JPH0143021B2 - - Google Patents

Info

Publication number
JPH0143021B2
JPH0143021B2 JP56209916A JP20991681A JPH0143021B2 JP H0143021 B2 JPH0143021 B2 JP H0143021B2 JP 56209916 A JP56209916 A JP 56209916A JP 20991681 A JP20991681 A JP 20991681A JP H0143021 B2 JPH0143021 B2 JP H0143021B2
Authority
JP
Japan
Prior art keywords
molybdenum
powder
microns
particles
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209916A
Other languages
Japanese (ja)
Other versions
JPS58113369A (en
Inventor
Takashi Shoji
Katsuyuki Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56209916A priority Critical patent/JPS58113369A/en
Publication of JPS58113369A publication Critical patent/JPS58113369A/en
Publication of JPH0143021B2 publication Critical patent/JPH0143021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属材料の表面に溶射皮膜を形成する
ための溶射用粉末材料に関し、特に緻密で均一な
溶射皮膜を効率良く得るためのモリブデン系金属
粉末材料に関するものである。 金属材料の表面に異種金属、セラミツクあるい
はこれらの複合材料を溶射して皮膜を形成させ、
材料特性を向上させる方法が一般におこなわれて
いる。溶射材料としてはその皮膜に要求される特
性に応じて種々のものが使用されるが、耐熱性、
耐蝕性、耐摩耗性を要求される部分には、モリブ
デンやフエロモリブデン等のモリブデン系金属が
使用されている。モリブデン系金属の溶射材料は
ワイヤーや粉末に加工して使用されている。 従来、粉末のモリブデン系溶射材料は母材を粉
砕分級などの手段を用いて、一定の粒子径の範囲
に調整して使用している。 しかしながら、モリブデン系金属は脆いため粉
砕工程で過粉砕され、目的粒度以下の微粉末が多
量に発生し、製品歩留が70%以下ときわめて低
い。モリブデンのような高価な材料では不要粒度
の発生はコストアツプの原因となるので、極力さ
けねばならない。 またある粒度巾にシヤープに分級しても、個々
の粒子に着目してみると粒子の大きさ、形状、見
掛密度が異なり、溶射後の皮膜特性が一定せず、
溶射歩留りも安定しないという欠点を有する。 溶射工程では溶射材料粉末を小さなノズルを通
じて噴出させるので、粉末特性が安定したものを
使用しないと、円滑な操作が困難となる。 また、個々の粒子の大きさが異なると受熱量も
異なり、粒子の溶解が一様でなくなるので、得ら
れる皮膜も均一なものとならない欠点を有する。 さらに、モリブデンは常温において大気中でも
酸化が進むので、通常の粉砕法では酸化物が生成
し、このような溶射材を使用してできた溶射皮膜
は均一な皮膜とならない欠点を有する。 本発明はこれらの欠点を解消し、均質な溶射皮
膜を得るための、溶射に適したモリブデン系金属
粉末を安価に提供することを目的とする。 本発明の溶射材料は金属モリブデンまたは低炭
素フエロモリブデンを40ミクロン以下、好ましく
は20ミクロン以下の微粒子に破砕し、得られた微
粒子に完全分解型有機バインダーを加えて10〜
150ミクロンに造粒し、さらに非酸化性雰囲気中
で700〜1050℃の温度で焼結し、全酸素量を0.5%
以下とすることにより得られる。このようにして
得られたモリブデン系溶射用粉末は酸化物がきわ
めて少く、粒子の形状や大きさが均一なので溶射
効率が高く、得られた溶射皮膜は緻密で均質とな
り、強固な付着力を有するものとなる。 本発明の溶射材料は燃焼ガス溶射およびプラズ
マ溶射に使用される。モリブデン系金属としては
市販の金属モリブデン又はモリブデン60%以上を
含み炭素0.10%以下の低炭素フエロモリブデンが
使用できる。高炭素フエロモリブデンはカーバイ
トを含むので、皮膜の潤滑特性、耐摩耗性におい
て好ましくない。母材団塊はまず40ミクロン以下
に微粉砕する。造粒性を良くするには20ミクロン
以下に微粉砕することが望ましい。 次いで得られた微粒子を溶射に適した10〜150
ミクロン、好ましくは20〜105ミクロンに造粒す
る。10ミクロン以下では飛散して皮膜形成に寄与
せず、溶射効率を悪化させる。150ミクロン以上
の粗大粒子は溶融が遅くなり、未溶融粒子として
皮膜中に存在し皮膜特性を劣化させる。 造粒にはポリビニルアルコール(PVA)、ポリ
エチレングリコール、エチルセルロース、カルボ
キシルメチルセルロース(CMC)、コーンスター
チなどの焼結温度において完全に分解揮散する完
全熱分解型有機バインダーを使用し、転動、流
動、噴霧乾燥等の手段を用いておこなう。有機バ
インダーが残留するとモリブデンのカーバイトを
形成するので、焼成過程の温度領域で完全に散逸
するものを使用する。 たとえば転動造粒でPVAを使用する場合は0.5
%水溶液を用いると良い。1%以上の高濃度溶液
では水溶液の粘度が高すぎ造粒しにくい。また噴
霧造粒の場合はスラリー粘度が120〜150センチポ
アズになるようPVAを添加すればよい。これに
より組成変化をもたらすことなく目的とする粒径
の粉末を得ることができる。また目的粒径以外の
ものは再度粉砕工程へ戻せば収率良く目的粒径に
することができる。 次に造粒によつて得られた二次粒子はバインダ
ーの分解除去、粉砕分級工程で生じた酸化物の除
去、焼結による粒子強度確保を目的として、非酸
化性雰囲気中で焼結する。非酸化性雰囲気として
は還元性雰囲気、好ましくは水素雰囲気、不活性
雰囲気、真空雰囲気が利用できる。 不活性雰囲気、真空雰囲気の場合は酸化物の還
元除去よりもむしろ酸化モリブデンの昇華による
純度向上が達成される。 処理温度は700℃〜1050℃、好ましくは850℃〜
1000℃で、処理時間は30分以上必要である。700
℃以下では還元、昇華共充分でなく、得られる粒
体の強度も充分でないので、溶射の際微粉末に分
解してしまい、溶射効率が低下する結果となる。
また未分解有機バインダーの残留が懸念されるの
で、700℃以下は好ましくない。 1050℃以上の温度では粒子が相互に融着してし
まうので、希望する粒子径の粉末が得られない。 以上のような方法によつて得られた金属粉末
は、粒子の形状が球状に近く流動性がきわめて良
い。また酸素含有量は0.5%以下となる。 さらにこの粉末を使用してプラズマ溶射した場
合得られた溶射皮膜は緻密で付着力に優れ、溶射
効率も80%以上に高率となる。 また上記の方法による場合、製品収率は90%以
上となり、きわめて経済的である。 次に本発明を実施例を示して説明する。 実施例 1 純度99%以上のモリブデンを竪形ミルで20ミク
ロン以下、平均粒子径(D50)で7〜8ミクロン
に粉砕した。その粉砕物100部に対しバインダー
としてポリビニルアルコール5部を添加し、さら
に水100部を混合撹拌しスラリー化したのち、ス
プレー・ドライヤーにてマイクロペレツト化し
た。その際得られた粒子はほぼ球状を呈し、その
大きさはほぼ20〜105ミクロン、正確には20ミク
ロン以下5%、105ミクロン以上3%であり、収
率はフイード量に対し96%であつた。この粒度分
布でも溶射材料としてそのまま使用できるが、念
のため得られた二次粒子を30〜105ミクロンの範
囲に分級した。 次いでこの二次粒子を水素気流中で950℃で2
時間焼成した。酸化物の還元とバインダーの揮散
のためには700℃で充分であるが、二次粒子の強
度をもたせるため、950℃2時間が最適であるこ
とが実験の結果判明した。温度が1100℃以上にな
ると二次粒子同志の焼結が始まるので注意を要す
る。焼成処理した二次粒子はさらに105ミクロン
のフルイを通過させ、溶射用の粉末材料を得た。 一方比較のため従来品として金属モリブデンを
粉砕し、30〜105ミクロンに分級して得た粉末を
使用した。これらの粉末の特性を表−1に示す。
The present invention relates to a thermal spray powder material for forming a thermal spray coating on the surface of a metal material, and particularly to a molybdenum-based metal powder material for efficiently obtaining a dense and uniform thermal spray coating. Spray dissimilar metals, ceramics, or composite materials of these materials onto the surface of metal materials to form a film.
Methods of improving material properties are commonly used. Various thermal spraying materials are used depending on the properties required for the coating, including heat resistance,
Molybdenum-based metals such as molybdenum and ferromolybdenum are used in parts that require corrosion resistance and wear resistance. Molybdenum-based metal thermal spray materials are used after being processed into wires and powders. Conventionally, powdered molybdenum-based thermal spray materials have been used by adjusting the particle size within a certain range by pulverizing and classifying the base material. However, molybdenum-based metals are brittle and are over-pulverized during the crushing process, resulting in a large amount of fine powder with a particle size below the target, resulting in extremely low product yields of less than 70%. In the case of expensive materials such as molybdenum, the generation of unnecessary particle size increases costs and must be avoided as much as possible. Furthermore, even if the particles are sharply classified into a certain particle size range, the size, shape, and apparent density of each particle will vary, resulting in inconsistent coating properties after thermal spraying.
It also has the disadvantage that the thermal spraying yield is not stable. In the thermal spraying process, the thermal spray material powder is ejected through a small nozzle, so unless a powder with stable properties is used, smooth operation will be difficult. Furthermore, if the sizes of individual particles differ, the amount of heat received will also differ, and the dissolution of the particles will not be uniform, resulting in the disadvantage that the resulting film will not be uniform. Furthermore, since molybdenum oxidizes in the air at room temperature, oxides are produced in the usual pulverization method, and the thermal spray coating made using such a thermal spray material has the disadvantage that it is not a uniform coating. The object of the present invention is to eliminate these drawbacks and to provide a molybdenum-based metal powder suitable for thermal spraying at a low cost in order to obtain a homogeneous thermal spray coating. The thermal spray material of the present invention is produced by crushing metallic molybdenum or low carbon ferromolybdenum into fine particles of 40 microns or less, preferably 20 microns or less, and adding a completely decomposable organic binder to the resulting fine particles.
Granulated to 150 microns and further sintered at a temperature of 700 to 1050°C in a non-oxidizing atmosphere to reduce the total oxygen content to 0.5%.
It can be obtained by doing the following. The molybdenum-based thermal spray powder obtained in this way has very little oxide and the particle shape and size are uniform, resulting in high thermal spraying efficiency, and the resulting thermal spray coating is dense and homogeneous, with strong adhesion. Become something. The thermal spray materials of the present invention are used for combustion gas spraying and plasma spraying. As the molybdenum-based metal, commercially available metal molybdenum or low carbon ferromolybdenum containing 60% or more molybdenum and 0.10% or less carbon can be used. Since high carbon ferromolybdenum contains carbide, it is unfavorable in terms of the lubricating properties and wear resistance of the film. The base material nodules are first pulverized to 40 microns or less. In order to improve granulation properties, it is desirable to pulverize to 20 microns or less. Then, the obtained fine particles are
Granulate to microns, preferably 20 to 105 microns. If it is less than 10 microns, it will scatter and will not contribute to film formation, worsening thermal spraying efficiency. Coarse particles of 150 microns or more melt slowly and are present in the film as unmelted particles, deteriorating the film properties. For granulation, we use fully thermally decomposable organic binders such as polyvinyl alcohol (PVA), polyethylene glycol, ethyl cellulose, carboxyl methyl cellulose (CMC), and corn starch, which completely decompose and volatilize at the sintering temperature, and can be rolled, flowed, and spray-dried. This can be done using the following methods. If the organic binder remains, it will form molybdenum carbide, so use one that completely dissipates in the temperature range of the firing process. For example, when using PVA in rolling granulation, 0.5
It is better to use a % aqueous solution. A solution with a high concentration of 1% or more has too high a viscosity and is difficult to granulate. In the case of spray granulation, PVA may be added so that the slurry viscosity becomes 120 to 150 centipoise. This makes it possible to obtain a powder having the desired particle size without causing a change in composition. In addition, if particles other than the target particle size are returned to the pulverization process, the target particle size can be achieved with good yield. Next, the secondary particles obtained by granulation are sintered in a non-oxidizing atmosphere for the purposes of decomposing and removing the binder, removing oxides generated in the pulverization and classification process, and ensuring particle strength through sintering. As the non-oxidizing atmosphere, a reducing atmosphere, preferably a hydrogen atmosphere, an inert atmosphere, or a vacuum atmosphere can be used. In the case of an inert atmosphere or a vacuum atmosphere, improvement in purity is achieved by sublimation of molybdenum oxide rather than reduction and removal of oxides. Processing temperature is 700℃~1050℃, preferably 850℃~
The temperature is 1000℃ and the processing time is 30 minutes or more. 700
At temperatures below .degree. C., both reduction and sublimation are insufficient, and the strength of the particles obtained is also insufficient, resulting in decomposition into fine powder during thermal spraying, resulting in a decrease in thermal spraying efficiency.
Further, since there is a concern that undecomposed organic binder may remain, temperatures below 700°C are not preferable. At temperatures above 1050°C, the particles will fuse together, making it impossible to obtain powder with the desired particle size. The metal powder obtained by the above method has particles close to spherical in shape and has extremely good fluidity. Also, the oxygen content will be 0.5% or less. Furthermore, when this powder is used for plasma spraying, the sprayed coating obtained is dense and has excellent adhesion, with a spraying efficiency of over 80%. Furthermore, the above method has a product yield of 90% or more and is extremely economical. Next, the present invention will be explained by showing examples. Example 1 Molybdenum with a purity of 99% or more was pulverized in a vertical mill to 20 microns or less, with an average particle diameter (D 50 ) of 7 to 8 microns. To 100 parts of the pulverized material, 5 parts of polyvinyl alcohol was added as a binder, and 100 parts of water was mixed and stirred to form a slurry, which was then formed into micropellets using a spray dryer. The particles obtained at this time were approximately spherical in shape, and their size was approximately 20 to 105 microns, precisely 5% of which was less than 20 microns and 3% of which was greater than 105 microns, and the yield was 96% based on the amount of feed. Ta. Although this particle size distribution can be used as is as a thermal spray material, the obtained secondary particles were classified into a range of 30 to 105 microns just to be sure. Next, the secondary particles were heated at 950℃ in a hydrogen stream for 2 hours.
Baked for an hour. As a result of experiments, it was found that 700°C is sufficient for reducing the oxide and volatilizing the binder, but 950°C for 2 hours is optimal in order to give the secondary particles strength. Care must be taken as secondary particles begin to sinter when the temperature exceeds 1100°C. The fired secondary particles were further passed through a 105 micron sieve to obtain a powder material for thermal spraying. On the other hand, for comparison, a powder obtained by pulverizing metal molybdenum and classifying it into particles of 30 to 105 microns was used as a conventional product. The properties of these powders are shown in Table-1.

【表】 表−1から本発明材料は製品歩留がきわめて高
く、フルイ上、フルイ下はスラリーに戻せば再使
できるので、実質的に95%以上に達する。粒子の
形状はほぼ球状を呈し流動性の良い粉末となる。
さらに見掛密度が低いのは細かい一次粒子を二次
粒子に造粒しているためである。また酸素含有量
もきわめて低くすることができる。 次に、これらの材料をプラズマ溶射し、溶射特
性とSS母材表面に生成した溶射皮膜特性を調べ
た。プラズマ溶射条件は35V、800Aであつた。
その結果を表−2に示す。
[Table] As shown in Table 1, the product yield of the material of the present invention is extremely high, and since the upper and lower parts of the sieve can be reused by returning them to slurry, the product yield substantially reaches 95% or more. The particles have a nearly spherical shape and are a powder with good fluidity.
Furthermore, the apparent density is low because fine primary particles are granulated into secondary particles. Moreover, the oxygen content can also be made extremely low. Next, these materials were plasma sprayed and the spraying properties and properties of the sprayed coating formed on the surface of the SS base material were investigated. The plasma spraying conditions were 35V and 800A.
The results are shown in Table-2.

【表】 (1) 溶射効率とは母材への付着率である。
(2) 皮膜硬さはマイクロビツカース硬度計に
より200g×15秒で測定。
表−2より本発明による粉末材料を使用すると
溶射効率が高く、緻密な皮膜が得られることが判
明した。このような皮膜が得られる要因として
は、細かい一次粒子を凝集させて作つた造粒物で
あり、粒子形がほぼ球状で大きさもそろつている
ためである。このため粉体の流れが均一となり、
個々の単一粒子に着目した場合、受熱面積が大き
く溶解速度も均一となり、かつ酸素含有量も少い
ので均質な皮膜が得られる。 実施例 2 Mo:63.2%、C:0.01% Fe:残りからなる
低炭素フエロモリブデンを実施例1と同様にして
粉末材料を得た。比較のため従来品としてある粉
砕して30〜105ミクロンに分級して得た粉末を使
用して、実施例1と同じ条件でプラズマ溶射し、
皮膜特性を比較した。 粉末特性を表−3に示す。また皮膜特性を表−
4に示す。
[Table] (1) Thermal spraying efficiency is the adhesion rate to the base material.
(2) Film hardness was measured at 200g x 15 seconds using a micro-Vickers hardness meter.
Table 2 shows that when the powder material according to the present invention is used, thermal spraying efficiency is high and a dense film can be obtained. The reason why such a film is obtained is that it is a granulated product made by aggregating fine primary particles, and the particle shape is almost spherical and the size is uniform. This makes the powder flow uniform,
When focusing on individual single particles, the heat-receiving area is large, the dissolution rate is uniform, and the oxygen content is low, so a homogeneous film can be obtained. Example 2 A powder material of low carbon ferromolybdenum consisting of Mo: 63.2%, C: 0.01%, Fe: remainder was obtained in the same manner as in Example 1. For comparison, a powder obtained by pulverizing and classifying into 30 to 105 microns as a conventional product was used, and plasma spraying was performed under the same conditions as in Example 1.
The film properties were compared. Powder properties are shown in Table 3. In addition, the film characteristics are shown.
4.

【表】【table】

【表】 このように本発明によるときは製品歩留が高
く、皮膜特性のすぐれた溶射皮膜が効率良く得ら
れる。
[Table] As described above, according to the present invention, a thermal sprayed coating with high product yield and excellent coating properties can be efficiently obtained.

Claims (1)

【特許請求の範囲】 1 金属モリブデンまたはフエロモリブデン微粒
子の焼結体からなることを特徴とする溶射用粉末
材料。 2 金属モリブデンまたはフエロモリブデンを40
ミクロン以下に微粉砕し、この微粉末にポリビニ
ルアルコール(PVA)、ポリエチレングリコー
ル、エチルセルロース、カルボキシルメチルセル
ロース(CMC)、コーンスターチのうちから選ば
れた1種の熱分解型有機バインダーを添加して10
〜150ミクロンに造粒し、得られた造流物を非酸
化性雰囲気中で700℃〜1050℃の温度範囲で焼結
することからなる溶射用粉末材料の製造方法。
[Scope of Claims] 1. A powder material for thermal spraying, characterized by comprising a sintered body of fine particles of metallic molybdenum or ferromolybdenum. 2 40% of metal molybdenum or ferromolybdenum
Finely pulverized to less than a micron size, one type of pyrolyzable organic binder selected from polyvinyl alcohol (PVA), polyethylene glycol, ethyl cellulose, carboxymethyl cellulose (CMC), and corn starch is added to this fine powder.
A method for producing a powder material for thermal spraying, which comprises granulating to ~150 microns and sintering the resulting granulation in a non-oxidizing atmosphere at a temperature range of 700°C to 1050°C.
JP56209916A 1981-12-28 1981-12-28 Powder material for melt-spraying and its production Granted JPS58113369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209916A JPS58113369A (en) 1981-12-28 1981-12-28 Powder material for melt-spraying and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209916A JPS58113369A (en) 1981-12-28 1981-12-28 Powder material for melt-spraying and its production

Publications (2)

Publication Number Publication Date
JPS58113369A JPS58113369A (en) 1983-07-06
JPH0143021B2 true JPH0143021B2 (en) 1989-09-18

Family

ID=16580777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209916A Granted JPS58113369A (en) 1981-12-28 1981-12-28 Powder material for melt-spraying and its production

Country Status (1)

Country Link
JP (1) JPS58113369A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215157A (en) * 1988-06-30 1990-01-18 Babcock Hitachi Kk Oxide-type thermal spraying material
US7524353B2 (en) 2004-10-21 2009-04-28 Climax Engineered Materials, Llc Densified molybdenum metal powder and method for producing same
US7276102B2 (en) 2004-10-21 2007-10-02 Climax Engineered Materials, Llc Molybdenum metal powder and production thereof
CN102985581B (en) * 2010-07-12 2016-08-24 株式会社东芝 Spraying plating refractory metal powder and employ refractory metal sputtered films of bismuth and the spraying plating part of this metal dust
WO2013058376A1 (en) * 2011-10-20 2013-04-25 株式会社 東芝 Mo POWDER FOR THERMAL SPRAYING, Mo THERMAL SPRAY COATING FILM USING SAME, AND COMPONENT WITH Mo THERMAL SPRAY COATING FILM
CN107027315B (en) 2014-07-03 2020-02-14 攀时奥地利公司 Method for producing a layer

Also Published As

Publication number Publication date
JPS58113369A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
EP0459114B1 (en) Aluminium and boron nitride thermal spray powder
US7767139B2 (en) AlRu sputtering target and manufacturing method thereof
CN101103134B (en) Sb-Te based alloy powder for sintering and sintered sputtering target prepared by sintering said powder, and method for preparing Sb-Te based alloy powder for sintering
JP2000160219A (en) Pellet including carbonaceous material and production of reduced iron
CN102581292A (en) Preparation method of coating containing TiB2 metal ceramic composite powder for thermal spraying piston ring
JPH04231450A (en) Improved method for processing spray coating nickel alloy and molybdenum powder
US4508788A (en) Plasma spray powder
CN107794485B (en) A kind of preparation process of metal ceramic powder used for hot spraying
US3881911A (en) Free flowing, sintered, refractory agglomerates
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JP2004162109A (en) Sputtering target and powder for producing the same
JPS6089557A (en) Powdered material for thermal spray and its manufacture
JPH0143021B2 (en)
JPH0128828B2 (en)
JP3571356B2 (en) Manufacturing method of evaporation material
JP4476827B2 (en) Method for producing sputtering target material
JP2542566B2 (en) Method for manufacturing target for sputtering device
US3395030A (en) Carbide flame spray material
TW200946692A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
JPH11323411A (en) Low melting point metal powder and its production
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member
JPH0565502A (en) Method for granulating tantalum powder
KR100321588B1 (en) Manufacturing method of ceramic powder for plasma using rotary spray dryer
JPS6362558B2 (en)
JPH04350105A (en) Production of high fusion point active metal or alloy fine powder