JPS5832608A - Preparation of 2-alkynes and their preparations - Google Patents

Preparation of 2-alkynes and their preparations

Info

Publication number
JPS5832608A
JPS5832608A JP12878681A JP12878681A JPS5832608A JP S5832608 A JPS5832608 A JP S5832608A JP 12878681 A JP12878681 A JP 12878681A JP 12878681 A JP12878681 A JP 12878681A JP S5832608 A JPS5832608 A JP S5832608A
Authority
JP
Japan
Prior art keywords
polymer
catalyst
molecular weight
reducing agent
alkyne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12878681A
Other languages
Japanese (ja)
Other versions
JPH0143766B2 (en
Inventor
Toshinobu Higashimura
東村 敏延
Toshio Masuda
俊夫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12878681A priority Critical patent/JPS5832608A/en
Publication of JPS5832608A publication Critical patent/JPS5832608A/en
Publication of JPH0143766B2 publication Critical patent/JPH0143766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the titled soluble and high-molecular weight polymer in high yield applicable as a semiconductor, gas absorber, separating film, photoresist, etc., by polymerizing a 2-alkyne in the presence of a catalyst of the MoCl5- or WCl6-reducing agent type. CONSTITUTION:A 2-alkyne (e.g., 2-hexyne, etc.) shown by the formula[R is (substituted) alkyl except methyl]is polymerized in the presence of a catalyst obtained by combining MoCl5 or WCl6 as a main catalyst with a reducing agent (e.g., tetra-n-butyltin, triphenyl-antimony, etc.) such as an organometallic compound, metal hydroxide, etc., to give a chain polymer having a molecular weight >=10,000. A ratio of the 2-alkyne to the catalyst is properly 100:(5-0.2) by weight and a molar ratio of the reducing agent to the main catalyst is 0.3-3. A (halogenated) hydrocarbon, etc. is preferably used as a solvent for polymerization.

Description

【発明の詳細な説明】 この発明は新規の重合体およびそわを製造する方法に係
わるものであって、本発明の第1の目的は2−アルキン
類を単量体とする新規の重合体を提供することにあり、
本発明の第一の目的はか\る重合体を高い反応率で製造
する方法を提供することにある。しかして上記第1の目
的は本発明に従い、 一般式 %式%(1) (この弐においてRはメチル基を除くアルキル基であり
、このアルキル基はその基の水素の7個以上が置換基で
置換されていてもよい)で表わされるコーアルキンを単
量体とする、分子量1万以上の鎖状重合体によって達成
され、更に上記第2の目的は本発明に従い、上記(1)
式で表わされるλ−アルキ゛ンを、五塩化モリブデン又
は六塩化タングステンと還元剤とを組合わせてなる触媒
の存在下で重合させることによって達成される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel polymer and a method for producing foam, and the first object of the present invention is to produce a novel polymer containing 2-alkynes as a monomer. Our mission is to provide
The first object of the present invention is to provide a method for producing such a polymer at a high reaction rate. According to the present invention, the above first object is achieved by the general formula % formula % (1) (In this 2, R is an alkyl group other than a methyl group, and this alkyl group has 7 or more hydrogen atoms as substituents. According to the present invention, the second object is achieved by a chain polymer having a molecular weight of 10,000 or more and having a co-alkyne monomer represented by
This is achieved by polymerizing a λ-alkyne represented by the formula in the presence of a catalyst comprising molybdenum pentachloride or tungsten hexachloride in combination with a reducing agent.

従来、非置換アセチレンや、/−へ千シン、フェニルア
セチレンなどの末端アセチレンの重合にはチーグラー型
触媒(例えば、チタンテトラ−n−ブトキシド又は鉄ア
セチルアセトネートと有機アルミニウム化合物との混合
物)が非常に有効な触媒となり、高収率で高分子量の重
合体が得られた。しかし、λ−アルキン類などの内部ア
セチレンは立体障害のためチーグラ触媒により実質的に
重合せず、高分子量の重合体が得られていなかった・ 本発明者等は、さきに六塩化タングステンを主体とする
触媒を用いてアセチレン誘導体から重合体を製造する方
法を提案した(特公昭!j−23j6j号、特公昭j 
j −/7θy2号、特公昭j4t−ダ3037号、特
公昭j3−307.22号、特願昭j j −106グ
j6号)′。
Conventionally, Ziegler-type catalysts (e.g., titanium tetra-n-butoxide or a mixture of iron acetylacetonate and organoaluminum compounds) have been very difficult to polymerize unsubstituted acetylenes and terminal acetylenes such as /-hexene and phenylacetylene. It became an effective catalyst, and a high molecular weight polymer was obtained in high yield. However, internal acetylenes such as λ-alkynes were not substantially polymerized by Ziegler catalysts due to steric hindrance, and high molecular weight polymers were not obtained. proposed a method for producing polymers from acetylene derivatives using a catalyst (Tokuko Sho!j-23j6j,
J-/7θy2 No. 3037, Sho J3-307.22, Sho J J-106 GJ6)'.

本発明者等はさらに内部アセチレンから高重合体の得ら
れる重合方法について鋭意研究を重ねた結果、五塩化モ
リブデン又は六塩化タングステンと還元剤とを組合わせ
てなる触媒を用いることによってコーアルキン類の重合
が容易に進行し、生成重合体が可溶性で、その分子量が
非常に大(分子量7万以上、特に/θ万〜/θθ−万)
となることを見出し、この知見に基いて本発明を完成し
たのである。
The present inventors further conducted extensive research on polymerization methods for obtaining high polymers from internal acetylene, and found that co-alkynes can be polymerized by using a catalyst consisting of a combination of molybdenum pentachloride or tungsten hexachloride and a reducing agent. proceeds easily, the resulting polymer is soluble, and its molecular weight is very large (molecular weight of 70,000 or more, especially /θ0,000 to /θθ-10,000).
The present invention was completed based on this finding.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の一般式CH,−0ミC−Rで表わされるコーア
ルキン類において、式中Rはメチル基を除くアルキル基
であり、このアルキル基は更に置換基を有してもよく、
その置換基としてはアルキル基、アリール基、アルコキ
シル基、アリールオキシ基、ハロゲンなどが挙げられる
In the co-alkynes of the present invention represented by the general formula CH, -0miC-R, R is an alkyl group other than a methyl group, and this alkyl group may further have a substituent,
Examples of the substituent include an alkyl group, an aryl group, an alkoxyl group, an aryloxy group, and a halogen.

本発明における重合触媒は、五塩化モリブデン(MOO
4)又は六塩化タングステン(WC41)を主触媒とし
゛、これに第二成分として種々の還元剤を組合わせたも
のである。
The polymerization catalyst in the present invention is molybdenum pentachloride (MOO
4) Or, tungsten hexachloride (WC41) is used as the main catalyst, and various reducing agents are combined with this as the second component.

この還元剤としては種々の有機金属化合物および金属水
素化物が用いられる。有機金属化合物としては、ホウ素
、アルミニウム、ケイ素、錫、鉛、ヒ素、アンチモンな
どを含むものが挙げられる。
Various organometallic compounds and metal hydrides are used as the reducing agent. Examples of organometallic compounds include those containing boron, aluminum, silicon, tin, lead, arsenic, antimony, and the like.

これらの中で、取扱いの容易さ、入手の容易さ、および
有効性の点で、特に好ましいのはテトラフェニル錫、テ
トラ−n−ブチル錫などの有機錫化合物である。また金
属水素化物としてはリチウムアルミニウムヒドリド、ナ
トリウムボロヒドリド、ナトリウムヒドリドなどが用い
られる。
Among these, organic tin compounds such as tetraphenyltin and tetra-n-butyltin are particularly preferred in terms of ease of handling, availability, and effectiveness. Further, as the metal hydride, lithium aluminum hydride, sodium borohydride, sodium hydride, etc. are used.

単量体である2−アルキン類と主触媒との割合は、重量
比で、前者/θ0に対し後者3〜O0−の範囲が適当で
あり、還元剤対主触媒の割合はモル比で0.3〜3の範
囲が好ましい。触媒は溶液状で用いられ、主触媒と還元
剤を溶媒(後記の重合反応溶媒と同様のものが用いられ
る)に溶解し、30〜60℃で10〜60分間放置した
後に用いるのがよい。
The weight ratio of the 2-alkynes, which are monomers, and the main catalyst is appropriately within the range of 3 to O0 for the former, and the ratio of the reducing agent to the main catalyst is 0 in terms of molar ratio. A range of .3 to 3 is preferred. The catalyst is preferably used in the form of a solution, and the main catalyst and reducing agent are dissolved in a solvent (the same solvent as the polymerization reaction solvent described later is used), and the solution is left at 30 to 60°C for 10 to 60 minutes before use.

重合反応の溶媒としては、炭化水素、ハロゲン化炭化水
素などを用いるのが好ましい。特に炭化水素であるベン
ゼン、トルエン、シクロヘキサンなどが入手の容易さ、
および重合において高い収率が達成される点などから好
適である。
As the solvent for the polymerization reaction, it is preferable to use hydrocarbons, halogenated hydrocarbons, and the like. In particular, hydrocarbons such as benzene, toluene, and cyclohexane are easily available,
It is also preferred because a high yield can be achieved in polymerization.

重合反応における単量体の濃度はθ、/〜jモル/lの
範囲が好ましい。重合反応の温度は通常θ〜60℃、反
応時間は数十分〜数十時間の範囲から選択される。
The monomer concentration in the polymerization reaction is preferably in the range θ, / to j moles/l. The temperature of the polymerization reaction is usually selected from θ to 60°C, and the reaction time is selected from the range of several tens of minutes to several tens of hours.

反応終了後、反応系を、反応に用いた溶媒で希釈したの
ち、大量のメタノール中に投入すると生成重合体が沈澱
するので、これを炉別、乾燥する。
After the reaction is completed, the reaction system is diluted with the solvent used in the reaction and then poured into a large amount of methanol, which precipitates the produced polymer, which is then separated in an oven and dried.

本発明によるときは、λ−アルキン類から新規の鎖状重
合体を高収率で得ることができる。
According to the present invention, novel chain polymers can be obtained in high yield from λ-alkynes.

生成重合体は7万以上、特に10万〜/θO万という、
アセチレン類重合体としては非常罠高い分子量を有する
うえに、トルエン、シクロヘキサンなどの炭化水素類に
完全に溶解するという特徴を有する。かくして得られた
重合体は半導体、ガス吸着体、分離膜、フォトレジスト
などへの応用が可能である。
The produced polymer is 70,000 or more, especially 100,000 to /θ00,000,
As an acetylene polymer, it has an extremely high molecular weight and is characterized by being completely soluble in hydrocarbons such as toluene and cyclohexane. The polymer thus obtained can be applied to semiconductors, gas adsorbents, separation membranes, photoresists, etc.

次に実施例により本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例/ 乾燥窒素雰囲気下で充分精製したトルエン/1c13に
、五塩化モリブデン30ミリモルおよびテトラフェニル
錫30ミリモルを加え、30℃で約11分間熟成させた
Example/ 30 mmol of molybdenum pentachloride and 30 mmol of tetraphenyltin were added to toluene/1c13 that had been sufficiently purified under a dry nitrogen atmosphere, and the mixture was aged at 30° C. for about 11 minutes.

得られた触媒溶液に2−ヘキジンi、oモルを添加し%
30℃で2ダ時間重合させた。
Add i,o mol of 2-hexine to the obtained catalyst solution to give %
Polymerization was carried out at 30°C for 2 hours.

反応終了後、混合物を!tのトルエンに溶解したのち、
大量のメタノール中に投入して生成重合体を沈澱させ、
炉別乾燥した。メタノール不溶性重合体の生成量は、コ
ーヘキシンの仕込み量に対して?λ%であった。
After the reaction is complete, mix! After dissolving in t of toluene,
Pour into a large amount of methanol to precipitate the produced polymer,
Dry in oven. Is the amount of methanol-insoluble polymer produced relative to the amount of cohexin charged? It was λ%.

生成重合体の重量平均分子量は光散乱法によれば/10
万であり、トルエン中、30℃で測定した固有粘度/d
 Y 、j j di / fであった。
According to the light scattering method, the weight average molecular weight of the produced polymer is /10
Intrinsic viscosity/d measured in toluene at 30°C
Y, j j di/f.

生成重合体は白色の固体であり、ベンゼン、トルエン、
シクロヘキサン、n−ヘキサン、テトラヒドロフラン′
に完全に溶解し、四塩化炭素、クロロホルみ、ジエチル
エーテルに一部可溶、二塩化エチレン、アセトン、酢酸
エチル、ニトロベンゼン、アセトニトリルに不溶であっ
た。
The resulting polymer is a white solid, containing benzene, toluene,
Cyclohexane, n-hexane, tetrahydrofuran'
It was completely soluble in carbon tetrachloride, chloroform, and diethyl ether, and insoluble in ethylene dichloride, acetone, ethyl acetate, nitrobenzene, and acetonitrile.

生成重合体の分析値は次の通シである。The analytical values of the produced polymer are as follows.

元素分析値C(C11H1o )nとして〕;計算値、
C,?7.73%; H,/2.27%実測値、O,c
!’7.ゲタ%;H2/コ1.27%赤外吸収スペクト
ル: 3000〜21?!0(e) 、 /ljθ〜/jrθ
(W)、 /4t7θ(B)。
As elemental analysis value C(C11H1o)n]; calculated value,
C,? 7.73%; H, /2.27% actual value, O, c
! '7. Geta%; H2/co1.27% Infrared absorption spectrum: 3000-21? ! 0(e), /ljθ~/jrθ
(W), /4t7θ(B).

/32θ(m)、 /26θ(ロ)、///θ〜/θθ
O佃)。
/32θ(m), /26θ(b), ///θ~/θθ
O Tsukuda).

FOO(@、 ?2θ(m) cm−’ 。FOO(@, ?2θ(m) cm-'.

紫外吸収スペクトル; (シクロヘキサン)λmax 290nm、 g ma
x/2θθnm、吸収限界3jθnm。
Ultraviolet absorption spectrum; (cyclohexane) λmax 290 nm, g ma
x/2θθnm, absorption limit 3jθnm.

炭素/3核磁気共鳴スペクトル(I素化クロロホルム) δ/3f、0(C3)、 /32,3(C2)、 34
.θ(0,)。
Carbon/3 nuclear magnetic resonance spectrum (I-substituted chloroform) δ/3f, 0 (C3), /32,3 (C2), 34
.. θ(0,).

201.f(C,)、/り、♂(c、)、  i’s、
o (C1l) ppm c+以上の分析結果から、生
成重合体は、予期される次の構造を有するものと結論さ
れる。
201. f(C,), /ri, ♂(c,), i's,
o (C1l) ppm From the analysis results of c+ or higher, it is concluded that the resulting polymer has the expected structure shown below.

(nは重量平均で1万3千) 生成重合体の軟化点は222〜237℃であり、示差熱
分析によれば、軟化点付近において発熱のみが見られた
。この重合体は空気中、室温で数ケ月放置しても分子量
はほとんど低下しなかった。
(n is 13,000 on weight average) The softening point of the produced polymer was 222 to 237°C, and according to differential thermal analysis, only heat generation was observed near the softening point. Even when this polymer was left in the air at room temperature for several months, the molecular weight hardly decreased.

実施例2 主触媒としで五塩化モリブデンの代りに六塩化タングス
テンを用いる以外は実施例/と同様にしてコーヘキシン
の重合を行なった。メタノール不溶性重合体の生成量は
単量体の仕込み量に対して57%であった。生成重合体
の重量平均分子量は20万、トルエン中、30℃におけ
る固有粘度は0.!ダdi/りであった。
Example 2 Cohexine was polymerized in the same manner as in Example except that tungsten hexachloride was used as the main catalyst instead of molybdenum pentachloride. The amount of methanol-insoluble polymer produced was 57% of the amount of monomer charged. The weight average molecular weight of the produced polymer was 200,000, and the intrinsic viscosity at 30°C in toluene was 0. ! It was a di/ri.

比較例/ 還元剤を用いずに、主触媒である五塩化モリブデン又は
六塩化タングステンをそれぞれ単独で使用し、その他は
実施例/におけると同様にして反応を行なわせたところ
、いずれもメタノール不溶性重合体の収率は0%であっ
た。
Comparative Example: A reaction was carried out in the same manner as in Example/, except that the main catalyst, molybdenum pentachloride or tungsten hexachloride, was used alone without using a reducing agent. The yield of coalescence was 0%.

実施例3 主触媒として五塩化モリブデンを用い、還元剤として、
下記表に示す化合物を使用し、実施例1と同様にしてコ
ーヘキシンの重合を行なった。生成重合体の収率および
固有粘度(トルエン中、3θ℃)を次表罠示す。
Example 3 Molybdenum pentachloride was used as the main catalyst, and as the reducing agent,
Cohexin was polymerized in the same manner as in Example 1 using the compounds shown in the table below. The yield and intrinsic viscosity (in toluene, 3θ°C) of the produced polymer are shown in the following table.

還  元  剤  収率(%)固有粘度(di/l)分
子量テトラ−n−ブチル錫  〈/3.ダ6    グ
?万トリフェニル錫クロリド   !3    3.3
/     412万トリベンジル錫クロリド   <
17     6.6/     2!tO万トリフエ
ニルアンチモン   4t3    4t、lθ   
  70万実施例ダ 溶媒としてトルエンの代シに二塩化エチレンを用いるこ
と以外は全〈実施例/と同様に反応を行なわせたところ
、重合体の生成量は単量体の仕込み量に対してλり%、
重合体の固有粘度はj、/ / dA’ / f (分
子量約35万)であった。
Reducing agent Yield (%) Intrinsic viscosity (di/l) Molecular weight Tetra-n-butyltin 〈/3. Da 6 gu? 10,000 triphenyltin chloride! 3 3.3
/ 4.12 million tribenzyltin chloride <
17 6.6/ 2! tO million triphenyl antimony 4t3 4t, lθ
Example 700,000 The reaction was carried out in the same manner as in Example 7, except that ethylene dichloride was used instead of toluene as the solvent, and the amount of polymer produced was proportional to the amount of monomer charged. λ%,
The intrinsic viscosity of the polymer was j, / / dA' / f (molecular weight approximately 350,000).

実施例! 実施例/と同様にして60℃で重合を行なわせたところ
、重合体の生成量は単量体の仕込み量に対して乙1%、
重合体の固有粘度は2.20dll?(分子量約コ3万
)であった〇実施例6 単量体として0.j 0モルの一一ヘプチンヲ使用する
以外は実施例/と同様にして重合を行ない、−−ヘプチ
ンの鎖状重合体を得た。生成重合体の収率は57%、固
有粘度(トルエン中、30℃)はj、j Odi/ f
 (分子量約!θ万)であった。生成重合体の各種溶媒
に対する溶解性はポリ(コーヘキシン)の場合と同様で
あった。
Example! Polymerization was carried out at 60°C in the same manner as in Example/, and the amount of polymer produced was 1% of the amount of monomer charged.
Is the intrinsic viscosity of the polymer 2.20 dll? (molecular weight approximately 30,000) Example 6 As a monomer, 0. Polymerization was carried out in the same manner as in Example except that 0 mol of 1-heptine was used to obtain a chain polymer of --heptine. The yield of the produced polymer was 57%, and the intrinsic viscosity (in toluene, 30°C) was j, j Odi/f
(molecular weight approximately! θ million). The solubility of the resulting polymer in various solvents was similar to that of poly(cohexine).

またこのものの赤外吸収スペクトルおよび紫外吸収スペ
クトルは次の通りであった。
The infrared absorption spectrum and ultraviolet absorption spectrum of this product were as follows.

赤外吸収スペクトル; 3θθ0〜2rjO(e)、  /4jO〜/rjO(
v?)。
Infrared absorption spectrum; 3θθ0~2rjO(e), /4jO~/rjO(
v? ).

/4t70(s)、   /J70(m)、   ン2
70@)、   /200(v/)。
/4t70(s), /J70(m), N2
70 @), /200 (v/).

/10θに)、100θ(w) +  720 (W)
s紫外吸収スペクトル(シクロヘキサン中);λりOn
mにショルダー(ε?/θ) 吸収限界、? j Onm 実施例2 単量体として0.50モルのコーオクチンを使用する以
外は実施例1と同様にして重合を行ない、−一オクチン
の鎖状重合体を得だ。生成重合体の収率は63%、固有
粘度(トルエン中、jθ’c)はJ、/4a/f(分子
量約j/万)であった。生成重合体の各種溶媒に対する
溶解性はポリ(2−ヘキシン)の場合と同様であった。
/10θ), 100θ(w) + 720(W)
s Ultraviolet absorption spectrum (in cyclohexane); λ On
Shoulder (ε?/θ) at m Absorption limit, ? j Onm Example 2 Polymerization was carried out in the same manner as in Example 1 except that 0.50 mol of co-octyne was used as the monomer to obtain a -1-octyne chain polymer. The yield of the produced polymer was 63%, and the intrinsic viscosity (in toluene, jθ'c) was J,/4a/f (molecular weight approximately J/10,000). The solubility of the resulting polymer in various solvents was similar to that of poly(2-hexyne).

生成重合体の分析値は次の通りであった。The analytical values of the produced polymer were as follows.

元素分析値[(C11H14)Hとして〕;計算値、O
,J”?、/9 ;  H,/、2.J’/。
Elemental analysis value [as (C11H14)H]; calculated value, O
, J"?, /9; H, /, 2. J'/.

実測値、O,J’4j7 ;  H,/2.りl。Actual value, O, J'4j7; H, /2. ri l.

赤外吸収スペクトル; 3θ00〜コ♂!θ(θ)、/660〜isro(w)
Infrared absorption spectrum; 3θ00~ko♂! θ(θ), /660~isro(w)
.

/4t70(8)、  /370(m)、  /、24
(7(W)、  /100(p)。
/4t70(8), /370(m), /,24
(7(W), /100(p).

1010fp)、  IO’0@)、  ?2θ(m)
1010fp), IO'0@), ? 2θ (m)
.

実施例1 単量体としてO,−tOモルのコーノニンを使用する以
外は実施例1と同様にして重合を行ない、λ−ノニンの
鎖状重合体を得た。生成重合体の収率は60%、固有粘
度(トルエン中、30℃)はコ、−20dll?(分子
量約27万)であった。
Example 1 Polymerization was carried out in the same manner as in Example 1 except that O, -tO mol of cornonine was used as the monomer, to obtain a chain polymer of λ-nonine. The yield of the produced polymer was 60%, and the intrinsic viscosity (in toluene, 30°C) was -20 dll? (molecular weight approximately 270,000).

生成重合体の各種溶媒に対する溶解性はポリ(−−ヘキ
シン)の場合と同様であった。
The solubility of the resulting polymer in various solvents was similar to that of poly(--hexyne).

また、このものの赤外吸収スペクトルおよび紫外吸収ス
ペクトルは次の通りであった。
Further, the infrared absorption spectrum and ultraviolet absorption spectrum of this product were as follows.

赤外吸収スペクトル; 3000〜8jO(日)、     /660〜1st
rθ0リ 。
Infrared absorption spectrum; 3000-8jO (day), /660-1st
rθ0ri.

/4t7θ〜/4tjO(8)、  /370〜/36
0←)。
/4t7θ~/4tjO(8), /370~/36
0←).

/llθ(→、/θ7θ(w)、  10101o(、
7Jθ←)紫外吸収スペクトル; 2 / Onmにショルダー(εりzO)吸収限界j4
tjnm 実施例り 単量体として0.10モルのコープシンを使用する以外
は実施例1と同様にして重合を行ない、コープシンの鎖
状重合体を得た。生成重合体の収率は!θ%、固有粘度
はλ、3/di/f(分子量約−!万)であった。生成
重合体の各種溶媒に対する溶解性はポリ(2−ヘキシン
)の場合と同様であった。
/llθ(→, /θ7θ(w), 10101o(,
7Jθ←) Ultraviolet absorption spectrum; Shoulder (εrizO) absorption limit j4 at 2/Onm
tjnm Example Polymerization was carried out in the same manner as in Example 1 except that 0.10 mol of copesin was used as a monomer to obtain a chain polymer of copesin. What is the yield of the produced polymer? θ%, and the intrinsic viscosity was λ, 3/di/f (molecular weight approximately -!0,000). The solubility of the resulting polymer in various solvents was similar to that of poly(2-hexyne).

生成重合体の分析値は次、の通りであった。The analytical values of the produced polymer were as follows.

元素分析値[CCl0H18)nとして〕;計算値、O
,rt、J”r ;  H,/3./2実測値、0.7
6、j/ ;  H,/2.りl赤外吸収スペクトル: 3000−2rjθ(s)、  1tjo〜/j♂θ(
W)。
Elemental analysis value [as CCl0H18)n]; calculated value, O
, rt, J”r; H, /3./2 actual value, 0.7
6, j/ ; H, /2. Infrared absorption spectrum: 3000-2rjθ(s), 1tjo~/j♂θ(
W).

/り7θ(s)、  /37θ(m)、  /J40(
W)、  /10θ(m) 。
/7θ(s), /37θ(m), /J40(
W), /10θ(m).

/θ3o 〜lo10(m)、  troo(W)、 
 72θ(m)紫外吸収スペクトル; コタonmにショルダー(εjθθ) 吸収限界33jnrn 実施例IO 還元剤としてテトラフェニル錫の代りにテトラ−′n−
ブチル錫を用い、下記表罠示すコーアルキンを0.j 
0モル使用する以外は実施例/と同様にし重合を行ない
、下記表に示す結果を得た。
/θ3o ~lo10(m), troo(W),
72θ (m) ultraviolet absorption spectrum; shoulder (εjθθ) absorption limit 33jnrn Example IO Tetra-'n- instead of tetraphenyltin as a reducing agent
Using butyltin, 0.0% co-alkyne as shown in the table below. j
Polymerization was carried out in the same manner as in Example except that 0 mol was used, and the results shown in the table below were obtained.

−−ヘプチン   2!   コ、4t4   .27
万−一オクチン   !2   コ、20    λダ
万2−ノニン  67    八?Oλθ万万一−デシ
ン グ2  2.10  2j万上記実施例/1j、6
、?、11りおよびIOで得られた重合体をそれぞれト
ルエン溶液とし、キャスチングすることによって、いず
れも透明で丈夫なフィルムを得た。λ−ヘキシン、−一
ヘブチン、−一オクチン、λ−ノニン、λ−デシンの順
で重合体のフィルムは柔軟性を増した。
--Heptin 2! Ko, 4t4. 27
By any chance Octin! 2 ko, 20 λdaman 2-nonin 67 8? Oλθ Should happen - Desing 2 2.10 2j 10,000 Above example/1j, 6
,? The polymers obtained in , 11 and IO were made into toluene solutions and cast to obtain transparent and durable films. The polymer films became more flexible in the order of λ-hexyne, -monohebutyne, -monooctyne, λ-nonine, and λ-decyne.

以上説明し、実施例に示したところは、本発明の理解を
助けるだめの代表的例示に係わるものでsb、本発明は
これらの例示に制限されるととなく、発明の要旨内でそ
の他の変更例をとることかできるものである。
What has been explained above and shown in the examples are representative examples to help understand the present invention, and the present invention is not limited to these examples, and may include other examples within the gist of the invention. It is possible to take a modified example.

□ 出 願 人   東   村   敏   延代理人 
弁理土木色 林
□ Applicant Toshinobu Higashimura Agent
Patent law civil engineering color Hayashi

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 %式% (この弐において、Rはメチル基を除くアが=ル基であ
り、こめアルキル基はその基の水素の1個以上が置換基
で置換されていてもよい)で表わされる2−アルキンを
単量体とする、分子量1万以上の鎖状重合体
(1) General formula % Formula % (In this 2, R is an a=l group excluding a methyl group, and one or more hydrogens of the alkyl group may be substituted with a substituent.) A chain polymer with a molecular weight of 10,000 or more, whose monomer is 2-alkyne represented by
(2)  一般式 %式% (この式において、Rはメチル基を除くアルキル基でア
リ、このアルキル基はその基の水素の1個以上が置換基
で置換されていてもよい)で表わされるλ−アルキンを
、五塩化モリブデン又は六塩化タングステンと還元剤と
を組合わせてなる触媒の存在下で重合させることを特徴
とするノーアルキン類の重合方法
(2) General formula % Formula % (In this formula, R is an alkyl group other than a methyl group, and this alkyl group may have one or more hydrogen atoms substituted with a substituent.) A method for polymerizing non-alkynes, which comprises polymerizing λ-alkynes in the presence of a catalyst comprising a combination of molybdenum pentachloride or tungsten hexachloride and a reducing agent.
JP12878681A 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations Granted JPS5832608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12878681A JPS5832608A (en) 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12878681A JPS5832608A (en) 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations

Publications (2)

Publication Number Publication Date
JPS5832608A true JPS5832608A (en) 1983-02-25
JPH0143766B2 JPH0143766B2 (en) 1989-09-22

Family

ID=14993412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12878681A Granted JPS5832608A (en) 1981-08-19 1981-08-19 Preparation of 2-alkynes and their preparations

Country Status (1)

Country Link
JP (1) JPS5832608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964610A (en) * 1982-10-05 1984-04-12 Mitsubishi Chem Ind Ltd Hydrocarbon polymer and separation membrane comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964610A (en) * 1982-10-05 1984-04-12 Mitsubishi Chem Ind Ltd Hydrocarbon polymer and separation membrane comprising same
JPH0459325B2 (en) * 1982-10-05 1992-09-22 Mitsubishi Chem Ind

Also Published As

Publication number Publication date
JPH0143766B2 (en) 1989-09-22

Similar Documents

Publication Publication Date Title
Ramakrishnan et al. Functional group-containing copolymers prepared by Ziegler-Natta process
US4250063A (en) Method for chain-opening polymerization of norbornene derivatives
US3265640A (en) Crosslinked polymers from alpha, alpha-dichloro-p-xylene and polysubstituted benzenes
JPH03185006A (en) Preparation of syndiotactic polymer from functional monomer of arylcyclobutene and its bridged derivative
US3326870A (en) Copolymers of olefins and acrylonitrile and a process for producing the same
JPS5832608A (en) Preparation of 2-alkynes and their preparations
US3840511A (en) Diene polymerisation
Evans et al. Crosslinking mechanism in the reactions of poly (difluorophosphazene) with alkyllithium reagents
JPH0224284B2 (en)
JPH0617414B2 (en) Phenylacetylene polymer having a substituent at the ortho position
Pittman Jr et al. Preparation and properties of n6‐tricarbonylchromium‐complexed arylenesiloxane polymers
Wesslén et al. Anionic polymerization of vinyl chloride
JP4520215B2 (en) Method for producing substituted diphenylacetylene polymer with controlled molecular weight
JPS61254614A (en) Polymer of 1-chloro-1-alkyne
JPH0415206A (en) Diphenylacetylene polymer having substituent on aromatic ring
JP3468665B2 (en) Carborane group-containing silicon-based polymer and method for producing the same
JPS59197410A (en) 1-phenyl-1-alkyne polymer
JP2900042B2 (en) Copolymers of substituted acetylenes and norbornene
JPS6392619A (en) O-(trialkylsilyl)phenylacetylene polymer and its production
JP3225414B2 (en) Method for producing diphenylacetylene polymer
SU639175A1 (en) Method of preparing catalyst for polymerization and copymerization of vynil and diene monomers
JP3379590B2 (en) Method for producing diphenylacetylene copolymer
JP3468680B2 (en) Method for producing carborane-containing silicon-based polymer
Sergeyev et al. Carborane-containing poly (arylacetylenes)
US3136746A (en) Process for preparing linear high polymers of nu-vinyl carbazole having a regular structure