JP4476827B2 - Method for producing sputtering target material - Google Patents

Method for producing sputtering target material Download PDF

Info

Publication number
JP4476827B2
JP4476827B2 JP2005020951A JP2005020951A JP4476827B2 JP 4476827 B2 JP4476827 B2 JP 4476827B2 JP 2005020951 A JP2005020951 A JP 2005020951A JP 2005020951 A JP2005020951 A JP 2005020951A JP 4476827 B2 JP4476827 B2 JP 4476827B2
Authority
JP
Japan
Prior art keywords
alloy
powder
target material
metal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005020951A
Other languages
Japanese (ja)
Other versions
JP2006206966A (en
Inventor
彰彦 柳谷
芳和 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2005020951A priority Critical patent/JP4476827B2/en
Publication of JP2006206966A publication Critical patent/JP2006206966A/en
Application granted granted Critical
Publication of JP4476827B2 publication Critical patent/JP4476827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、高強度、均質な性能を持つスパッタリングターゲット材の製造方法に関するものである。   The present invention relates to a method for producing a sputtering target material having high strength and uniform performance.

近年、耐熱材料やHDD用ターゲット材の新しい高融点金属を含有する合金が出現し、その製造方法としては、鋳造法および粉末成形法が試みられている。前者である鋳造法は最も一般的に使用される安価な方法であるが、組織の微細性や均質性で劣る。また、酸化物(SiO2 、ZrO2 )が入ったものなど高融点のターゲット材に対応できない。さらに、後者である粉末成形法は鋳造法に比べて高価であるが、組織が微細で組成も均質であるため作製される膜の品質が高いが、粉末を製造するに当たり、高融点の粉末を製造することが困難であるという、それぞれの欠点を持っている。 In recent years, alloys containing new refractory metals such as heat-resistant materials and HDD target materials have appeared, and casting methods and powder molding methods have been attempted as methods for producing the alloys. The former casting method is the most commonly used and inexpensive method, but is inferior in the fineness and homogeneity of the structure. Moreover, it cannot respond to a target material having a high melting point such as an oxide (SiO 2 , ZrO 2 ). Furthermore, the latter powder molding method is more expensive than the casting method, but the quality of the produced film is high because the structure is fine and the composition is homogeneous, but when producing the powder, a high melting point powder is used. Each has the disadvantage of being difficult to manufacture.

一方、ターゲット材に用いられる組成は金属や酸化物も含めて多岐に渡るが、金属元素単体のターゲット材は少なく、大部分は2元素以上の金属、もしくは金属合金と酸化物の複合体となっている。粉末法でこのような2元素以上からなる材料を作製する場合、狙い組成の合金粉末をあらかじめアトマイズ法などにより作製し、これをHIP(熱間等方圧プレス)やHP(ホットプレス)等で成形する。しかし、この方法ではその合金が高融点でありアトマイズが困難である場合は作製することができない。   On the other hand, the composition used for the target material is diverse, including metals and oxides. However, there are few target materials consisting of metal elements alone, and most of them are composites of metals with two or more elements, or metal alloys and oxides. ing. When producing such a material consisting of two or more elements by a powder method, an alloy powder having a target composition is prepared in advance by an atomizing method or the like, and this is performed by HIP (hot isostatic pressing), HP (hot pressing) or the like. Mold. However, this method cannot be produced when the alloy has a high melting point and is difficult to atomize.

また、純金属同士を所定組成になるように混合し、これをHIP(熱間等方圧プレス)やHP(ホットプレス)等で成形する方法もある。この方法では、成形時の加熱のみでは均一に合金化せず偏析の要因となる。このように偏析の存在するターゲット材をスパッタした場合、出来た薄膜の成分均質性が失われてしまう。また、2元素間に脆性相が存在するような合金系においては高温での成形時にその脆性相が析出し、これが原因で成形時に割れが発生するため好ましくない。   There is also a method in which pure metals are mixed so as to have a predetermined composition, and this is molded by HIP (hot isostatic pressing), HP (hot pressing) or the like. In this method, heating only at the time of forming does not form a uniform alloy but causes segregation. Thus, when the target material with segregation is sputtered, the homogeneity of the components of the resulting thin film is lost. Further, in an alloy system in which a brittle phase exists between two elements, the brittle phase precipitates at the time of molding at a high temperature, and this causes a crack at the time of molding, which is not preferable.

一例として、Cr−Mn系合金のターゲット材を作製しようとした場合、純Crと純Mnを混合して成形すると、一部脆性相(σ)が析出し、これが原因で成形時に割れが発生したり、スパッタ時にその脆性部が欠落してスパッタ不良を起こしたりする。これを解決する方法として、例えば特開2002−212607号公報(特許文献1)に開示されているように、HIP法に替えて熱間押出法によって簡易に高圧が得られるこの方法で均一な単相を得る方法が提案されている。   As an example, when a target material of a Cr-Mn alloy is to be produced, when a mixture of pure Cr and pure Mn is formed, a brittle phase (σ) is partially precipitated, which causes cracks during forming. Or the brittle part is lost during sputtering, resulting in poor sputtering. As a method for solving this problem, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-212607 (Patent Document 1), a high pressure can be easily obtained by a hot extrusion method instead of the HIP method. A method for obtaining the phase has been proposed.

また、特開2003−167324号公報(特許文献2)に開示されているように、金属粉末あるいは水素化金属粉末とSi粉末を混合し、これを加熱合成して金属シリサイド粉末とした後、この金属シリサイド粉末を機械的に微粉砕し、この微粉砕金属シリサイド粉末と微細Si粉とを所定のモル比となるように均一混合し真空加熱炉を用いて焼成した金属シリサイド粉を焼結する金属シリサイドスパッタリングターゲットの製造方法が提案されている。   Further, as disclosed in Japanese Patent Application Laid-Open No. 2003-167324 (Patent Document 2), a metal powder or a metal hydride powder and a Si powder are mixed and heated to synthesize a metal silicide powder. Metal which pulverizes metal silicide powder mechanically, and sinters metal silicide powder which is pulverized using vacuum heating furnace after uniformly mixing the finely pulverized metal silicide powder and fine Si powder to a predetermined molar ratio. A method for manufacturing a silicide sputtering target has been proposed.

特開2002−212607号公報JP 2002-212607 A 特開2003−167324号公報JP 2003-167324 A

しかしながら、上述した特許文献1の熱間押出法によって簡易に高圧が得られる方法ではあるが、純金属粉末同士での形成であり、どうしても偏析の生じることは避けられない。また、特許文献2の焼結方法では合金系によっては脆性相が析出し、割れの要因となったり、ターゲット材として強度が落ちるという問題がある。   However, although it is a method in which high pressure can be easily obtained by the hot extrusion method of Patent Document 1 described above, it is formed by pure metal powders, and segregation is unavoidable. Further, the sintering method of Patent Document 2 has a problem that a brittle phase is precipitated depending on the alloy system, which causes cracking and that the strength as a target material is reduced.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、合金粉末を使用することにより、純金属粉末同士を形成するよりも偏析が小さく、また金属間化合物(脆性相)が生成しない領域を選択して成形することにより割れの少ないターゲット材としての強度を向上させたスパッタリングターゲット材の製造方法を提供するものである。   In order to solve the above-mentioned problems, the inventors have intensively developed, and as a result, by using alloy powder, segregation is smaller than that formed between pure metal powders, and intermetallic compounds (brittle phase) The present invention provides a method for producing a sputtering target material in which the strength as a target material with few cracks is improved by selecting and molding a region that does not generate ().

その発明の要旨とするところは、
(1)脆性相が存在する2元系合金において、脆性相が存在する2元系合金での純金属と合金粉末を混合するに当たり、2元系状態図より脆性相(金属間化合物)が生成しない領域を選択して純金属と固溶体の粉末を混合した後熱間加圧成形し、脆性相のない合金を製造することを特徴とするスパッタリングターゲット材の製造方法。
The gist of the invention is that
(1) In a binary alloy containing a brittle phase, a brittle phase (intermetallic compound) is generated from a binary phase diagram when mixing pure metal and alloy powder in a binary alloy containing a brittle phase. A method for producing a sputtering target material, comprising selecting a region not to be mixed, mixing pure metal and solid solution powder, and then hot pressing to produce an alloy having no brittle phase.

ここで2元系状態図より脆性相(金属間化合物)が生成するとは、純金属1と純金属2からなる2元系合金が、純金属1がα%(αは1〜99の任意の値)で純金属2が(100−α)%で脆性相(以下「合金1」という)を生成することをいう。また2元系状態図より脆性相が生成しない領域を選択とは、2元系合金が純金属1をα%未満で純金属2を(100−α)%を含有する合金(以下「合金2」という)を用いるという意味である。更に2元系状態図より脆性相(金属間化合物)が生成しない領域を選択して純金属と固溶体の粉末とは、純金属1からなる粉末1と、合金2が純金属1と合金0の固溶体である合金2からなる粉末2の両方を指す意味である。   Here, the generation of a brittle phase (intermetallic compound) from the binary phase diagram means that the binary alloy composed of pure metal 1 and pure metal 2 is pure metal 1 with α% (α is an arbitrary value of 1 to 99). Value) means that pure metal 2 forms a brittle phase (hereinafter referred to as “alloy 1”) at (100−α)%. The selection of a region where no brittle phase is generated from the binary phase diagram means that the binary alloy contains less than α% pure metal 1 and (100−α)% pure metal 2 (hereinafter referred to as “alloy 2”). ")". Further, a region where a brittle phase (intermetallic compound) is not generated is selected from the binary phase diagram, and the powder of pure metal and solid solution is powder 1 made of pure metal 1 and alloy 2 is pure metal 1 and alloy 0. It means to indicate both the powder 2 made of the alloy 2 which is a solid solution.

以上述べたように、本発明による合金粉末を使用することにより、純金属粉末同士を成形するよりも偏析が小さく、かつ脆性相が存在せず、しかも割れもなく高強度で均質なターゲット材の作製が可能となる極めて優れた効果を奏するものである。   As described above, by using the alloy powder according to the present invention, the segregation is smaller than that formed between pure metal powders, the brittle phase does not exist, and there is no crack, and the high strength and homogeneous target material is obtained. There is an extremely excellent effect that can be produced.

以下、本発明について図面に従って詳細に説明する。
図1は、本発明に係るA−E金属状態図である。この図に示すように、A−E金属状態図において脆性相がC固溶体とD固溶体間にある場合を示した金属状態図である。本発明の第1は、この図1に示すような脆性相が存在するA−E2元系状態図において、純金属Aと固溶体Cの粉末を混合して、熱間加圧成形し、B組成の合金を製造することを特徴とするスパッタリングターゲット材の製造方法にある。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an AE metal phase diagram according to the present invention. As shown in this figure, in the AE metal phase diagram, it is a metal phase diagram showing a case where the brittle phase is between the C solid solution and the D solid solution. In the first aspect of the present invention, in the A-E binary phase diagram in which a brittle phase is present as shown in FIG. 1, powders of pure metal A and solid solution C are mixed, hot pressed, and B composition The present invention is directed to a method for producing a sputtering target material characterized by producing an alloy of

図2は、本発明に係る他のA−E金属状態図である。この図に示すように、A−E金属状態図において脆性相がC固溶体とE金属間にある場合を示した金属状態図である。本発明の第2は、この図2に示すような脆性相が存在するA−E2元系状態図において、B組成金属の融点がA−E2元系状態図で最大である場合に、純金属A´固溶体と固溶体Cの粉末を混合して、熱間加圧成形し、合金化することを特徴とするスパッタリングターゲット材の製造方法にある。   FIG. 2 is another AE metal phase diagram according to the present invention. As shown in this figure, in the AE metal phase diagram, it is a metal phase diagram showing a case where the brittle phase is between the C solid solution and the E metal. The second aspect of the present invention is a pure metal in the case where the melting point of the B composition metal is maximum in the A-E binary phase diagram in the A-E binary phase diagram where the brittle phase is present as shown in FIG. A sputtering target material manufacturing method is characterized by mixing powders of A ′ solid solution and solid solution C, hot pressing and alloying.

図3は、ターゲット表面でのスパッタ現象を示す図である。この図に示すように、ターゲット材2にArなどの不活性な物質である入射イオン3を高速で衝突させると、ターゲット材2の表面で原子や分子と衝突して種々の現象が起こる。この現象のうちで、ターゲット材2を構成する原子や分子が叩き出される過程をスパッタリングといい、この叩き出せれたスパッタ粒子4、マイナスイオン5、γ電子6、スパッタ粒子の逆戻り7および入射イオンの反射8並びに反跳粒子9等と同時に原子や分子を基板1上に付着させ薄膜を形成する技術をスパッタ法という。   FIG. 3 is a diagram showing a sputtering phenomenon on the target surface. As shown in this figure, when incident ions 3 which are inert substances such as Ar collide with the target material 2 at high speed, various phenomena occur due to collision with atoms and molecules on the surface of the target material 2. Of these phenomena, the process in which the atoms and molecules constituting the target material 2 are knocked out is called sputtering, and the sputtered particles 4, negative ions 5, γ electrons 6, sputtered particle return 7, and incident ions A technique for forming a thin film by attaching atoms and molecules to the substrate 1 simultaneously with the reflection 8 and recoil particles 9 is called a sputtering method.

本発明は、上述したスパッタリングのためのターゲット材の製造方法にある。この材料としては、例えばCr−Mn系の例で言えば、0≦Cr≦60原子%、残部Mnからなる成形体を作製する際、一方にはCr−55原子%程度の固溶体からなる合金粉末を作製し、これに純Crを所定の組成になるように混合することにより、σ相の析出は抑えられる。脆性相が析出しないので成形時の割れもなく、ターゲットとしての強度も十分で組成均質性も高い。他にもCo−Cr系、Fe−Cr系、Cr−W系、Cr−Si系等、合金系に脆性相が存在し、かつ所望する組成域が固溶体領域であれば同様に活用できる。   This invention exists in the manufacturing method of the target material for sputtering mentioned above. As this material, for example, in the case of Cr—Mn type, when producing a molded body composed of 0 ≦ Cr ≦ 60 atomic% and the balance Mn, one side is an alloy powder composed of a solid solution of about Cr-55 atomic%. And mixing with pure Cr so as to have a predetermined composition can suppress the precipitation of the σ phase. Since the brittle phase does not precipitate, there is no cracking during molding, the strength as a target is sufficient, and the composition homogeneity is high. In addition, if a brittle phase is present in an alloy system such as a Co—Cr system, a Fe—Cr system, a Cr—W system, a Cr—Si system, and the desired composition region is a solid solution region, it can be similarly utilized.

以下、本発明について実施例によって具体的に説明する。
表1に示す原料粉末をガスアトマイズ粉末法により製造し、それぞれの原料粉末をV型混合機を用いて各組成に30分間の混合を行なった後、熱間加圧成形によるHIPおよびHPにより、成形圧:100MPa、成形温度:1473Kの条件で成形し、その後徐冷して、成形体サイズ:直径180mm×高さ10mmのものを得た。その成形体の特性調査として、外観:割れ発生の有無(カラーチェックにより確認し、10枚中1枚以上割れがあれば、割れありとして評価)を評価した。また、X線回折:構成相の同定(測定角度20〜80°、ターゲットCukα)により脆性相の有無を確認した。さらに、成分分析のバラツキ:EPMAにより線分析(測定幅1mm)を行い、平均値を0とした時の平均高さを組成バラツキとして算出した。その結果を表1に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
The raw material powders shown in Table 1 are manufactured by the gas atomization powder method, and each raw material powder is mixed with each composition for 30 minutes using a V-type mixer, and then molded by HIP and HP by hot pressing. Molding was performed under the conditions of pressure: 100 MPa, molding temperature: 1473 K, and then gradually cooled to obtain a molded body size: diameter 180 mm × height 10 mm. As a characteristic survey of the molded body, appearance: presence / absence of crack generation (confirmed by a color check and evaluated if there is a crack in one or more sheets out of 10 sheets) was evaluated. Moreover, the presence or absence of a brittle phase was confirmed by X-ray diffraction: identification of constituent phases (measurement angle 20 to 80 °, target Cukα). Further, component analysis variation: Line analysis (measurement width: 1 mm) was performed by EPMA, and the average height when the average value was 0 was calculated as composition variation. The results are shown in Table 1.

Figure 0004476827
Figure 0004476827

表1に示すように、No.1〜は本発明例であり、No.10は比較例である。比較例No.は純Crと純Mnの混合によるものであり、いずれも割れが発生し、脆性相を有し、かつ組成バラツキの値が大きい。比較例10は純Coと純Crとの混合によるものであり、これもNo.と同様に、いずれも割れが発生し、脆性相を有し、かつ組成バラツキの値が大きいことが分かる。 As shown in Table 1, no. 1 to 6 are examples of the present invention. 7 to 10 are comparative examples. Comparative Example No. 7 and 8 are due to the mixture of pure Cr and pure Mn, both of which cracks occur, have a brittle phase, and have a large composition variation. Comparative Examples 9 and 10 are obtained by mixing pure Co and pure Cr. As in FIG. 7 , it is found that all cracks occur, the brittle phase is present, and the value of composition variation is large.

これに対し、本発明例であるNo.1〜は各純Cr、Feと合金粉末との混合から成形された2元系合金であり、いずれの特性も優れていることが分かる。 In contrast to this, No. 1 to 6 are binary alloys formed by mixing each pure Cr , Fe and alloy powder, and it is understood that all the characteristics are excellent.

このように、純金属粉と合金粉での成形は、脆性相が存在する合金系において、固溶体が得られる組成領域で合金粉末を作製し、この粉末に純金属粉末もしくは別組織の固溶体を混合し目的の成分とした上で成形することにより、脆性相が存在せず、割れもなく高強度で均質なターゲット材の作製が可能となったものである。   As described above, in molding with pure metal powder and alloy powder, an alloy powder is produced in a composition region where a solid solution is obtained in an alloy system in which a brittle phase exists, and pure metal powder or a solid solution of another structure is mixed with this powder. However, molding with the desired components made it possible to produce a high strength and homogeneous target material without a brittle phase and without cracks.

本発明に係るA−E金属状態図である。It is an AE metal phase diagram concerning the present invention. 本発明に係る他のA−E金属状態図である。It is another AE metal state figure concerning the present invention. ターゲット表面でのスパッタ現象を示す図である。It is a figure which shows the sputter | spatter phenomenon on the target surface.

符号の説明Explanation of symbols

1 基板
2 ターゲット材
3 入射イオン
4 スパッタ粒子
5 マイナスイオン
6 γ電子
7 スパッタ粒子の逆戻り
8 入射イオンの反射
9 反跳粒子


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊


DESCRIPTION OF SYMBOLS 1 Substrate 2 Target material 3 Incident ion 4 Sputtered particle 5 Negative ion 6 γ electron 7 Return of sputtered particle 8 Reflection of incident ion 9 Recoiled particle


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney Atsushi Shiina


Claims (1)

脆性相が存在する2元系合金において、脆性相が存在する2元系合金での純金属と合金粉末を混合するに当たり、2元系状態図より脆性相(金属間化合物)が生成しない領域を選択して純金属と固溶体の粉末を混合した後熱間加圧成形し、脆性相のない合金を製造することを特徴とするスパッタリングターゲット材の製造方法。 In a binary alloy in which a brittle phase exists, in mixing a pure metal and an alloy powder in a binary alloy in which a brittle phase exists, an area where a brittle phase (intermetallic compound) is not generated from the binary phase diagram is shown. A method for producing a sputtering target material, comprising selecting and mixing pure metal and solid solution powder and then hot pressing to produce an alloy having no brittle phase.
JP2005020951A 2005-01-28 2005-01-28 Method for producing sputtering target material Expired - Fee Related JP4476827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020951A JP4476827B2 (en) 2005-01-28 2005-01-28 Method for producing sputtering target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020951A JP4476827B2 (en) 2005-01-28 2005-01-28 Method for producing sputtering target material

Publications (2)

Publication Number Publication Date
JP2006206966A JP2006206966A (en) 2006-08-10
JP4476827B2 true JP4476827B2 (en) 2010-06-09

Family

ID=36964139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020951A Expired - Fee Related JP4476827B2 (en) 2005-01-28 2005-01-28 Method for producing sputtering target material

Country Status (1)

Country Link
JP (1) JP4476827B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248000B2 (en) * 2006-09-11 2013-07-24 山陽特殊製鋼株式会社 CoW-based target material and method for manufacturing the same
JP4811660B2 (en) * 2006-11-30 2011-11-09 三菱マテリアル株式会社 High Ga-containing Cu-Ga binary alloy sputtering target and method for producing the same
JP4957969B2 (en) * 2007-11-12 2012-06-20 三菱マテリアル株式会社 Method for producing Cu-In-Ga ternary sintered alloy sputtering target
JP5459494B2 (en) * 2010-03-28 2014-04-02 三菱マテリアル株式会社 Sputtering target for forming a magnetic recording medium film and method for producing the same

Also Published As

Publication number Publication date
JP2006206966A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7311874B2 (en) Sputter target and method for fabricating sputter target including a plurality of materials
US20070189916A1 (en) Sputtering targets and methods for fabricating sputtering targets having multiple materials
TWI622661B (en) W-ni sputtering target as well as the production process and use thereof
JP5342810B2 (en) Method for producing Al-based alloy sputtering target material
WO2012002337A1 (en) Powder, sintered body and sputtering target, each containing elements cu, in, ga and se, and method for producing the powder
KR102519021B1 (en) Tungsten silicide target and method of manufacturing same
JP2010095770A (en) Ti-Al-BASED ALLOY TARGET AND METHOD FOR PRODUCING THE SAME
EP4048463A1 (en) Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
JP4476827B2 (en) Method for producing sputtering target material
Dias et al. Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition
WO2023176450A1 (en) Composite material, method for producing composite material, and mold
WO2019159856A1 (en) Sputtering target material
KR20160071619A (en) Method for manufacturing fe-based superalloy
JP2009197310A (en) Sputtering target
JP7412183B2 (en) sputtering target material
JP2021080542A (en) Sintered material and method for producing the same
JP2010150573A (en) Powder of self-fluxing composite alloy having wc grain dispersed therein, and method for producing the same
TWI821015B (en) Sputtering target and manufacturing method
JP7178707B2 (en) Method for manufacturing MgO-TiO-based sputtering target
WO2020202604A1 (en) Sputtering target and method for manufacturing sputtering target
JP7412659B2 (en) Sputtering target members, sputtering target assemblies, and film formation methods
JP7512077B2 (en) Sputtering target material
JP2000355761A (en) Ta TARGET FOR FILM-FORMING BARRIER MATERIAL AND ITS PRODUCTION
US20130008784A1 (en) Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof
JP2011058080A (en) Co-BASED ALLOY EXCELLENT IN ABRASION RESISTANCE AND LUBRICITY, METHOD FOR PRODUCING THE SAME, AND SINTERED COMPACT THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Ref document number: 4476827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees