JPH0224285B2 - - Google Patents

Info

Publication number
JPH0224285B2
JPH0224285B2 JP16239882A JP16239882A JPH0224285B2 JP H0224285 B2 JPH0224285 B2 JP H0224285B2 JP 16239882 A JP16239882 A JP 16239882A JP 16239882 A JP16239882 A JP 16239882A JP H0224285 B2 JPH0224285 B2 JP H0224285B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer
molecular weight
catalyst
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16239882A
Other languages
Japanese (ja)
Other versions
JPS5953510A (en
Inventor
Toshinobu Higashimura
Toshio Masuda
Tooru Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16239882A priority Critical patent/JPS5953510A/en
Publication of JPS5953510A publication Critical patent/JPS5953510A/en
Publication of JPH0224285B2 publication Critical patent/JPH0224285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は二置換アセチレンから非常に高い分
子量の重合体を製造する方法に関するものであ
る。 従来、アセチレン類の高重合はビニル化合物の
高重合に比べて困難なことが知られている。無置
換アセチレンの重合にはチーグラ型触媒が有効で
あり、更に生成ポリマーのフイルムのドーピング
により高い電気伝導度が観測されることにより、
この方面の研究が盛んに進められている。無置換
アセチレンと同様に多くの一置換アセチレンがチ
ーグラ型触媒によつて重合する。これに対し、二
置換アセチレンがチーグラ型触媒によつて重合
し、高重合体を生成する例は全く知られていな
い。二置換アセチレンから高重合体を得ることに
成功した例としては、本発明者等による、モリブ
テン又はタングステン系の触媒を用いる重合法
(例えば特願昭56−128786号)およびF.A.コツト
ン(Cotton)等による3価のニオブ又はタンタ
ルを含む、空気に不安定な有機金属錯体による重
合法〔マクロモレキユールス
(Macromolecules)第14巻第223頁、1981年〕な
どがあるにすぎない。 本発明者等は二置換アセチレンから高重合体が
得られる重合方法に関して鋭意研究を重ねた結
果、ニオブ又はタンタルのハロゲン化物が非常に
有効な触媒であることを見出し、この知見に基い
て本発明に到達した。 本発明は、入手および取扱いの容易な触媒を用
いて二置換アセチレンの高分子量重合体を製造す
る方法を提供することを目的とするものであつ
て、その要旨とするところはニオブの塩化物、臭
化物或いはヨウ化物又はタンタルの塩化物或いは
臭化物を触媒として用い、二置換アセチレンを重
合することを特徴とする二置換アセチレンの高重
合体の製造法に存するものである。 以下本発明を詳細に説明する。 本発明における二置換アセチレンとは下記一般
式で表わされる化合物である。 R1−C≡C−R2 この式でR1およびR2はアルキル基、アリール
基などであり、これらの基の水素がさらにハロゲ
ン、アリール基、アルコキシ基又はアリールオキ
シ基でいくつか置換されていてもよい。特に好ま
しいのはR1およびR2がC1-10のアルキル基又はフ
エニル基である。 本発明方法で用いられるニオブ又はタンタルの
上記ハロゲン化物は、いずれも市販品として入手
でき、吸湿性ではあるが、酸素に対して安定な粉
末であり、取扱いが容易である。それらのハロゲ
ン化物の中で、特に塩化物および臭化物が高い収
率で高分子量の重合体を生成する。ニオブのヨウ
化物もかなりの活性を示す。 本発明方法における重合触媒の使用量は、通
常、単量体に対して0.1〜5モル%が適当である。 本発明方法の重合反応は溶媒中で行なうのがよ
く、かゝる溶媒としてはトルエンなどの芳香族炭
化水素、シクロヘキサンなどの脂肪族炭化水素、
四塩化炭素、二塩化エチレン等のハロゲン化炭化
水素などがあげられる。 重合温度は単量体の種類、溶媒の種類、その他
の条件により必ずしも一定しないが、通常は50〜
150℃の間で選択する。重合時間は通常、数時間
〜数十時間である。重合は乾燥窒素雰囲気下で行
なう。 本発明方法によると、種々の二置換アセチレン
から非常に高い分子量の重合体を得ることができ
る。生成重合体は、側鎖として置換基が存在する
ため、ポリアセチレンとは異なり、空気に対し安
定であり、かつ可溶性で優れた膜形成能を有して
いる。本発明方法で得られる重合体は気体分離
膜、気体吸着体、フオトレジストなどへの応用が
可能である。 次に実施例を説明する。 実施例 1 充分に精製したトルエン1中に、乾燥窒素雰
囲気下で、よく撹拌しながら五塩化タンタル20ミ
リモルを加え、80℃で溶解した。この溶液に1.0
モルの3−オクチンを添加し、80℃で重合を進行
させた。 24時間後、反応混合物を大量のメタノール中に
投入して生成重合体を沈澱させ、別乾燥した。
重合体の収率は重量法によれば82%であり、その
重量平均分子量(W)は光散乱法によれば88万
であつた。重合体は白色固体であり、軟化点は
210〜220℃であつた。 生成重合体のスペクトルデーターを示すと次の
通りであつた。 プロトン核磁気共鳴スペクトル(CDCl3)δ1.5
〜0.5ppm、 炭素13核磁気共鳴スペクトル(CDCl3)δ136.2
This invention relates to a process for producing very high molecular weight polymers from disubstituted acetylenes. It has been known that high polymerization of acetylenes is more difficult than high polymerization of vinyl compounds. Ziegler-type catalysts are effective for the polymerization of unsubstituted acetylene, and high electrical conductivity was observed due to doping of the resulting polymer film.
Research in this direction is actively underway. Many monosubstituted acetylenes as well as unsubstituted acetylenes are polymerized by Ziegler-type catalysts. On the other hand, there is no known example in which a disubstituted acetylene is polymerized by a Ziegler type catalyst to produce a high polymer. Examples of successful production of high polymers from disubstituted acetylene include a polymerization method using a molybdenum or tungsten catalyst (e.g., Japanese Patent Application No. 128786/1986) by the present inventors, and FA Cotton. There is only a polymerization method using an air-labile organometallic complex containing trivalent niobium or tantalum (Macromolecules, Vol. 14, p. 223, 1981). As a result of intensive research into polymerization methods for obtaining high polymers from disubstituted acetylene, the present inventors discovered that niobium or tantalum halides are very effective catalysts, and based on this knowledge, the present invention reached. The object of the present invention is to provide a method for producing a high molecular weight polymer of disubstituted acetylene using a catalyst that is easy to obtain and handle, and the gist thereof is to provide a method for producing a high molecular weight polymer of disubstituted acetylene using a catalyst that is easy to obtain and handle. The present invention relates to a method for producing a high polymer of disubstituted acetylene, which comprises polymerizing disubstituted acetylene using bromide or iodide or tantalum chloride or bromide as a catalyst. The present invention will be explained in detail below. The disubstituted acetylene in the present invention is a compound represented by the following general formula. R 1 -C≡C-R 2 In this formula, R 1 and R 2 are alkyl groups, aryl groups, etc., and some of the hydrogens of these groups are further substituted with halogen, aryl group, alkoxy group, or aryloxy group. You can leave it there. Particularly preferred is a C 1-10 alkyl group or a phenyl group for R 1 and R 2 . The halides of niobium or tantalum used in the method of the present invention are all commercially available, and are hygroscopic but oxygen-stable powders that are easy to handle. Among these halides, chloride and bromide in particular produce high molecular weight polymers in high yields. Niobium iodide also shows considerable activity. The amount of the polymerization catalyst used in the method of the present invention is usually 0.1 to 5 mol % based on the monomer. The polymerization reaction in the method of the present invention is preferably carried out in a solvent, such as aromatic hydrocarbons such as toluene, aliphatic hydrocarbons such as cyclohexane,
Examples include halogenated hydrocarbons such as carbon tetrachloride and ethylene dichloride. The polymerization temperature is not necessarily constant depending on the type of monomer, type of solvent, and other conditions, but it is usually 50~
Choose between 150℃. Polymerization time is usually several hours to several tens of hours. Polymerization is carried out under a dry nitrogen atmosphere. According to the process of the invention, very high molecular weight polymers can be obtained from various disubstituted acetylenes. Unlike polyacetylene, the produced polymer has substituents as side chains, so it is stable in air, soluble, and has excellent film-forming ability. The polymer obtained by the method of the present invention can be applied to gas separation membranes, gas adsorbents, photoresists, etc. Next, an example will be described. Example 1 20 mmol of tantalum pentachloride was added to sufficiently purified toluene 1 under a dry nitrogen atmosphere with thorough stirring, and dissolved at 80°C. 1.0 in this solution
A molar amount of 3-octyne was added and the polymerization was allowed to proceed at 80°C. After 24 hours, the reaction mixture was poured into a large amount of methanol to precipitate the produced polymer, which was then dried separately.
The yield of the polymer was 82% according to the gravimetric method, and its weight average molecular weight (W) was 880,000 according to the light scattering method. The polymer is a white solid with a softening point of
The temperature was 210-220℃. The spectral data of the produced polymer was as follows. Proton nuclear magnetic resonance spectrum (CDCl 3 ) δ1.5
~0.5ppm, carbon-13 nuclear magnetic resonance spectrum ( CDCl3 ) δ136.2
(

【式】)、23.5〜12.2(6つのアルキル炭素) ppm、 赤外吸収スペクトル1640〜1620cm-1(W:C=
C伸縮)、 紫外吸収スペクトル(n−ヘプタン)370nm以
上で透明、 また、この生成重合体は四塩化炭素、シクロヘ
キサン、n−ヘプタンなどに可溶、テトラヒドロ
フラン、アセトン、ジメチルスルホキシドなどに
不溶であつた。電気伝導度は1×10-18ohm-1cm
-1以下であつた。 実施例 2 実施例1と同様にして、ただし触媒として下記
表に示すものを使用し、3−オクチンの重合を行
なつた。得られたメタノール不溶性重合体の収率
および重量平均分子量を次表に示す。
[Formula]), 23.5-12.2 (6 alkyl carbons) ppm, infrared absorption spectrum 1640-1620cm -1 (W:C=
C stretching), transparent in the ultraviolet absorption spectrum (n-heptane) of 370 nm or more, and the produced polymer was soluble in carbon tetrachloride, cyclohexane, n-heptane, etc., and insoluble in tetrahydrofuran, acetone, dimethyl sulfoxide, etc. . Electrical conductivity is 1×10 -18 ohm -1 cm
It was below -1 . Example 2 3-octyne was polymerized in the same manner as in Example 1, except that catalysts shown in the table below were used. The yield and weight average molecular weight of the methanol-insoluble polymer obtained are shown in the following table.

【表】 実施例 3 実施例1と同様にして、ただし温度および溶媒
の種類の組合わせを変え、3−オクチンの重合を
行なつた。得られたメタノール不溶性重合体の収
率および重量平均分子量を次表に示す。
[Table] Example 3 Polymerization of 3-octyne was carried out in the same manner as in Example 1, except that the combination of temperature and type of solvent was changed. The yield and weight average molecular weight of the methanol-insoluble polymer obtained are shown in the following table.

【表】 実施例 4 単量体として4−オクチンを用いて実施例1と
同様にして重合を行なつた。この場合、触媒とし
て五塩化ニオブを用いたときは76%、五塩化タン
タルを用いたときは63%の収率で不溶性重合体が
得られた。なお単量体として2−オクチンを用い
た場合、五塩化ニオブによりメタノール不溶性重
合体が35%の収率で得られるが、その数平均分子
量は3500に過ぎなかつた。 上記4−オクチンの重合によつて得られた重合
体は次の物性値を有していた。 IRでは 2950〜2850cm-1 (S) 1660〜1580 (W) 1460 (m) 1370 (m) 1115 (m) 1080 (m) 880 (m) 740 (m) に吸収が認められた。 軟化点は300℃以下にない。 元素分析 実測値 C 87.18,H 12.83 計算値 C 87.19,H 12.81 実施例 5 単量体として1−フエニル−1プロピン、触媒
として五臭化タンタルを用いる以外、実施例1と
同様にして重合を行なつた。メタノール不溶性重
合体の収率は57%、その重量平均分子量は92万で
あつた。この重合体は白色固体であり、軟化点は
272℃であつた。 生成重合体のスペクトルデーターは次の通りで
ある。 プロトン核磁気共鳴スペクトル(CDCl3)δ7.0
(br s,5H)、1.4(br s,3H)ppm、 炭素13核磁気共鳴スペクトル(CDCl3
δ140.8,133.4,128.3(いずれもsp2炭素)、21.6
(CH3)ppm.、 赤外吸収スペクトル、3100〜3000,2950〜
2850,1600,1490,1450,1370,1080,1030,
910,760,690cm-1, 紫外吸収スペクトル〔(CH2Cl)2〕λnax284nm、
εnax2720;380nm以上で透明、 生成重合体はトルエン、四塩化炭素、テトラヒ
ドロフランなどに可溶、n−ヘプタン、アセト
ン、メタノールなどに不溶であつた。溶液から薄
膜を調製することができた。電気伝導度は7×
10-18ohm-1cm-1であつた。 実施例 6 実施例5と同様にして、ただし下記の表に示す
温度および溶媒の組合わせで五臭化タンタルによ
る1−フエニル−1−プロピンの重合を行つた。
得られたメタノール不溶性重合体の収率および重
量平均分子量は次の通りであつた。
[Table] Example 4 Polymerization was carried out in the same manner as in Example 1 using 4-octyne as a monomer. In this case, an insoluble polymer was obtained with a yield of 76% when niobium pentachloride was used as a catalyst and 63% when tantalum pentachloride was used as a catalyst. When 2-octyne was used as the monomer, a methanol-insoluble polymer was obtained with a yield of 35% using niobium pentachloride, but its number average molecular weight was only 3,500. The polymer obtained by the above polymerization of 4-octyne had the following physical properties. In IR, absorption was observed at 2950 to 2850 cm -1 (S) 1660 to 1580 (W) 1460 (m) 1370 (m) 1115 (m) 1080 (m) 880 (m) 740 (m). The softening point is not below 300℃. Elemental analysis Measured value C 87.18, H 12.83 Calculated value C 87.19, H 12.81 Example 5 Polymerization was carried out in the same manner as in Example 1 except that 1-phenyl-1 propyne was used as the monomer and tantalum pentabromide was used as the catalyst. Summer. The yield of the methanol-insoluble polymer was 57%, and its weight average molecular weight was 920,000. This polymer is a white solid with a softening point of
It was 272℃. The spectral data of the produced polymer is as follows. Proton nuclear magnetic resonance spectrum (CDCl 3 ) δ7.0
(br s, 5H), 1.4 (br s, 3H) ppm, carbon-13 nuclear magnetic resonance spectrum (CDCl 3 )
δ140.8, 133.4, 128.3 (all sp 2 carbon), 21.6
( CH3 ) ppm., infrared absorption spectrum, 3100~3000, 2950~
2850, 1600, 1490, 1450, 1370, 1080, 1030,
910, 760, 690 cm -1 , UV absorption spectrum [(CH 2 Cl) 2nax 284 nm,
ε nax 2720: Transparent at wavelengths of 380 nm or more, the produced polymer was soluble in toluene, carbon tetrachloride, tetrahydrofuran, etc., and insoluble in n-heptane, acetone, methanol, etc. Thin films could be prepared from the solution. Electrical conductivity is 7×
It was 10 -18 ohm -1 cm -1 . Example 6 Polymerization of 1-phenyl-1-propyne with tantalum pentabromide was carried out in the same manner as in Example 5, but using the temperature and solvent combinations shown in the table below.
The yield and weight average molecular weight of the methanol-insoluble polymer obtained were as follows.

【表】 なお、トルエン中、50℃で重合を行つた場合、
重合体の収率は実質的に0であつた。 以上説明し、実施例に挙げたところは本発明の
理解を助けるための代表的例示に係わるものであ
り、本発明はこれら例示に制限されるものでな
く、発明の要旨内でその他の変更例をとることが
できるものである。
[Table] In addition, when polymerization is carried out at 50℃ in toluene,
The yield of polymer was essentially zero. What has been explained above and mentioned in the examples is related to typical examples to help the understanding of the present invention, and the present invention is not limited to these examples, and other modifications can be made within the gist of the invention. It is something that can be taken.

Claims (1)

【特許請求の範囲】[Claims] 1 ニオブの塩化物、臭化物或いはヨウ化物又は
タンタルの塩化物或いは臭化物を触媒とし、二置
換アセチレンを重合することを特徴とする二置換
アセチレンの重合方法。
1. A method for polymerizing disubstituted acetylene, which comprises polymerizing disubstituted acetylene using niobium chloride, bromide or iodide or tantalum chloride or bromide as a catalyst.
JP16239882A 1982-09-20 1982-09-20 Polymerization of disubstituted acetylene Granted JPS5953510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16239882A JPS5953510A (en) 1982-09-20 1982-09-20 Polymerization of disubstituted acetylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16239882A JPS5953510A (en) 1982-09-20 1982-09-20 Polymerization of disubstituted acetylene

Publications (2)

Publication Number Publication Date
JPS5953510A JPS5953510A (en) 1984-03-28
JPH0224285B2 true JPH0224285B2 (en) 1990-05-29

Family

ID=15753833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16239882A Granted JPS5953510A (en) 1982-09-20 1982-09-20 Polymerization of disubstituted acetylene

Country Status (1)

Country Link
JP (1) JPS5953510A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987209A (en) * 1987-09-28 1991-01-22 The President And Fellows Of Harvard Diethynyl monomers and polymers thereof
JPH0430518U (en) * 1990-07-05 1992-03-11

Also Published As

Publication number Publication date
JPS5953510A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
Matyjaszewski Anionic ring‐opening polymerization of cyclotetrasilanes
JPH0224285B2 (en)
JPH0449561B2 (en)
JP3761632B2 (en) Process for producing crystalline vinyl aromatic polymer having mainly syndiotactic structure
JPH03502712A (en) Silyl- or disilanyl-1,3-butadiyne polymers derived from hexachloro-1,3-butadiene
IL23994A (en) Manufacture of polysulphones
Evans et al. Crosslinking mechanism in the reactions of poly (difluorophosphazene) with alkyllithium reagents
JPS61254614A (en) Polymer of 1-chloro-1-alkyne
JPS62260808A (en) O-substituted phenylacetylene polymer
JPH0142964B2 (en)
JPH0225369B2 (en)
JPH0224284B2 (en)
JPH01108203A (en) Manufacture of polyalkenyl ether
US3875131A (en) Process for producing heat-stable polyvinyl chloride
JPH0330606B2 (en)
Yoshida et al. Polymerization and polymer properties of (p‐tert‐butyl‐o, o‐dimethylphenyl) acetylene
Gal et al. Organometallic polymers. IV. Organometallic modifications of halogen‐containing polymers
US4812520A (en) Method for the preparation of novel polyacetylene-type polymers
US4866147A (en) Soluble silylated polyacetylene derivatives and their use as percursors to novel polyacetylene-type polymers
JPH09221518A (en) Production of crystalline aromatic vinyl polymer having mainly syndiotactic structure
Kouzai et al. Polymerization of 1-(1-Naphthyl)-l-propyne by Nb and Ta Catalysts and Polymer Properties: Effects of the l-Naphthyl Group.
JPS6049643B2 (en) 4-Hydroxy-4'-vinylbiphenyl polymer and method for producing the same
JPH0143766B2 (en)
JPH0225370B2 (en)
JPS63256604A (en) Sulfur-containing di-substituted acetylene polymer and manufacture thereof