JP2011058080A - Co-BASED ALLOY EXCELLENT IN ABRASION RESISTANCE AND LUBRICITY, METHOD FOR PRODUCING THE SAME, AND SINTERED COMPACT THEREOF - Google Patents

Co-BASED ALLOY EXCELLENT IN ABRASION RESISTANCE AND LUBRICITY, METHOD FOR PRODUCING THE SAME, AND SINTERED COMPACT THEREOF Download PDF

Info

Publication number
JP2011058080A
JP2011058080A JP2009211512A JP2009211512A JP2011058080A JP 2011058080 A JP2011058080 A JP 2011058080A JP 2009211512 A JP2009211512 A JP 2009211512A JP 2009211512 A JP2009211512 A JP 2009211512A JP 2011058080 A JP2011058080 A JP 2011058080A
Authority
JP
Japan
Prior art keywords
lubricity
based alloy
graphite
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009211512A
Other languages
Japanese (ja)
Other versions
JP5449936B2 (en
Inventor
Toshiyuki Sawada
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2009211512A priority Critical patent/JP5449936B2/en
Publication of JP2011058080A publication Critical patent/JP2011058080A/en
Application granted granted Critical
Publication of JP5449936B2 publication Critical patent/JP5449936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Co-based alloy excellent in abrasion resistance and lubricity in which fine graphite is dispersed, particularly a Co-based alloy excellent in abrasion resistance and lubricity which is used for sintered valve seats in motor vehicles or the like, and to provide a method for producing the Co-based alloy and a sintered compact thereof. <P>SOLUTION: The Co-based alloy excellent in abrasion resistance and lubricity includes, by mass%, 2.0 to 3.5% C, 1 to 4% B and the balance being Co and inevitable impurities, wherein graphite is produced in the alloy at an area rate of 5 to 20%. In addition to the Co-based alloy, the Co-based alloy excellent in abrasion resistance and lubricity further includes, by mass%, any one or more elements selected from 4% or less Si, 5% or less Al, 10% or less Cr, 5% or less Mn, and 10% or less Fe. There is also provided a method for producing the Co-based alloy and a sintered compact thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微細な黒鉛が分散した、耐摩耗性、潤滑性に優れるCo基合金に関し、特に自動車などの焼結バルブシートに使用される耐摩耗性、潤滑性に優れるCo基合金とその製造法およびその焼結体に関するものである。   TECHNICAL FIELD The present invention relates to a Co-based alloy having excellent wear resistance and lubricity in which fine graphite is dispersed, and in particular, a Co-based alloy having excellent wear resistance and lubricity used in sintered valve seats for automobiles and the like, and its production. And a sintered body thereof.

従来、自動車などに使用される焼結バルブシートは、例えばFeや低合金粉末をベースとし、硬質粒子粉末と、必要に応じて炭素粉末を混合し、金型でプレスした成形体を焼結し、製造される。この硬質粒子として、例えば特開2004−156101号公報(特許文献1)に開示されているように、C:0.2〜3%、Mn:20〜40%、Mo:20〜70%、残部Coおよび不可避的不純物からなる粉末や特開2007−238987号公報(特許文献2)に開示されているように、Si:2〜3%、Mo:20〜40%、Cr:7〜9%、残部Coおよび不可避的不純物からなる粉末などのCo合金が提案されて
いる。
Conventionally, sintered valve seats used in automobiles are based on, for example, Fe or low alloy powder, hard particle powder and, if necessary, carbon powder are mixed, and the compact pressed by a mold is sintered. Manufactured. As these hard particles, for example, as disclosed in JP 2004-156101 A (Patent Document 1), C: 0.2 to 3%, Mn: 20 to 40%, Mo: 20 to 70%, the balance As disclosed in powders of Co and unavoidable impurities and Japanese Patent Application Laid-Open No. 2007-238987 (Patent Document 2), Si: 2-3%, Mo: 20-40%, Cr: 7-9%, Co alloys such as powders composed of the balance Co and inevitable impurities have been proposed.

上述した特許文献1、2は、いずれもMoを20%以上含んでおり、Moの役割として、特許文献1ではMo炭化物生成による硬度、耐摩耗性向上とMo酸化物による固体潤滑性の向上が記載されている。また、特許文献1におけるMoの役割は、SiやCoと化合することでモリブデン珪化物を生成し、この珪化物が耐摩耗性、潤滑性を向上させると記載されている。このように、硬質粒子には潤滑性が必要であり、そのためにMoが20%以上と多量に添加されている。
特開2004−156101号公報 特開2007−238987号公報
Patent Documents 1 and 2 described above both contain 20% or more of Mo, and as a role of Mo, Patent Document 1 improves hardness and wear resistance by Mo carbide generation and improves solid lubricity by Mo oxide. Are listed. Moreover, the role of Mo in patent document 1 is described that molybdenum silicide is produced | generated by combining with Si and Co, and this silicide improves abrasion resistance and lubricity. Thus, lubricity is required for the hard particles, and therefore Mo is added in a large amount of 20% or more.
JP 2004-156101 A JP 2007-238987 A

近年、より厳しい凝着を起こす環境におかれるバルブシートにおいて、上記のようなMo酸化物やモリブデン珪化物による潤滑作用では必ずしも十分ではない場合が出てきている。そこで、さらに高い潤滑性を有する黒鉛に着目し、十分な硬度を有し、かつ黒鉛が生成する合金組成および熱処理条件を鋭意検討した結果、本発明に至った。   In recent years, in valve seats that are subjected to more severe adhesion, there are cases where the lubricating action of Mo oxide or molybdenum silicide as described above is not always sufficient. Therefore, paying attention to graphite having higher lubricity, the inventors of the present invention have made the present invention as a result of intensive studies on the alloy composition and heat treatment conditions that have sufficient hardness and produce graphite.

その発明の要旨とするところは、
(1)質量%で、C:2.0〜3.5%、B:1〜4%を含み、残部Coおよび不可避的不純物からなり、面積率で5〜20%の黒鉛が生成していることを特徴とする耐摩耗性、潤滑性に優れるCo基合金。
(2)前記(1)に加えて、さらに質量%で、Si:4%以下、Al:5%以下、Cr:10%以下、Mn:5%以下、Fe:10%以下のいずれか1種または2種以上からなることを特徴とする耐摩耗性、潤滑性に優れるCo基合金。
The gist of the invention is that
(1) By mass%, C: 2.0 to 3.5%, B: 1 to 4%, consisting of the remainder Co and inevitable impurities, 5 to 20% of graphite is produced in area ratio Co-base alloy with excellent wear resistance and lubricity.
(2) In addition to the above (1), any one of Si: 4% or less, Al: 5% or less, Cr: 10% or less, Mn: 5% or less, Fe: 10% or less in mass% Or a Co-based alloy having excellent wear resistance and lubricity, characterized by comprising two or more kinds.

(3)前記(1)または(2)に記載のCo基合金をガスアトマイズ法または液体急冷法にて作製した後、600〜1300℃の温度の熱履歴を与えることにより面積率で5〜20%の黒鉛を生成させてなることを特徴とする耐摩耗性、潤滑性に優れるCo基合金の製造方法。
(4)前記(1)または(2)に記載のCo基合金からなる粉末を使用して焼結してなることを特徴とする焼結体にある。
(3) After the Co-based alloy described in the above (1) or (2) is produced by a gas atomizing method or a liquid quenching method, a thermal history at a temperature of 600 to 1300 ° C. is given to give an area ratio of 5 to 20%. A method for producing a Co-based alloy having excellent wear resistance and lubricity, characterized in that graphite is produced.
(4) A sintered body obtained by sintering using the powder made of the Co-based alloy according to (1) or (2).

以上述べたように、本発明による、十分な硬度を有し、かつ黒鉛を生成する合金組成とすることで、優れた潤滑性を有する硬質潤滑Co基合金を得ることが可能となり、より厳しい凝着を起こす環境下でのエンジンバルブシートなどに使用される焼結合金を提供するものである。   As described above, by using an alloy composition having sufficient hardness and producing graphite according to the present invention, it is possible to obtain a hard lubricating Co-based alloy having excellent lubricity, and tougher solidification. The present invention provides a sintered alloy used for an engine valve seat and the like in an environment where adhesion occurs.

以下、本発明について詳細に説明する。
本発明における最も重要な特徴は、黒鉛を生成する組成および熱処理条件である。Cを含むCo系合金としては、特許文献1に記載の硬質粒子やステライト相当合金があるが、いずれもCr,Mo,WといったCと化合し炭化物を生成する元素を多量に含んでいるため、C単体からなる相である黒鉛は生成しない。したがって、黒鉛による潤滑作用は期待できない。
Hereinafter, the present invention will be described in detail.
The most important features of the present invention are the composition that produces graphite and the heat treatment conditions. Co-based alloys containing C include hard particles and stellite-equivalent alloys described in Patent Document 1, but all contain a large amount of elements that combine with C, such as Cr, Mo, and W to generate carbides. Graphite which is a phase composed of C alone is not generated. Therefore, the lubricating action by graphite cannot be expected.

これに対し、本発明合金は、Cと化合し炭化物を生成する元素をほとんど含まず、一部、CrおよびFeを含んでも良いが、その上限を制限することを考えた。さらに、バルブシートなどに使用される焼結合金はアトマイズ法により作製されることが多いが、本発明合金をアトマイズ法にて作製すると、合金が急冷凝固されることによりCがおそらく基地であるCoに強制的に固溶されると考えられるが、黒鉛を生成しないことがわかった。   On the other hand, the alloy of the present invention contains almost no element that forms a carbide by combining with C, and may contain some Cr and Fe, but it is considered to limit the upper limit. Furthermore, sintered alloys used for valve seats and the like are often produced by the atomizing method, but when the alloy of the present invention is produced by the atomizing method, C is probably the base due to rapid solidification of the alloy. However, it was found that no graphite was formed.

そこで、所定の熱履歴を与えることにより黒鉛を生成させることを考えた。ただし、急冷凝固法ではなく、通常の溶製法により本発明合金を作製した場合は、凝固時に既に黒鉛を生成するため、必ずしも熱履歴を加える必要はない。このように溶製法で作製したインゴットを機械的に粉砕して焼結に使用することも出来る。また、所定の熱履歴は、本発明合金粉末単体で実施される必要はなく、例えば焼結バルブシートの作製方法のように、Feや低合金粉末などと混合、プレスした成形体の焼結過程であってもよい。なぜなら、この焼結過程において、本発明合金は黒鉛を生成するからである。   Therefore, it was considered to generate graphite by giving a predetermined thermal history. However, when the alloy of the present invention is produced not by the rapid solidification method but by an ordinary melting method, graphite is already generated at the time of solidification, and thus it is not always necessary to add a thermal history. Thus, the ingot produced by the melting method can be mechanically pulverized and used for sintering. In addition, the predetermined heat history does not need to be performed with the alloy powder of the present invention alone. For example, as in the method for producing a sintered valve seat, the sintering process of a compact that is mixed and pressed with Fe or a low alloy powder It may be. This is because the alloy of the present invention produces graphite in this sintering process.

本発明における第2の特徴は、炭化物を生成することなく、硬質粒子として十分な硬度を確保するためにBを添加した点である。上述のように、特許文献1に記載の硬質粒子やステライト相当合金は硬質な炭化物を生成しているため硬質粒子として十分な硬度を得ている。これに対し、本発明合金ではC単体からなる相である黒鉛を生成するために、炭化物の生成を抑制している。したがって、炭化物を生成しやすい元素を添加することなく硬度を向上させる必要がある。そこで、比較的炭化物を生成しにくく、かつベースであるCoと化合し硬質な相を生成するBに着目した。BはCと化合しにくく、かつ硬質なCo系硼化物を生成すると考えたためである。さらに、B添加は次のような予想外の効果も生み出すことを見出した。   The 2nd characteristic in this invention is the point which added B in order to ensure sufficient hardness as a hard particle, without producing | generating a carbide | carbonized_material. As described above, since the hard particles and the stellite equivalent alloy described in Patent Document 1 generate hard carbides, the hard particles have sufficient hardness as hard particles. On the other hand, in the alloy of the present invention, generation of carbides is suppressed in order to generate graphite which is a phase composed of simple C. Therefore, it is necessary to improve the hardness without adding an element that easily generates carbides. Therefore, attention was paid to B which is relatively difficult to produce carbides and which forms a hard phase by combining with Co as a base. This is because B is considered to form a hard Co-based boride which is difficult to combine with C. Furthermore, it discovered that B addition also produced the following unexpected effects.

本発明合金にBを添加せずアトマイズ法により粉末を作製し、所定の熱処理を行なうと、黒鉛の生成は見られるものの、その多くが粉末の表層に移動し、集中してしまうことがわかった。バルブシートのような焼結合金では、本硬質粒子の周囲にはFeや低合金粉末が接しており、表層に集中した黒鉛はこれら周囲のFeと接触、化合し炭化物を生成してしまう。したがって、黒鉛による十分な潤滑作用が得られなくなってしまう。ここで、本発明合金のように所定量のBを添加すると、黒鉛の表層への集中を抑制できることがわかった。この現象の要因は定かではないが、B添加によるCo系硼化物は網目状に生成しており、このCo系硼化物が粉末内部で生成した黒鉛の粉末表面への移動を妨げているものと推察される。   It was found that when a powder was prepared by the atomization method without adding B to the alloy of the present invention and subjected to a predetermined heat treatment, graphite was observed, but most of it moved to the surface layer of the powder and concentrated. . In a sintered alloy such as a valve seat, Fe and low alloy powder are in contact with the periphery of the hard particles, and the graphite concentrated on the surface layer contacts and combines with the surrounding Fe to generate carbides. Therefore, a sufficient lubricating action by graphite cannot be obtained. Here, it was found that when a predetermined amount of B was added as in the alloy of the present invention, the concentration of graphite on the surface layer could be suppressed. The cause of this phenomenon is not clear, but the Co-based boride by addition of B is formed in a network shape, and this Co-based boride prevents the graphite generated inside the powder from moving to the powder surface. Inferred.

以下本発明に係る成分組成の限定した理由を述べる。
C:2.0〜3.5%
本発明合金においてCは、潤滑作用を有する黒鉛を生成するための必須元素であり、2.0%未満の添加では黒鉛の生成が十分ではなく、3.5%を超えて添加すると合金の液相線が過度に上昇し、溶解が困難となる。好ましくは2.3〜3.0%の範囲である。
The reasons why the component composition according to the present invention is limited will be described below.
C: 2.0 to 3.5%
In the alloy of the present invention, C is an essential element for producing graphite having a lubricating action, and if it is added in an amount of less than 2.0%, the formation of graphite is not sufficient. The phase line rises excessively, making dissolution difficult. Preferably it is 2.3 to 3.0% of range.

B:1〜4%
本発明合金においてBは、硬度向上のための必須元素であると共に、アトマイズ法により本発明合金を製造し、所定の熱履歴を加え黒鉛を生成させる場合においては、黒鉛の粉末表層への集中を抑制する効果もある。1%未満の添加では硬度向上および黒鉛の表層への集中抑制効果が十分ではなく、4%を超えて添加すると合金が過度に硬く、脆くなるため、バルブシートなどの焼結体を製造し、機械加工する際に欠けを生じるなどの問題が発生する。好ましくは2〜3.5%の範囲である。
B: 1-4%
In the alloy of the present invention, B is an essential element for improving the hardness, and when the alloy of the present invention is produced by an atomizing method and a predetermined heat history is added to generate graphite, the concentration of graphite on the powder surface layer is reduced. There is also an inhibitory effect. Addition of less than 1% is not sufficient in improving the hardness and suppressing the concentration of graphite on the surface layer, and if added over 4%, the alloy becomes too hard and brittle, so a sintered body such as a valve seat is manufactured. Problems such as chipping occur during machining. Preferably it is 2 to 3.5% of range.

Si:4%以下、Al:5%以下
SiおよびAlは、ともに炭化物を生成しにくい元素であり、Coとの化合物やCoへの固溶により硬度を向上させる効果がある。ただし、Siは4%、Alは5%を超えて添加すると合金が脆くなる。好ましくはSiは、3.5%以下、Alは、3%以下の範囲である。
Si: 4% or less, Al: 5% or less Both Si and Al are elements that hardly form carbides, and have an effect of improving hardness by a compound with Co or solid solution in Co. However, if Si is added in excess of 4% and Al exceeds 5%, the alloy becomes brittle. Preferably, Si is in the range of 3.5% or less, and Al is in the range of 3% or less.

Cr:10%以下、Mn:5%以下、Fe:10%以下
Cは、高融点であると共にCoとは反応しにくいため、溶解時に十分高温にしないと溶け残る場合がある。Cr、MnおよびFeは、いずれもCとは反応するため、溶解時におけるCの溶け残りを防止する効果がある。ただし、CrおよびFeは、10%を超えて添加すると一部炭化物を生成し、黒鉛の生成量を低下させてしまう。また、Mnは、5%を超えて添加すると合金が脆くなる。好ましくはCrが6%以下、Mnが3%以下、Feが6%以下の範囲である。
Cr: 10% or less, Mn: 5% or less, Fe: 10% or less C has a high melting point and hardly reacts with Co. Therefore, it may remain undissolved if it is not sufficiently heated at the time of dissolution. Since Cr, Mn, and Fe all react with C, there is an effect of preventing undissolved C from being dissolved. However, if Cr and Fe are added in excess of 10%, some carbides are generated, and the amount of graphite produced is reduced. Further, when Mn exceeds 5%, the alloy becomes brittle. Preferably, Cr is 6% or less, Mn is 3% or less, and Fe is 6% or less.

面積率で5〜20%の黒鉛
黒鉛の面積率は、5%未満では潤滑作用が十分でなく、C添加量を2〜3.5%とした場合、20%を超える面積率の黒鉛は生成しない。好ましくは7〜15%の範囲である。
When the area ratio of graphite graphite having an area ratio of 5 to 20% is less than 5%, the lubricating action is not sufficient, and when the amount of C added is 2 to 3.5%, graphite with an area ratio exceeding 20% is generated. do not do. Preferably it is 7 to 15% of range.

急冷法で作製され、600〜1300℃の熱処理
焼結バルブシートに使用される硬質粒子は100μm前後の粒径であることが多い。アトマイズ法はその前後の粒径の粉末を作製するのに適した工法である。ただし、アトマイズ法や液体急冷法などの急冷法で本発明合金を作製した場合、Cがベース金属であるCo中に強制固溶するものと考えられるが、黒鉛が生成しない。ここで、本発明合金のアトマイズ粉末に600〜1300℃の熱履歴を与えることにより、強制固溶していると考えられるCがベース金属であるCoから吐き出され、黒鉛を生成する。600℃未満の熱履歴では黒鉛の生成が十分でなく、1300℃を超える熱履歴では、アトマイズ法で製造した本
発明合金が溶融してしまう。好ましくは750〜1200℃の範囲である。
Hard particles produced by a rapid cooling method and used for heat-treated sintered valve seats at 600 to 1300 ° C. often have a particle size of around 100 μm. The atomizing method is a method suitable for producing powders having a particle size before and after the atomizing method. However, when the alloy of the present invention is produced by a quenching method such as an atomizing method or a liquid quenching method, it is considered that C is forcibly dissolved in Co as a base metal, but graphite is not generated. Here, by giving a thermal history of 600 to 1300 ° C. to the atomized powder of the alloy of the present invention, C, which is considered to be forcibly dissolved, is discharged from Co which is a base metal to generate graphite. When the heat history is less than 600 ° C., the formation of graphite is not sufficient, and when the heat history exceeds 1300 ° C., the alloy of the present invention manufactured by the atomizing method is melted. Preferably it is the range of 750-1200 degreeC.

以下、本発明について実施例によって具体的に説明する。
表1に示す組成を有する合金を溶製法およびガスアトマイズ法にて作製した。溶製法では、原料となるCo等の金属を5kg分を計量し、これを真空炉に装入して真空中で溶解して鋳造し、得られたインゴットの中心と外周との中間部から機械加工で試験片を切り出した。一方、ガスアトマイズ法では、同様に2kg分を計量して真空中で溶解し、窒素で噴霧した後得られた粉末を125μm以下に分級した。また、液体急冷法では、同様に20g分を計量して窒素に置換した雰囲気中で溶解し、溶湯を毎分2000回転で回転する直径300mmの銅製の冷却体に噴射し、得られたリボンを粉砕後125μmで分級した。その後、真空中において表1の温度で1時間の熱処理を行なった。このインゴットから切り出した試験片および粉末を樹脂埋め研磨し、光学顕微鏡により黒鉛の面積率を画像解析により測定した。また、ミクロビッカース硬度計により硬さを測定した。測定時の荷重は200gとした。
Hereinafter, the present invention will be specifically described with reference to examples.
An alloy having the composition shown in Table 1 was produced by a melting method and a gas atomizing method. In the melting method, 5 kg of Co or other metal material is weighed, placed in a vacuum furnace, melted and cast in a vacuum, and the machine from the center between the center and outer periphery of the resulting ingot A test piece was cut out by processing. On the other hand, in the gas atomization method, similarly, 2 kg was weighed and dissolved in a vacuum, and the powder obtained after spraying with nitrogen was classified to 125 μm or less. Similarly, in the liquid quenching method, 20 g is weighed and melted in an atmosphere substituted with nitrogen, and the molten metal is sprayed onto a copper cooling body having a diameter of 300 mm rotating at 2000 revolutions per minute. After grinding, it was classified at 125 μm. Thereafter, heat treatment was performed in vacuum at a temperature shown in Table 1 for 1 hour. The test piece and powder cut out from the ingot were polished with resin, and the area ratio of graphite was measured by image analysis with an optical microscope. Further, the hardness was measured with a micro Vickers hardness tester. The load during measurement was 200 g.

さらに、延性としては、上記ミクロビッカースの際、圧痕からクラックが発生しない場合:○、クラックの生じた場合:×とした。また、これら粉末を1100℃でHIP(熱間静水圧プレス)処理した成形体を用い、相手リングをSCM420、最終荷重61.8N、摩擦速度3.6m/s、摩擦距離100mの条件で大越式摩擦試験を行ない、試験後の相手リングに付着したCoをEDXにて確認した。そのときのCo付着状況を潤滑性評価とし、Coが殆ど付着していない:◎、Coが一部付着している:○、Coが全面に付着している:×で評価した。   Further, as the ductility, in the case of the above micro Vickers, the case where no crack was generated from the indentation: ◯, and the case where the crack was generated: x. In addition, using a molded body obtained by treating these powders with HIP (hot isostatic pressing) at 1100 ° C., the mating ring is SCM420, final load 61.8 N, friction speed 3.6 m / s, friction distance 100 m, Ogoshi type A friction test was performed, and Co adhered to the other ring after the test was confirmed by EDX. The Co adhesion state at that time was evaluated as lubricity, and Co was hardly adhered: ◎, Co was partially adhered: ◯, Co was adhered to the entire surface: x was evaluated.

Figure 2011058080
表1に示す、No.1〜16は本発明例であり、No.17〜27は比較例である。
Figure 2011058080
No. 1 shown in Table 1. 1 to 16 are examples of the present invention. 17 to 27 are comparative examples.

表1に示すように、比較例No.17は、Cが低いために、黒鉛面積率が4%と低く、成形体の潤滑性が悪い。比較例No.18は、Bを含有していないために黒鉛が粉末表層に集中しており、表面直下の内部には黒鉛の欠乏層が確認され、成形体の潤滑性が悪い。比較例No.19は、B添加量が多いために、合金が脆く、硬度測定時にミクロビッカース硬度計で荷重をかけるとクラックが発生した。また、熱処理温度が高いために、アトマイズ法で製造した合金が溶融する問題がある。   As shown in Table 1, Comparative Example No. Since No. 17 has a low C, the graphite area ratio is as low as 4% and the lubricity of the molded article is poor. Comparative Example No. In No. 18, since B is not contained, graphite is concentrated on the powder surface layer, and a graphite-deficient layer is confirmed inside the surface, and the lubricity of the molded article is poor. Comparative Example No. In No. 19, since the amount of B added was large, the alloy was brittle, and cracks occurred when a load was applied with a micro Vickers hardness meter during hardness measurement. Moreover, since the heat treatment temperature is high, there is a problem that an alloy manufactured by the atomizing method melts.

比較例No.20、21は、Si,Al添加量が高いために、合金が脆く、硬度測定時にミクロビッカース硬度計で荷重をかけるとクラックが発生した。また、比較例No.22はCrが高いため黒鉛の面積率が少なく、成形体の潤滑性が悪い。比較例No.23はMnが高いため合金が脆く、硬度測定時にミクロビッカース硬度計で荷重をかけるとクラックが発生した。比較例No.24はFeが高いために黒鉛の面積率が少なく、成形体の潤滑性が悪い。比較例No.25は、熱処理がなく、また、比較例No.26は、熱処理温度が低いために、黒鉛面積率が1%、3%と低く、潤滑性が悪い。比較例27は、Cが高いために、合金の液相線が過度に上昇し、溶解が困難となる。   Comparative Example No. Since Nos. 20 and 21 had high Si and Al addition amounts, the alloys were brittle, and cracks occurred when a load was applied with a micro Vickers hardness tester during hardness measurement. Comparative Example No. Since No. 22 is high in Cr, the area ratio of graphite is small and the lubricity of the compact is poor. Comparative Example No. Since No. 23 had a high Mn, the alloy was brittle, and cracks occurred when a load was applied with a micro Vickers hardness tester during hardness measurement. Comparative Example No. Since No. 24 is high in Fe, the area ratio of graphite is small and the lubricity of the compact is poor. Comparative Example No. No. 25 has no heat treatment, and Comparative Example No. No. 26 has a low heat treatment temperature, so the graphite area ratio is as low as 1% and 3%, and the lubricity is poor. In Comparative Example 27, since C is high, the liquidus of the alloy rises excessively, and dissolution becomes difficult.

これに対し、本発明例であるNo.1〜16は、いずれも本発明の条件を満たしていることから潤滑性の高い黒鉛を生成することが可能となった。特に、Cr,Mn,Feを添加した本発明例No.10〜16は、無添加の組成と比較し、Cが速やかに溶湯に溶け込み、溶解時間が短縮された。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
On the other hand, No. which is an example of the present invention. Since Nos. 1 to 16 all satisfy the conditions of the present invention, it became possible to produce graphite with high lubricity. In particular, Example No. of the present invention to which Cr, Mn and Fe were added. 10-16 compared with the additive-free composition, C quickly dissolved in the molten metal, and the dissolution time was shortened.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (4)

質量%で、
C:2.0〜3.5%、
B:1〜4%、
を含み、残部Coおよび不可避的不純物からなり、面積率で5〜20%の黒鉛が生成していることを特徴とする耐摩耗性、潤滑性に優れるCo基合金。
% By mass
C: 2.0 to 3.5%
B: 1-4%
Co-based alloy having excellent wear resistance and lubricity, characterized by comprising 5 to 20% of graphite by area ratio.
請求項1に加えて、さらに質量%で、
Si:4%以下、
Al:5%以下、
Cr:10%以下、
Mn:5%以下、
Fe:10%以下
のいずれか1種または2種以上からなることを特徴とする耐摩耗性、潤滑性に優れるCo基合金。
In addition to claim 1, further in mass%,
Si: 4% or less,
Al: 5% or less,
Cr: 10% or less,
Mn: 5% or less,
Fe: Co-based alloy excellent in wear resistance and lubricity, characterized by comprising any one or more of 10% or less.
請求項1または2に記載のCo基合金をガスアトマイズ法または液体急冷法にて作製した後、600〜1300℃の温度の熱履歴を与えることにより面積率で5〜20%の黒鉛を生成させてなることを特徴とする耐摩耗性、潤滑性に優れるCo基合金の製造方法。 After producing the Co-based alloy according to claim 1 or 2 by a gas atomization method or a liquid quenching method, a thermal history at a temperature of 600 to 1300 ° C. is given to generate 5 to 20% graphite by area ratio. A method for producing a Co-based alloy having excellent wear resistance and lubricity. 請求項1または2に記載のCo基合金からなる粉末を使用して焼結してなることを特徴とする焼結体。 A sintered body obtained by sintering using the powder comprising the Co-based alloy according to claim 1 or 2.
JP2009211512A 2009-09-14 2009-09-14 Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body Active JP5449936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211512A JP5449936B2 (en) 2009-09-14 2009-09-14 Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211512A JP5449936B2 (en) 2009-09-14 2009-09-14 Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body

Publications (2)

Publication Number Publication Date
JP2011058080A true JP2011058080A (en) 2011-03-24
JP5449936B2 JP5449936B2 (en) 2014-03-19

Family

ID=43946026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211512A Active JP5449936B2 (en) 2009-09-14 2009-09-14 Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body

Country Status (1)

Country Link
JP (1) JP5449936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124338A1 (en) 2011-03-16 2012-09-20 国立大学法人東北大学 Probe for analyzing biological tissue and method for utilizing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124262A (en) * 1974-12-24 1987-06-05 Res Inst Iron Steel Tohoku Univ Method for modifying magnetic characteristic of high permeability amorphous alloy
JPH02156036A (en) * 1988-12-09 1990-06-15 Fukuda Metal Foil & Powder Co Ltd Graphite dispersion co-base alloy
JPH02209445A (en) * 1989-02-08 1990-08-20 Fukuda Metal Foil & Powder Co Ltd Graphite dispersed self-lubricating alloy
JPH04187746A (en) * 1990-11-20 1992-07-06 Hitachi Metals Ltd Composite cylinder having lining layer constituted of corrosion resistant and wear resistant sintered alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124262A (en) * 1974-12-24 1987-06-05 Res Inst Iron Steel Tohoku Univ Method for modifying magnetic characteristic of high permeability amorphous alloy
JPH02156036A (en) * 1988-12-09 1990-06-15 Fukuda Metal Foil & Powder Co Ltd Graphite dispersion co-base alloy
JPH02209445A (en) * 1989-02-08 1990-08-20 Fukuda Metal Foil & Powder Co Ltd Graphite dispersed self-lubricating alloy
JPH04187746A (en) * 1990-11-20 1992-07-06 Hitachi Metals Ltd Composite cylinder having lining layer constituted of corrosion resistant and wear resistant sintered alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124338A1 (en) 2011-03-16 2012-09-20 国立大学法人東北大学 Probe for analyzing biological tissue and method for utilizing same

Also Published As

Publication number Publication date
JP5449936B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
KR101843070B1 (en) Engine valve coated with ni-fe-cr-based alloy
JP6573661B2 (en) Sliding bearings or parts thereof, methods for their production and use of CuCrZr alloys as sliding bearing materials
JPWO2012063512A1 (en) Wear-resistant cobalt base alloy and engine valve
JP2007524513A (en) Hardfacing alloy iron material
JP5367944B2 (en) Formation of metal insulation alloys
JP2016216802A (en) Hard powder high in productivity and corrosion resistance with inexpensive price and projection material for shot-peening and iron-based abrasion resistant sintered alloy having hard particle dispersed
JPWO2012063511A1 (en) High toughness cobalt base alloy and engine valve
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP5079381B2 (en) Raw material powder for laser overlay valve seat and valve seat using the same
JP2007084858A (en) Iron-based high hardness shot material
JP2014529005A (en) Process for manufacturing lead-free plain bearing materials
JP4943080B2 (en) Raw material powder for laser overlay valve seat and valve seat using the same
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP5449936B2 (en) Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body
JPWO2015129754A1 (en) Cylinder for molding machine and manufacturing method thereof
WO2014069397A1 (en) Engine valve
JP6671772B2 (en) High hardness and toughness powder
JP2010150573A (en) Powder of self-fluxing composite alloy having wc grain dispersed therein, and method for producing the same
JP6698910B2 (en) Alloy powder
JP6985961B2 (en) Piston ring and its manufacturing method
JP5292007B2 (en) Thermal spray alloy, member provided with surface layer and method for manufacturing the same
JP6302530B2 (en) Hard powder for iron-base wear-resistant sintered alloy and iron-base wear-resistant sintered alloy
JP2001032001A (en) Self-lubricating metal and its production
JP2023107361A (en) Fe-based alloy for sintering
JP2019014920A (en) Co-BASED ALLOY POWDER FOR ELECTRON BEAM LAMINATION MOLDING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250