JPH0143257B2 - - Google Patents

Info

Publication number
JPH0143257B2
JPH0143257B2 JP55006204A JP620480A JPH0143257B2 JP H0143257 B2 JPH0143257 B2 JP H0143257B2 JP 55006204 A JP55006204 A JP 55006204A JP 620480 A JP620480 A JP 620480A JP H0143257 B2 JPH0143257 B2 JP H0143257B2
Authority
JP
Japan
Prior art keywords
detector
micropores
blood cells
red blood
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55006204A
Other languages
Japanese (ja)
Other versions
JPS56103349A (en
Inventor
Norihiro Okada
Masamichi Tani
Norihito Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP620480A priority Critical patent/JPS56103349A/en
Publication of JPS56103349A publication Critical patent/JPS56103349A/en
Publication of JPH0143257B2 publication Critical patent/JPH0143257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 本発明は、液体中に懸濁する血球などの粒子を
検出する粒子検出装置に関するもので、赤血球と
血小板のように2種以上の粒子が混在する粒子懸
濁液中の粒子、とくに血小板のような小さい方の
粒子を効果的に検出することができる粒子検出装
置を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particle detection device for detecting particles such as blood cells suspended in a liquid. It is an object of the present invention to provide a particle detection device that can effectively detect particles such as particles, especially smaller particles such as platelets.

従来、赤血球や血小板などの微小粒子を検出し
計数する場合、粒子の懸濁液を液面以下に設けら
れた微細孔に通過させ、液と粒子との電気インピ
ーダンスの差異に基づいて検出し、これを電気パ
ルス信号に変換して計数している。通常、赤血球
や血小板を検出、計数する場合、数十ミクロンか
ら百ミクロン程度の微細孔が用いられ、予め血液
を希釈して血球が1個づつ微細孔を通過できる濃
度にしてから計数測定を行なつている。赤血球の
みを計数する場合、あるいは血小板を分離して血
小板のみを計数する場合には、検出装置における
ノイズ信号を除去するだけで比較的容易に計数測
定を実施することができるが、血小板については
赤血球という大きい粒子からの分離作業が必要で
あり、この分離作業に伴う原血液中の血小板数へ
の換算などを行なわなければならず、比較的面倒
で時間がかかりしかも誤差が大きいなどの欠点が
あつた。
Conventionally, when detecting and counting microparticles such as red blood cells and platelets, a suspension of particles is passed through micropores provided below the liquid level, and detection is performed based on the difference in electrical impedance between the liquid and the particles. This is converted into an electrical pulse signal and counted. Normally, when detecting and counting red blood cells and platelets, micropores from several tens of microns to about 100 microns are used, and the blood is diluted in advance to a concentration that allows each blood cell to pass through the micropores before counting and measuring. It's summery. When counting only red blood cells or separating platelets and counting only platelets, counting can be performed relatively easily by simply removing the noise signal in the detection device, but for platelets, red blood cells This method requires separation from large particles, and this separation requires conversion to the number of platelets in the original blood, which has disadvantages such as being relatively troublesome and time-consuming, and with large errors. Ta.

また血液を単に希釈して検出、計数する方法で
ある全血法においては、赤血球の1mm3当りの個
数が5百万前後、血小板数が20万前後であり、血
小板数の25倍もの赤血球を同時に測定して引算を
しなければならない上に、血小板の計数に重大な
影響を与える要因がある。これは微細孔通過後の
血球が再び検出領域に巻き込まれて、あたかも微
細孔を通過したかのように検出され計数測定値に
誤差を与える現象である。この現象により、主と
して既に微細孔を通過した赤血球が巻き込まれ
て、血小板信号と同じような高さのパルスを発す
る。このため、いわゆるウインドタイプの閾値回
路で赤血球による大きいパルスを除去し血小板サ
イズの信号のみを通過させても、赤血球の巻込み
によるパルスが加算されて、従来の血小板のみを
分離して測定し原血液へ換算した血小板数より
も、はるかに大きい測定値が得られてしまうとい
う欠点があつた。
In addition, in the whole blood method, which detects and counts blood by simply diluting it, the number of red blood cells per mm3 is around 5 million, and the number of platelets is around 200,000, which is 25 times the number of platelets. In addition to having to measure and subtract at the same time, there are factors that have a significant impact on platelet counts. This is a phenomenon in which the blood cells that have passed through the micropores are entangled in the detection area again and are detected as if they had passed through the micropores, causing an error in the counted value. This phenomenon mainly involves red blood cells that have already passed through the micropores, producing a pulse with the same height as the platelet signal. For this reason, even if a so-called window-type threshold circuit removes the large pulses caused by red blood cells and allows only platelet-sized signals to pass through, the pulses caused by the involvement of red blood cells will be added, making it difficult to measure by separating only platelets. The drawback was that the measured value was much higher than the platelet count converted to blood.

この欠点を解消する方法として、(1)検出領域を
狭くして巻き込まれた粒子を検出しないようにす
る方法、(2)微細孔を通過した粒子が再び微細孔の
近傍に近づかないようにする方法、がある。(1)の
方法としては、微細孔の近傍に電極を配設するこ
とにより検出するための電界分布をごく限られた
微細孔の付近とし、たとえば微細孔付近まで蒸着
や鍍金により電極を設ける方法があり、実際には
電極として耐蝕性に優れた白金などの金属が用い
られ、これらを蒸着や鍍金によつて検出器の表面
に設けても、容易に剥れたりあるいは電気分解な
どによつて腐蝕されたりして実用的ではない。因
に白金は化学的に安定であるが機械的強度が小さ
い。また(2)の方法としては、微細孔通過後の粒子
の懸濁液をすべて吸引する手段を設けたり、粒子
を含まない液で粒子の懸濁液を吹き飛ばしてしま
う方法などが考えられるが、構造が複雑となり微
細孔を通過した粒子懸濁液の定量が不可能となる
ために、従来のように単に液体定量装置を検出器
内部に接続する方式をとることができず、たとえ
ば流量を一定とし単位時間当りの通過粒子数を単
位体積当りの粒子数に変換するなどの複雑でかつ
誤差要因の多い方式を採用しなければならないと
いう欠点があつた。
Methods to overcome this drawback include (1) narrowing the detection area to prevent entangled particles from being detected, and (2) preventing particles that have passed through the micropores from coming close to the micropores again. There is a method. For method (1), the electric field distribution for detection is limited to a very limited area by arranging electrodes near the micropores, and for example, electrodes are provided near the micropores by vapor deposition or plating. In reality, metals such as platinum, which have excellent corrosion resistance, are used as electrodes, and even if these are applied to the surface of the detector by vapor deposition or plating, they easily peel off or are susceptible to corrosion due to electrolysis. It is not practical due to corrosion. Incidentally, platinum is chemically stable but has low mechanical strength. In addition, as a method for (2), it is possible to provide a means to suck all the particle suspension after passing through the micropores, or to blow away the particle suspension with a liquid that does not contain particles. Because the structure is complex and it becomes impossible to quantify the particle suspension that has passed through the micropores, it is not possible to simply connect a liquid quantification device inside the detector as in the past. However, this method has the drawback of requiring a complicated method with many error factors, such as converting the number of particles passing per unit time to the number of particles per unit volume.

本発明は上記の諸点に鑑みなされたもので、簡
単で安価に製作できる構造で、赤血球などの粒子
の舞い戻りが防止され補正が簡単に実施でき、赤
血球、血小板のような大小2種の粒子を容易に検
出して分類計数することができる粒子検出装置の
提供を目的とするものである。
The present invention was developed in view of the above points, and has a structure that is simple and inexpensive to manufacture, prevents particles such as red blood cells from returning, and allows for easy correction. The object of the present invention is to provide a particle detection device that can easily detect, classify, and count particles.

本発明の粒子検出装置は、下部に微細孔2を穿
設したペレツト1を有し、内部にこの微細孔2の
上方5〜15mmまで球状物質5、繊維状物質24、
多孔物質25またはこれらの組合せ体からなる緩
衝材料を充填して粒子の舞い戻り部を形成した検
出器と、この検出器の下部が粒子懸濁液7中に浸
漬するように設けられた試料室6と、検出器の上
部に接続され微細孔2を通じて吸引された粒子懸
濁液の定量を行う液体定量装置17と、この液体
定量装置に接続された吸引圧力源20と、検出器
内と試料室内とに配設された粒子検出用電極2
1,22とを包含してなることを特徴としてい
る。
The particle detection device of the present invention has a pellet 1 with a fine hole 2 formed in the lower part thereof, and a spherical substance 5, a fibrous substance 24,
A detector filled with a buffer material made of a porous material 25 or a combination thereof to form a particle return section, and a sample chamber 6 provided so that the lower part of the detector is immersed in the particle suspension 7. , a liquid quantification device 17 connected to the upper part of the detector to quantify the particle suspension sucked through the fine hole 2, a suction pressure source 20 connected to this liquid quantification device, Particle detection electrode 2 arranged in
1 and 22.

以下、本発明の構成を図面に示す実施態様に基
づいて説明する。第1図および第2図は本発明の
粒子検出装置に用いる検出器の一例を示してい
る。1は直径50〜100μ程度の微細孔2を有する
ペレツトで、このペレツト1はルビーまたはサフ
アイアなどで厚み数十〜百μ程度の円板状に形成
され、ガラス、合成樹脂またはセラミツクなどか
らなり下端が封止された円筒状の検出器本体3の
下部側面または底部に嵌設、固定されている。4
は検出器本体3の上部に設けられた固定用の膨大
部である。また検出器本体3の内部の底部から微
細孔2の上方5〜15mmまで、直径1mm程度または
1mm以下のガラスビーズ、ステンレススチール玉
または合成樹脂製ボールなどの球状物質5乃至は
略球状物質が充填されている。したがつて微細孔
2から球状物質5の上面に至るまでは多数の入り
組んだ数十〜数百μ程度の通路が形成されてお
り、これらの通路により微細孔2を通過した後の
試料は順次移送され、かつ海岸線の消波用のテト
ラポツドのような緩衝効果を発揮して、微細孔通
過後の噴出流が緩やかな流れとなつて移動し、し
たがつて粒子の舞い戻りや巻込み現象が非常に緩
和される。これは後述の第3図に示す粒子検出装
置によつて得られた第4図に示すデータからも明
らかである。
Hereinafter, the configuration of the present invention will be explained based on embodiments shown in the drawings. FIGS. 1 and 2 show an example of a detector used in the particle detection device of the present invention. 1 is a pellet 1 having micropores 2 with a diameter of about 50 to 100 μm, and this pellet 1 is made of ruby or sapphire, etc., and is formed into a disk shape with a thickness of about 10 to 100 μm, and is made of glass, synthetic resin, or ceramic, and has a lower end. is fitted and fixed to the lower side or bottom of the sealed cylindrical detector main body 3. 4
is a large part for fixing provided on the upper part of the detector main body 3. In addition, from the bottom of the inside of the detector body 3 to 5 to 15 mm above the fine hole 2, a spherical substance 5 or approximately spherical substance such as glass beads, stainless steel balls, or synthetic resin balls with a diameter of about 1 mm or less is filled. has been done. Therefore, from the micropore 2 to the upper surface of the spherical material 5, a large number of intricate passages of several tens to hundreds of micrometers are formed, and the sample after passing through the micropore 2 is sequentially transported through these passages. The ejected flow after passing through the micropores moves as a gentle flow, exerting a buffering effect similar to a tetrapod for dissipating waves on the coastline, and as a result, the return of particles and entrainment phenomena are extremely will be relaxed. This is also clear from the data shown in FIG. 4 obtained by the particle detection device shown in FIG. 3, which will be described later.

つぎに上記のように構成された検出器を用いた
粒子検出装置の一実施態様を第3図に基づいて説
明する。6は粒子懸濁液、たとえば血球の懸濁液
を収容するための試料室で、血球の懸濁液7は試
料導入口8から試料室6内に導入され、試料排出
口10から排出される。前記検出器本体3はその
下部が懸濁液7中に浸漬するように固定される。
検出器本体3の上部は、可撓性を有するダイアフ
ラム11を介して上下に隣接する2つの液溜め用
の空間12,13(下方の空間を12、上方の空
間を13とする)を有する検出器本体上部14
に、検出器本体3内部が下方の空間12に連通す
るように固定されている。この下方の空間12は
電磁弁などを有する排出パイプ15を介して排液
溜めおよび吸引圧力源16に接続され、検出器内
部および液溜め用空間12の不要の試料を排出す
るように構成されている。一方、上部の空間13
は液体定量装置17に接続され、さらにこの液体
定量装置17は空気圧などを制御するための制御
弁18を介して吸引圧力源20に接続されてい
る。液体定量装置17は一例として液面の移動を
光学的に検知して所定体積の定量を行なう形式の
ものが用いられる。なおダイアフラム11は、液
体定量装置17と検出器内部とを隔離し、液体定
量装置17内に試料が混入して汚れが生ずるのを
防止する効果を発揮する。また液溜め用空間12
内に内部電極21が、試料室6の懸濁液中に外部
電極22が配設され、これらの電極21,22が
検出回路23に接続されて、微細孔2を通過する
粒子を液と粒子との電気インピーダンスの差異に
基づいて検出するように構成されている。なお液
体定量装置17へは制御弁18を切り替えること
により大気圧をも導入できるようになつている。
Next, one embodiment of a particle detection device using a detector configured as described above will be described based on FIG. 3. Reference numeral 6 denotes a sample chamber for containing a particle suspension, for example, a suspension of blood cells, and a suspension of blood cells 7 is introduced into the sample chamber 6 through a sample inlet 8 and discharged through a sample outlet 10. . The detector body 3 is fixed such that its lower part is immersed in the suspension 7.
The upper part of the detector body 3 has two liquid reservoir spaces 12 and 13 (the lower space is 12 and the upper space is 13) vertically adjacent to each other via a flexible diaphragm 11. Upper part of the main body 14
The inside of the detector main body 3 is fixed so as to communicate with the space 12 below. This lower space 12 is connected to a drainage reservoir and a suction pressure source 16 via a discharge pipe 15 having a solenoid valve, etc., and is configured to discharge unnecessary samples inside the detector and the fluid reservoir space 12. There is. On the other hand, the upper space 13
is connected to a liquid metering device 17, and this liquid metering device 17 is further connected to a suction pressure source 20 via a control valve 18 for controlling air pressure and the like. For example, the liquid metering device 17 is of a type that optically detects the movement of the liquid level and measures a predetermined volume. The diaphragm 11 isolates the liquid metering device 17 from the interior of the detector, and has the effect of preventing sample from entering the liquid metering device 17 and causing contamination. Also, the liquid reservoir space 12
An internal electrode 21 is disposed in the suspension in the sample chamber 6, and an external electrode 22 is disposed in the suspension in the sample chamber 6.These electrodes 21 and 22 are connected to a detection circuit 23 to separate the particles passing through the micropores 2 from the liquid. It is configured to detect based on the difference in electrical impedance between the two. Note that atmospheric pressure can also be introduced into the liquid metering device 17 by switching the control valve 18.

上記のように構成された粒子検出装置におい
て、試料(粒子懸濁液)を試料導入口8から試料
室6内に導入し、液面が検出器本体3の微細孔2
よりも上方に達するまで満たす。このとき、排出
パイプ15の電磁弁は閉となつて遮断状態にあ
り、制御弁18が開いて吸引圧力が液体定量装置
17に導入され、液体定量装置17内の液面が上
昇すると同時にダイアフラム11が上方に湾曲し
て微細孔2を通じて試料が検出器内部に導入され
る。このとき、内部電極21と外部電極22との
間に電気的な変化が生じ粒子信号として検出され
る。液体定量装置17の液面を検知し、計数装置
にスタート・ストツプ信号を送り、その間に計数
されたパルス数が単位体積当りの粒子数として計
数表示される。計数が終了すると、制御弁18が
切り替わり液体定量装置17に大気圧が導入され
ダイアフラム11が元位置に復帰する。一方、排
出パイプ15に吸引圧が導入されて液溜め用空間
12内に試料が排出パイプ15を通じて排出され
る。
In the particle detection device configured as described above, a sample (particle suspension) is introduced into the sample chamber 6 from the sample introduction port 8, and the liquid level is adjusted to the fine hole 2 of the detector body 3.
Fill until it reaches above. At this time, the solenoid valve of the discharge pipe 15 is closed and in a cutoff state, and the control valve 18 is opened and suction pressure is introduced into the liquid metering device 17. At the same time, the liquid level in the liquid metering device 17 rises and the diaphragm 11 is curved upward, and the sample is introduced into the detector through the fine hole 2. At this time, an electrical change occurs between the internal electrode 21 and the external electrode 22 and is detected as a particle signal. The liquid level of the liquid metering device 17 is detected, a start/stop signal is sent to the counting device, and the number of pulses counted during this period is counted and displayed as the number of particles per unit volume. When the counting is completed, the control valve 18 is switched, atmospheric pressure is introduced into the liquid metering device 17, and the diaphragm 11 returns to its original position. On the other hand, suction pressure is introduced into the discharge pipe 15, and the sample is discharged into the liquid reservoir space 12 through the discharge pipe 15.

前記電極21,22で検出される粒子信号は、
2つのレベルを持つウインドタイプの閾値回路で
パルスの高さに応じて3つの領域に分割され、下
限レベル以下はノイズなどの不要な信号として除
去され、上限レベル以上のパルス信号を赤血球な
どの大きい粒子の信号、上限と下限の中間のレベ
ル信号を血小板などの小さい粒子の信号として分
類されそれぞれが計数される。なおウインドタイ
プのコンパレータなどを用い、上限を越えるパル
スを中間レベルでも検知しこれを計数しないよう
にするために、ワンシヨツトマルチバイブレータ
や遅延回路などと組み合わせ、禁止信号を発生さ
せるなどの回路構成が、回路の実施例として挙げ
られる。
The particle signals detected by the electrodes 21 and 22 are
A window-type threshold circuit with two levels divides the pulse into three regions depending on the height of the pulse. Signals below the lower limit level are removed as unnecessary signals such as noise, and pulse signals above the upper limit level are removed as large signals such as red blood cells. Particle signals and intermediate level signals between the upper and lower limits are classified as signals of small particles such as platelets, and each is counted. In order to detect pulses that exceed the upper limit even at intermediate levels using a window type comparator and prevent them from being counted, a circuit configuration such as a one-shot multivibrator, delay circuit, etc. is used to generate a prohibition signal. , as an example of the circuit.

上記の構成の粒子検出装置を用いた粒子計数装
置において、赤血球の巻込みによる影響を調べる
ために、検出器本体3内の球状物質5の粒径を
色々変えて以下の条件で測定を行なつた。結果は
第4図の如くであつた。
In a particle counting device using a particle detection device configured as described above, in order to investigate the influence of red blood cell entrainment, measurements were performed under the following conditions while varying the particle size of the spherical material 5 in the detector body 3. Ta. The results were as shown in Figure 4.

球状物質5として、直径4mmのガラスビーズ、
直径3mmのガラスビーズ、直径2mmのガラスビー
ズ、直径1mmのガラスビーズを用いる場合、およ
びガラスビーズを全く用いない場合について実験
した。試料としては、赤血球の計数測定値が1500
万個/mm3の計数値を示すように、通常の試料の
3倍程度濃い目の試料を用いた。また計数時間
は、セツトタイム約1秒、計数時間約12秒、リセ
ツトタイム約2秒、計15秒の繰返しとした。微細
孔の直径は80μ、液体定量装置に接続された吸引
圧力源の吸引圧力は約130mmHg/cm2であつた。測
定方法は、上記のそれぞれのガラスビーズを微細
孔より上方約1cm以上まで充填し、まず血液の希
釈試料を検出器内に吸引させた。続いて血液が含
まれていないブランク液(希釈液のみで血球が懸
濁していない液)を繰り返して検出器内に吸引さ
せ、血小板感度(閾値レベル)での計数測定を行
なつた。すなわち、 第0回目の測定時には通常の計数測定、 第1回目の測定時にはブランク液の計数測定、 〓 第10回目の測定時にはブランク液の計数測定、 を行なつた。
As the spherical substance 5, glass beads with a diameter of 4 mm,
Experiments were conducted using glass beads with a diameter of 3 mm, glass beads with a diameter of 2 mm, glass beads with a diameter of 1 mm, and cases where no glass beads were used at all. As a sample, the red blood cell count measurement value is 1500.
A sample about three times darker than a normal sample was used so as to show a count of 10,000 pieces/mm 3 . Further, the counting time was repeated for a total of 15 seconds, including a set time of about 1 second, a counting time of about 12 seconds, and a reset time of about 2 seconds. The diameter of the micropores was 80 μm, and the suction pressure of the suction pressure source connected to the liquid metering device was approximately 130 mmHg/cm 2 . The measurement method was to fill each of the above-mentioned glass beads to a depth of about 1 cm or more above the micropores, and first aspirate a diluted blood sample into the detector. Subsequently, a blank solution containing no blood (a solution containing only a diluent and no blood cells suspended) was repeatedly drawn into the detector, and counting measurements were performed at platelet sensitivity (threshold level). That is, at the 0th measurement, a normal counting measurement was carried out, at the 1st measurement, a counting measurement of the blank liquid was carried out, and at the 10th measurement, the counting measurement of the blank liquid was carried out.

以上のようにすることにより、第0回目の測定
によつて検出器内部に吸引された赤血球が、第1
回目の測定からブランク液によつて次々と希釈さ
れ、次第に巻き込まれなくなる様子を見ることが
できる。すなわち、第4図において舞い戻り(巻
込み)によつて血小板として計数される(このと
きには微細孔を液のみが通過し粒子は通過しな
い)赤血球数は、第1回目ではガラスビーズな
し、あるいは直径4mmのガラスビーズのときは85
万個もあつたものが、繰り返して計数を行なうに
従つて次第に薄められて、10回の測定後には1〜
2万個まで減少した。ガラスビーズの直径を小な
くするに従つてこの傾向は大きくなるとともに、
巻込み現象を生じさせる検出器内部への微細孔か
らの噴出流の緩和も伴つて舞い戻りがなくなり、
直径1mmのガラスビーズの場合には、ガラスビー
ズを用いない場合の第10回目に相当する結果が、
第1回目の測定時から顕著に生じ、非常に大きな
効果を発揮することが判明した。このようにガラ
スビーズの直径を1mm程度のものとすることによ
つて、微細孔を通過した試料は微細孔の裏側で停
滞することなく、かつ舞い戻りや巻込みの現象を
生じないようにしながら、速やかにガラスビーズ
とガラスビーズとの間隙にとらえられ、移送され
ることが明らかとなつた。しかも既に吸引された
前回および前々回の試料中の赤血球による分回の
血小板計数値に対する影響が生じることはない。
ただし今回吸引している試料中の赤血球による影
響(第0回目相当)は、上記実験においては求め
ることはできず、たとえば微細孔を通過直後の赤
血球が微細孔の真後でUターンし巻き込まれる場
合などは、やはり血小板相当のパルスが生じて血
小板数に誤差を与える。しかしこれは従来のもの
と比較してはるかに小さい値である。
By doing the above, the red blood cells sucked into the detector during the 0th measurement are
From the first measurement, it can be seen that the blank liquid is diluted one after another and gradually stops being rolled up. In other words, in Figure 4, the number of red blood cells that are counted as platelets due to return (entrainment) (at this time, only liquid passes through the micropores and particles do not pass through) is the number of red blood cells counted without glass beads or with a diameter of 4 mm in the first round. 85 for glass beads
The 10,000-odd particles gradually become diluted with repeated counting, and after 10 measurements, 1 to 1000
The number has decreased to 20,000. This tendency increases as the diameter of the glass beads decreases, and
The ejected flow from the micropores inside the detector, which causes the entrainment phenomenon, is relaxed, and there is no return.
In the case of glass beads with a diameter of 1 mm, the result corresponding to the 10th test without using glass beads is
It was found that this phenomenon occurred noticeably from the first measurement and exhibited a very large effect. By setting the diameter of the glass beads to about 1 mm in this way, the sample that has passed through the micropore does not stagnate on the back side of the micropore, and while preventing the phenomenon of rebound or entrainment, It became clear that the particles were quickly caught in the gaps between the glass beads and transported. In addition, the red blood cells in the previous sample and the sample before the previous sample that have already been aspirated will not affect the platelet count in each batch.
However, the influence of the red blood cells in the sample being aspirated this time (equivalent to the 0th time) cannot be determined in the above experiment; for example, the red blood cells immediately after passing through the micropores may make a U-turn and become entangled right behind the micropores. In some cases, pulses equivalent to platelets are generated, giving an error to the platelet count. However, this value is much smaller than the conventional one.

以上の現象を数式で表わした場合は次のように
なる。
The above phenomenon can be expressed mathematically as follows.

PL(血小板数)=PL0(血小板相当の計数値)−{a
0+a1×RBC1(今回の赤血球数) PL(血小板数)=PL0(血小板相当の計数値)−{a
0+a1×RBC1(今回の赤血球数) +a2×RBC2(前回の赤血球数)+…+ao×
RBCo(n−1回前の赤血球数)} なおa0、a1、a2…aoは定数である。
PL (number of platelets) = PL 0 (count value equivalent to platelets) - {a
0 + a 1 × RBC 1 (current red blood cell count) PL (platelet count) = PL 0 (count value equivalent to platelets) − {a
0 +a 1 ×RBC 1 (current red blood cell count) +a 2 ×RBC 2 (previous red blood cell count) +…+a o ×
RBC o (number of red blood cells before n-1 times)} Note that a 0 , a 1 , a 2 . . . a o are constants.

第4図から明らかなように、n=11位までの値
が必要であつたものが、ガラスビーズを検出器内
の底部に充填することによつて、定数の値も小さ
くなると同時に、補正を行なう項目を減らすこと
ができ、ガラスビーズの直径を1mm程度とすれ
ば、もはや今回の赤血球数および所定の定数で補
正したものでよく、上式は次式のように簡略化す
ることができる。
As is clear from Figure 4, by filling the bottom of the detector with glass beads, the value of the constant was required to be up to n = 11, and at the same time the value of the constant became smaller, and at the same time, the correction was made. If the number of items to be performed can be reduced and the diameter of the glass beads is about 1 mm, it is no longer necessary to correct the number of red blood cells and a predetermined constant, and the above equation can be simplified as shown below.

PL=PL0−(a0+a1×RBC1) 多数検体について通常の5万倍の希釈濃度で測
定した結果、従来法と相関が良かつたのは、a0
8.5、a1=0.027とした場合であつた。なおPL、
PL0、a0、RBC1の単位はいずれも万個/mm3であ
る。このa0、a1の値は検出器の微細孔の直径や検
出器本体の形状によつて多少変更しなければなら
ないし、さらに血小板と赤血球相互間の同時通過
の補正を必要とする。すなわち血小板と赤血球の
それぞれの濃度が上昇するにつれ、血小板と血小
板、血小板と赤血球がほぼ同時に微細孔を通過
し、1個の粒子として計数されるので、測定値の
補正を必要とする。
PL = PL 0 - (a 0 + a 1 × RBC 1 ) As a result of measuring a large number of samples at a dilution concentration 50,000 times the normal concentration, the correlation with the conventional method was good because a 0 =
8.5, and a 1 =0.027. In addition, PL,
The units of PL 0 , a 0 , and RBC 1 are all 10,000 pieces/mm 3 . The values of a 0 and a 1 must be changed somewhat depending on the diameter of the fine pores of the detector and the shape of the detector body, and furthermore, it is necessary to correct the simultaneous passage between platelets and red blood cells. That is, as the respective concentrations of platelets and red blood cells increase, platelets and platelets and platelets and red blood cells pass through the micropores almost simultaneously and are counted as one particle, so it is necessary to correct the measured values.

上記の実施態様は、吸引された試料の噴流を抑
えるための緩衝材料として球状物質5を用いる場
合であるが、球状物質の代りに第5図に示すよう
に、数十ミクロンの径の通路を多数構成するよう
なフイルタ状の繊維状物質24を用いることがで
きる。繊維状物質としてはセルローズ、ガラス繊
維、フツ素繊維、炭素繊維、その他の合成樹脂繊
維が適している。
In the above embodiment, the spherical material 5 is used as a buffer material to suppress the jet of the aspirated sample, but instead of the spherical material, as shown in FIG. 5, a passage with a diameter of several tens of microns is used. A large number of filter-like fibrous substances 24 can be used. Suitable fibrous materials include cellulose, glass fiber, fluorine fiber, carbon fiber, and other synthetic resin fibers.

また第6図に示すように、比較的目の粗いスポ
ンジ、または合成樹脂を発泡させたものなどから
なる多孔物質25を用いることができる。
Further, as shown in FIG. 6, a porous material 25 made of relatively coarse sponge or foamed synthetic resin can be used.

さらに第7図に示すように、検出器本体3内の
下部に直径1mm以下の球状物質5を充填し、この
球状物質5の上側を前記繊維状物質24や多孔物
質25で蓋をするようにしてもよく、ほぼ良好な
結果が得られた。なお第5図、第6図、第7図に
示す検出器を用いる場合、定数についても第1図
の検出器を用いる場合とほぼ同様の結果が得られ
た。またこれらの緩衝材料を充填する位置が、微
細孔の位置から上方に3mm程度よりも低い場合に
は舞い戻りの現象が生ずるが、微細孔から3mmよ
りも高い位置、すなわち5mm〜10mm、または安全
を見込んで15mm程度にするのが好ましい。
Furthermore, as shown in FIG. 7, a spherical substance 5 with a diameter of 1 mm or less is filled in the lower part of the detector main body 3, and the upper side of this spherical substance 5 is covered with the fibrous substance 24 and porous substance 25. Almost good results were obtained. In addition, when the detectors shown in FIGS. 5, 6, and 7 were used, almost the same results regarding constants were obtained as when the detector shown in FIG. 1 was used. In addition, if the position where these cushioning materials are filled is lower than about 3 mm above the position of the micro-hole, a rebound phenomenon will occur, but if the position where the buffer material is filled is higher than 3 mm from the micro-hole, that is, 5 mm to 10 mm, or if it is safe. It is preferable to set it to approximately 15 mm.

以上説明したように、本発明の粒子検出装置は
赤血球などの粒子の舞い戻りが防止され、補正が
簡単に実施され、かつ構造が簡単で低コストで製
作することができ、赤血球、血小板のような大小
2種の粒子を容易に検出して分類計数を行なうこ
とができるという効果を有している。
As explained above, the particle detection device of the present invention prevents particles such as red blood cells from returning, easily performs correction, has a simple structure, can be manufactured at low cost, and detects particles such as red blood cells and platelets. This has the effect that two types of particles, large and small, can be easily detected and classified and counted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粒子検出装置に用いる検出器
の一例を示す正面図、第2図は第1図におけるA
−A線断面図、第3図は本発明の粒子検出装置の
一実施態様を示す説明図、第4図は球状物質の粒
径を4mm、3mm、2mm、1mmとした場合、および
球状物質を用いない場合の実験結果を示すグラ
フ、第5図〜第7図は本発明の粒子検出装置を用
いる検出器の他の例を示す断面説明図である。 1……ペレツト、2……微細孔、3……検出器
本体、4……膨大部、5……球状物質、6……試
料室、7……懸濁液、8……試料導入口、10…
…試料排出口、11……ダイアフラム、12,1
3……空間、14……検出器本体上部、15……
排出パイプ、16……吸引圧力源、17……液体
定量装置、18……制御弁、20……吸引圧力
源、21……内部電極、22……外部電極、23
……検出回路、24……繊維状物質、25……多
孔物質。
Fig. 1 is a front view showing an example of a detector used in the particle detection device of the present invention, and Fig. 2 is an A in Fig. 1.
3 is an explanatory diagram showing one embodiment of the particle detection device of the present invention, and FIG. 4 is a cross-sectional view taken along the line A, and FIG. Graphs showing experimental results when not used, and FIGS. 5 to 7 are explanatory cross-sectional views showing other examples of detectors using the particle detection device of the present invention. 1... Pellet, 2... Micropore, 3... Detector body, 4... Ampulla, 5... Spherical substance, 6... Sample chamber, 7... Suspension, 8... Sample introduction port, 10...
...Sample outlet, 11...Diaphragm, 12,1
3... Space, 14... Upper part of the detector body, 15...
Discharge pipe, 16... Suction pressure source, 17... Liquid quantitative device, 18... Control valve, 20... Suction pressure source, 21... Internal electrode, 22... External electrode, 23
...detection circuit, 24 ... fibrous material, 25 ... porous material.

Claims (1)

【特許請求の範囲】[Claims] 1 下部に微細孔を穿設したペレツトを有し、内
部にこの微細孔の上方5〜15mmまで球状物質、繊
維状物質、多孔物質またはこれらの組合せ体から
なる緩衝材料を充填して粒子の舞い戻り部を形成
した検出器と、この検出器の下部が粒子懸濁液中
に浸漬するように設けられた試料室と、検出器の
上部に接続され微細孔を通じて吸引された粒子懸
濁液の定量を行う液体定量装置と、この液体定量
装置に接続された吸引圧力源と、検出器内と試料
室内とに配設された粒子検出用電極とを包含して
なることを特徴とする粒子検出装置。
1. It has a pellet with micropores in its lower part, and the interior is filled with a buffer material made of spherical material, fibrous material, porous material, or a combination thereof up to 5 to 15 mm above the micropores to prevent particles from returning. a sample chamber in which the lower part of the detector is immersed in the particle suspension; and a sample chamber connected to the upper part of the detector for quantifying the particle suspension aspirated through the micropores. A particle detection device comprising: a liquid quantification device that performs the following: a suction pressure source connected to the liquid quantification device; and a particle detection electrode disposed within a detector and a sample chamber. .
JP620480A 1980-01-21 1980-01-21 Particle detector Granted JPS56103349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP620480A JPS56103349A (en) 1980-01-21 1980-01-21 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP620480A JPS56103349A (en) 1980-01-21 1980-01-21 Particle detector

Publications (2)

Publication Number Publication Date
JPS56103349A JPS56103349A (en) 1981-08-18
JPH0143257B2 true JPH0143257B2 (en) 1989-09-19

Family

ID=11631999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP620480A Granted JPS56103349A (en) 1980-01-21 1980-01-21 Particle detector

Country Status (1)

Country Link
JP (1) JPS56103349A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885096B1 (en) * 2005-04-27 2007-06-08 Renault Sas ARRANGEMENT OF A SHOCK ABSORPTION DEVICE FOR A MOTOR VEHICLE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465097A (en) * 1977-11-01 1979-05-25 Toa Medical Electronics Device for measuring adhesive power of blood platelet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465097A (en) * 1977-11-01 1979-05-25 Toa Medical Electronics Device for measuring adhesive power of blood platelet

Also Published As

Publication number Publication date
JPS56103349A (en) 1981-08-18

Similar Documents

Publication Publication Date Title
JPS58160844A (en) Counter for grain
CA2381285C (en) Particle characterisation apparatus
US4535284A (en) High and low frequency analysis of osmotic stress of cells
US3390326A (en) Particle counting device including fluid conducting means breaking up particle clusters
JPH0143257B2 (en)
JPS6228847B2 (en)
GB2142434A (en) Apparatus for measuring impurities in ultrapure water
EP1058830B1 (en) A method of analysing a sample of free cells
Matrai et al. Initial filtration rate and initial clogging in the hemorheometre
JP3909050B2 (en) Blood cell counter
EP0549599A4 (en)
US4863868A (en) Apparatus for detecting the presence of micro organism in liquid
JPS6225713Y2 (en)
JPS6239697B2 (en)
JPS61159134A (en) Particle detecting device
JPS5924385B2 (en) Platelet adhesion function measuring device
JPH0140049Y2 (en)
JPH0328358Y2 (en)
JPH0120676Y2 (en)
US4307339A (en) Particle counter
US6200815B1 (en) Method for measuring the volume of liquid and/or solid in a suspension
JPH0120675Y2 (en)
JPS5939637Y2 (en) Liquid quantitative device in particle counting device
JPH0129567Y2 (en)
JPS5883231A (en) Method and device for measuring characteristic of red blood cell