the reaction and then poured into a large amount of methanol, which precipitates the produced polymer, which is then dried separately. According to the present invention, novel chain polymers can be obtained in high yield from 2-alkynes. The resulting polymer has a molecular weight of 10,000 or more, particularly 100,000 to 1,000,000, which is extremely high for an acetylene polymer, and is also characterized by being completely soluble in hydrocarbons such as toluene and cyclohexane.
The polymer thus obtained can be used as a semiconductor, gas adsorbent,
It can be applied to separation membranes, photoresists, etc. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Toluene 1 sufficiently purified under dry nitrogen atmosphere
30 mmol of molybdenum pentachloride and 30 mmol of tetraphenyltin were added thereto, and the mixture was aged at 30°C for about 15 minutes. 1.0 mol of 2-hexyne was added to the obtained catalyst solution, and polymerization was carried out at 30°C for 24 hours. After the reaction was completed, the mixture was dissolved in toluene (5) and poured into a large amount of methanol to precipitate the resulting polymer, which was then dried separately. The amount of methanol-insoluble polymer produced was 82% of the amount of 2-hexyne charged. The weight average molecular weight of the produced polymer was 1,100,000 according to a light scattering method, and the intrinsic viscosity measured at 30° C. in toluene was 4.55 dl/g. The produced polymer is a white solid, completely soluble in benzene, toluene, cyclohexane, n-hexane, and tetrahydrofuran, partially soluble in carbon tetrachloride, chloroform, diethyl ether, ethylene dichloride, acetone, ethyl acetate, It was insoluble in nitrobenzene and acetonitrile. The analytical values of the produced polymer are as follows. Elemental analysis value [as (C 6 H 10 ) o ]; Calculated value, C, 87.73%; H, 12.27% Actual value, C, 87.49%; H, 12.27% Infrared absorption spectrum; 3000-2850 (s), 1650-1580 (w), 1470 (s),
1370 (m), 1260 (w), 1110-1000 (m), 800 (w)
),
720 (m) cm -1 . Ultraviolet absorption spectrum; (cyclohexane) λmax 290nm, εmax 1700n
m, absorption limit 350 nm. Carbon-13 nuclear magnetic resonance spectrum (deuterated chloroform) δ138.0 (C 3 ), 132.3 (C 2 ), 36.0 (C 4 ), 20.5 (C 1
),
19.8 ( C5 ), 15.0 ( C6 ) ppm. From the above analysis results, it is concluded that the produced polymer has the expected structure shown below. (n is 13,000 on weight average) The softening point of the produced polymer was 227 to 231°C, and according to differential thermal analysis, only heat generation was observed near the softening point. Even when this polymer was left in the air at room temperature for several months, the molecular weight hardly decreased. Example 2 Polymerization of 2-hexyne was carried out in the same manner as in Example 1 except that tungsten hexachloride was used instead of molybdenum pentachloride as the main catalyst. The amount of methanol-insoluble polymer produced is based on the amount of monomer charged.
It was 57%. The weight average molecular weight of the produced polymer is 20
Intrinsic viscosity at 30℃ in toluene is 0.54
It was dl/g. Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that molybdenum pentachloride or tungsten hexachloride as the main catalyst was used alone without using a reducing agent. The yield of coalescence was 0%. Example 3 Using molybdenum pentachloride as the main catalyst and the compounds shown in the table below as the reducing agent, Example 1
Polymerization of 2-hexyne was carried out in the same manner as described above. Yield and intrinsic viscosity of the produced polymer (in toluene, 30
°C) are shown in the table below.

【表】 ン
実施例 4 溶媒としてトルエンの代りに二塩化エチレンを
用いること以外は全く実施例1と同様に反応を行
なわせたところ、重合体の生成量は単量体の仕込
み量に対して29%、重合体の固有粘度は3.11dl/
g(分子量約35万)であつた。 実施例 5 実施例1と同様にして60℃で重合を行なわせた
ところ、重合体の生成量は単量体の仕込み量に対
して68%、重合体の固有粘度は2.20dl/g(分子
量約23万)であつた。 実施例 6 単量体として0.50モルの2−ヘプチンを使用す
る以外は実施例1と同様にして重合を行ない、2
−ヘプチンの鎖状重合体を得た。生成重合体の収
率は51%、固有粘度(トルエン中、30℃)は3.50
dl/g(分子量約50万)であつた。生成重合体の
各種溶媒に対する溶解性はポリ(2−ヘキシン)
の場合と同様であつた。 またこのものの赤外吸収スペクトルおよび紫外
吸収スペクトルは次の通りであつた。 赤外吸収スペクトル; 3000〜2850(s)、1650〜1850(w)、1470(s)、
1370(m)、1280(w)、1200(w)、1100(m)、10
00
(w)、720(w)、 紫外吸収スペクトル(シクロヘキサン中); 290nmにシヨルダー(ε810) 吸収限界350nm 実施例 7 単量体として0.50モルの2−オクチンを使用す
る以外は実施例1と同様にして重合を行ない、2
−オクチンの鎖状重合体を得た。生成重合体の収
率は63%、固有粘度(トルエン中、30℃)は3.16
dl/g(分子量約38万)であつた。生成重合体の
各種溶媒に対する溶解性はポリ(2−ヘキシン)
の場合と同様であつた。 生成重合体の分析値は次の通りであつた。 元素分析値〔(C8H14oとして〕; 計算値、C、87.19;H、12.81、 実測値、C、86.67;H、12.91、 赤外吸収スペクトル; 3000〜2850(s)、1650〜1580(w)、1470(s)、
1370(m)、1260(w)、1100(m)、1010(m)、80
0
(w)、720(m)、 実施例 8 単量体として0.50モルの2−ノニンを使用する
以外は実施例1と同様にして重合を行ない、2−
ノニンの鎖状重合体を得た。生成重合体の収率は
60%、固有粘度(トルエン中、30℃)は2.20dl/
g(分子量約21万)であつた。生成重合体の各種
溶媒に対する溶解性はポリ(2−ヘキシン)の場
合と同様であつた。 また、このものの赤外吸収スペクトルおよび紫
外吸収スペクトルは次の通りであつた。 赤外吸収スペクトル; 3000〜2850(s)、1660〜1580(w)、1470〜1450
(s)、1370〜1360(m)、1110(m)、1070(w)、
1010(m)、720(m) 紫外吸収スペクトル; 280nmにシヨルダー(ε950) 吸収限界345nm 実施例 9 単量体として0.50モルの2−デシンを使用する
以外は実施例1と同様にして重合を行ない、2−
デシンの鎖状重合体を得た。生成重合体の収率は
50%、固有粘度は2.31dl/g(分子量約25万)で
あつた。生成重合体の各種溶媒に対する溶解性は
ポリ(2−ヘキシン)の場合と同様であつた。 生成重合体の分析値は次の通りであつた。 元素分析値〔(C10H18oとして〕; 計算値、C、86.88;H、13.12 実測値、C、86.51;H、12.98 赤外吸収スペクトル; 3000〜2850(s)、1650〜1580(w)、1470(s)、
1370(m)、1260(w)、1100(m)、1030〜1010
(m)、800(w)、720(m) 紫外吸収スペクトル; 290nmにシヨルダー(ε500) 吸収限界335nm 実施例 10 還元剤としてテトラフエニル錫の代りにテトラ
−n−ブチル錫を用い、下記表に示す2−アルキ
ンを0.50モル使用する以外は実施例1と同様にし
重合を行ない、下記表に示す結果を得た。
[Table] Example 4 The reaction was carried out in the same manner as in Example 1 except that ethylene dichloride was used instead of toluene as the solvent, and the amount of polymer produced was proportional to the amount of monomer charged. 29%, the intrinsic viscosity of the polymer is 3.11 dl/
g (molecular weight approximately 350,000). Example 5 Polymerization was carried out at 60°C in the same manner as in Example 1. The amount of polymer produced was 68% of the amount of monomer charged, and the intrinsic viscosity of the polymer was 2.20 dl/g (molecular weight 230,000). Example 6 Polymerization was carried out in the same manner as in Example 1 except that 0.50 mol of 2-heptyne was used as the monomer, and 2
- A chain polymer of heptine was obtained. The yield of the produced polymer was 51%, and the intrinsic viscosity (in toluene, 30℃) was 3.50.
dl/g (molecular weight approximately 500,000). The solubility of the produced polymer in various solvents is that of poly(2-hexyne).
It was the same as in the case of . The infrared absorption spectrum and ultraviolet absorption spectrum of this product were as follows. Infrared absorption spectrum; 3000-2850 (s), 1650-1850 (w), 1470 (s),
1370 (m), 1280 (w), 1200 (w), 1100 (m), 10
00
(w), 720 (w), UV absorption spectrum (in cyclohexane); shoulder at 290 nm (ε810) absorption limit 350 nm Example 7 Same as Example 1 except that 0.50 mol of 2-octyne was used as the monomer. to perform polymerization, 2
- A chain polymer of octyne was obtained. The yield of the produced polymer was 63%, and the intrinsic viscosity (in toluene, 30℃) was 3.16.
dl/g (molecular weight approximately 380,000). The solubility of the produced polymer in various solvents is that of poly(2-hexyne).
It was the same as in the case of . The analytical values of the produced polymer were as follows. Elemental analysis value [as (C 8 H 14 ) o ]; Calculated value, C, 87.19; H, 12.81; Actual value, C, 86.67; H, 12.91; Infrared absorption spectrum; 3000-2850 (s), 1650- 1580(w), 1470(s),
1370 (m), 1260 (w), 1100 (m), 1010 (m), 80
0
(w), 720(m), Example 8 Polymerization was carried out in the same manner as in Example 1 except that 0.50 mol of 2-nonine was used as a monomer, and 2-
A chain polymer of nonine was obtained. The yield of the produced polymer is
60%, intrinsic viscosity (in toluene, 30℃) is 2.20dl/
g (molecular weight approximately 210,000). The solubility of the resulting polymer in various solvents was similar to that of poly(2-hexyne). Further, the infrared absorption spectrum and ultraviolet absorption spectrum of this product were as follows. Infrared absorption spectrum; 3000-2850 (s), 1660-1580 (w), 1470-1450
(s), 1370-1360 (m), 1110 (m), 1070 (w),
1010 (m), 720 (m) Ultraviolet absorption spectrum; Shoulder at 280 nm (ε950) Absorption limit 345 nm Example 9 Polymerization was carried out in the same manner as in Example 1, except that 0.50 mol of 2-decyne was used as the monomer. , 2-
A chain polymer of decine was obtained. The yield of the produced polymer is
50%, and the intrinsic viscosity was 2.31 dl/g (molecular weight approximately 250,000). The solubility of the resulting polymer in various solvents was similar to that of poly(2-hexyne). The analytical values of the produced polymer were as follows. Elemental analysis value [as (C 10 H 18 ) o ]; Calculated value, C, 86.88; H, 13.12 Actual value, C, 86.51; H, 12.98 Infrared absorption spectrum; 3000-2850 (s), 1650-1580 ( w), 1470(s),
1370 (m), 1260 (w), 1100 (m), 1030-1010
(m), 800 (w), 720 (m) Ultraviolet absorption spectrum; Shoulder at 290 nm (ε500) Absorption limit 335 nm Example 10 Tetra-n-butyltin was used as the reducing agent instead of tetraphenyltin, as shown in the table below. Polymerization was carried out in the same manner as in Example 1 except that 0.50 mol of 2-alkyne was used, and the results shown in the table below were obtained.

【表】 上記実施例1、3、6、7、8、9および10で
得られた重合体をそれぞれトルエン溶液とし、キ
ヤスチングすることによつて、いずれも透明で丈
夫なフイルムを得た。2−ヘキシン、2−ヘプチ
ン、2−オクチン、2−ノニン、2−デシンの順
で重合体のフイルムは柔軟性を増した。 以上説明し、実施例に示したところは、本発明
の理解を助けるための代表的例示に係わるもので
あり、本発明はこれらの例示に制限されることな
く、発明の要旨内でその他の変更例をとることが
できるものである。
[Table] The polymers obtained in Examples 1, 3, 6, 7, 8, 9 and 10 were dissolved in toluene and casted to obtain transparent and durable films. The flexibility of the polymer film increased in the order of 2-hexyne, 2-heptyne, 2-octyne, 2-nonine, and 2-decyne. What has been explained above and shown in the examples is related to typical examples to help the understanding of the present invention, and the present invention is not limited to these examples, and other changes may be made within the gist of the invention. An example can be taken.

Claims (1)

【特許請求の範囲】 1 一般式() CH3−C≡C−R () (この式において、Rはメチル基を除く置換基を
有しないアルキル基を示す)で表わされる2−ア
ルキンを単量体とする一般式() で表わされ、重量平均分子量1万以上の鎖状重合
体。 2 一般式() CH3−C≡C−R () (この式において、Rはメチル基を除く置換基を
有しないアルキル基を示す)で表わされる2−ア
ルキンを、五塩化モリブデン又は六塩化タングス
テンとホウ素、アルミニウム、ケイ素、錫、鉛、
ヒ素又はアンチモンを含む有機金属還元剤とを組
合わせてなる触媒の存在下で重合させることを特
徴とする2−アルキン類の重合方法。
[Claims] 1 2-alkyne represented by the general formula () CH 3 -C≡C-R () (in this formula, R represents an alkyl group having no substituent other than a methyl group) General formula for mass () A chain polymer with a weight average molecular weight of 10,000 or more. 2 A 2-alkyne represented by the general formula () CH 3 -C≡C-R () (in this formula, R represents an alkyl group having no substituent except a methyl group) is converted into molybdenum pentachloride or hexachloride. Tungsten and boron, aluminum, silicon, tin, lead,
A method for polymerizing 2-alkynes, which comprises polymerizing in the presence of a catalyst in combination with an organometallic reducing agent containing arsenic or antimony.
JP12878681A 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations Granted JPS5832608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12878681A JPS5832608A (en) 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12878681A JPS5832608A (en) 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations

Publications (2)

Publication Number Publication Date
JPS5832608A JPS5832608A (en) 1983-02-25
JPH0143766B2 true JPH0143766B2 (en) 1989-09-22

Family

ID=14993412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12878681A Granted JPS5832608A (en) 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations

Country Status (1)

Country Link
JP (1) JPS5832608A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964610A (en) * 1982-10-05 1984-04-12 Mitsubishi Chem Ind Ltd Hydrocarbon polymer and separation membrane comprising same

Also Published As

Publication number Publication date
JPS5832608A (en) 1983-02-25

Similar Documents

Publication Publication Date Title
Foucher et al. Synthesis, characterization, and properties of high molecular weight unsymmetrically substituted poly (ferrocenylsilanes)
CN108699187B (en) Monofunctional or telechelic copolymers of 1, 3-butadiene and ethylene
CN1220669A (en) New compounds having one group 13 element, bound with one mono- or di-anionic trident ligand, method of preparation and application thereof as polymerisation catalysts
Matyjaszewski Anionic ring‐opening polymerization of cyclotetrasilanes
US3265640A (en) Crosslinked polymers from alpha, alpha-dichloro-p-xylene and polysubstituted benzenes
JPS6317282B2 (en)
JPS5986605A (en) Manufacture of polymer having aromatic ring in main chain
JPH0143766B2 (en)
Morton et al. Nuclear Magnetic Resonance Studies of the Propagating Chain End in the Organolithium Polymerization of Dienes. III. 1, 3-Pentadienes and 2, 4-Hexadiene
Evans et al. Crosslinking mechanism in the reactions of poly (difluorophosphazene) with alkyllithium reagents
JPH0224284B2 (en)
JPS62260808A (en) O-substituted phenylacetylene polymer
JPH0225370B2 (en)
JPS6392619A (en) O-(trialkylsilyl)phenylacetylene polymer and its production
JP4520215B2 (en) Method for producing substituted diphenylacetylene polymer with controlled molecular weight
JPH0225369B2 (en)
JPS61254614A (en) Polymer of 1-chloro-1-alkyne
JPH0142964B2 (en)
Wesslén et al. Anionic polymerization of vinyl chloride
JPH0330606B2 (en)
JP3468665B2 (en) Carborane group-containing silicon-based polymer and method for producing the same
JP2974369B2 (en) Diphenylacetylene polymer having a substituent on the aromatic ring
JP3468680B2 (en) Method for producing carborane-containing silicon-based polymer
JPH0224285B2 (en)
JP3225414B2 (en) Method for producing diphenylacetylene polymer