JPH0142741B2 - - Google Patents

Info

Publication number
JPH0142741B2
JPH0142741B2 JP16126884A JP16126884A JPH0142741B2 JP H0142741 B2 JPH0142741 B2 JP H0142741B2 JP 16126884 A JP16126884 A JP 16126884A JP 16126884 A JP16126884 A JP 16126884A JP H0142741 B2 JPH0142741 B2 JP H0142741B2
Authority
JP
Japan
Prior art keywords
gas
crucible
collector
container
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16126884A
Other languages
Japanese (ja)
Other versions
JPS6138625A (en
Inventor
Tokumitsu Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP16126884A priority Critical patent/JPS6138625A/en
Publication of JPS6138625A publication Critical patent/JPS6138625A/en
Publication of JPH0142741B2 publication Critical patent/JPH0142741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/005Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out at high temperatures in the presence of a molten material

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁性材料、触媒、その他特殊なセ
ラミツクスなどの素材として重要な超微粒子の製
造技術に関する。超微粒子は単位重量当たりの表
面積を極めて大きくすることができるため各種の
分野で注目されており、各種成分の超微粒子の量
産が望まれている。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a technology for producing ultrafine particles, which are important as materials for magnetic materials, catalysts, and other special ceramics. Ultrafine particles have attracted attention in various fields because they can have an extremely large surface area per unit weight, and mass production of ultrafine particles of various components is desired.

(従来技術) これまで、この種の微粒子を製造するために、
塩化物、有機金属蒸気の水素還元、金属塩溶液か
らの析出法、及びガス蒸発法が知られている。析
出法は化学反応を伴うため純度の高い微粒子を得
ることが困難であつた。ガス蒸発法は、試料を高
温に熱し、発生する蒸気を雰囲気のガスで冷却し
て微粒子を得る方法であり、数Torrから+数
TorrのHe、Ar等の不活性ガスの雰囲気中で粒子
の素材となる金属をルツボに入れて加熱溶解し、
溶湯表面から発生する蒸気を雰囲気のガスで冷却
して超微粒子を得る。
(Prior art) Until now, in order to produce this kind of fine particles,
Hydrogen reduction of chlorides, organometallic vapors, precipitation from metal salt solutions, and gas evaporation methods are known. Since the precipitation method involves chemical reactions, it has been difficult to obtain fine particles with high purity. The gas evaporation method is a method of heating a sample to a high temperature and cooling the generated vapor with atmospheric gas to obtain fine particles.
In an atmosphere of inert gas such as Torr He or Ar, the metal that will become the material of the particles is placed in a crucible and heated and melted.
Ultrafine particles are obtained by cooling the steam generated from the surface of the molten metal with atmospheric gas.

しかし、このガス蒸発法は溶湯表面から自然発
生する蒸気の量により超微粒子の生産量が制限さ
れ、かつ、得られる微粒子の単位量当たりの消費
エネルギーは莫大なものとなつていた。また、製
造条件の設定もかなりの試行錯誤を要するもので
あつた。このため、この方法は純度の高いものが
得られる反面、生産コストが高くなり、超微粒子
の量産に必ずしも適したものとは言えなかつた。
However, in this gas evaporation method, the amount of ultrafine particles produced is limited by the amount of steam naturally generated from the surface of the molten metal, and the energy consumption per unit amount of fine particles obtained is enormous. Furthermore, setting the manufacturing conditions also required considerable trial and error. For this reason, although this method can yield highly pure particles, it increases the production cost and is not necessarily suitable for mass production of ultrafine particles.

(解決すべき問題点) 公知のガス蒸発法による超微粒子製造方法にお
ける最大の欠陥であつた単位時間当たりの収量
(生産効率)の制限を、素材(試料)の蒸発方法
を改良することにより、大幅に改善することをこ
の出願の発明の課題とする。
(Problems to be solved) By improving the method of evaporating the material (sample), we have solved the limitation of yield per unit time (production efficiency), which was the biggest defect in the known method of producing ultrafine particles using the gas evaporation method. It is an object of the invention of this application to achieve a significant improvement.

そして、この発明は前記問題点を解決したガス
蒸発法による超微粒子の製造方法、及びこの方法
を実施するのに好適な超微粒子製造装置を提供す
る。
The present invention also provides a method for producing ultrafine particles by a gas evaporation method that solves the above problems, and an apparatus for producing ultrafine particles suitable for carrying out this method.

(問題点を解決するための手段及びその作用) この発明は、超微粒子の素材となる物質の溶湯
中に気体を送り込むことにより、素材(試料)の
蒸発を促進し超微粒子の生産効率を高くする。素
材(試料)を不活性ガス、還元性ガス、またはそ
れらの混合ガスからなる雰囲気中で溶解し、溶湯
中に不活性ガス、還元性ガス、またはそれらの混
合ガスを好ましくは微細な気泡にして送り込む
と、溶湯(素材が加熱されて溶融したもの)の表
面積が増加し、さらに素材の蒸気を含まないガス
が次々と供給され、蒸気で飽和したガスが搬送さ
れるため蒸発が促進される。素材となる物質は
Ni、Co、Fe、Pb、等の金属、非金属が用いられ
る。蒸発した素材の蒸は、冷却された、または室
温の雰囲気に触れて超微粒子として固化する。雰
囲気の圧力は高いと冷却効率は高いが試料の蒸発
が妨げられる。逆に雰囲気の圧力が低いと試料の
蒸発は妨げられないが冷却効率が低くなる。した
がつて、実験的に最適雰囲気圧力を求め、それを
一定に保つ必要がある。
(Means for Solving the Problems and Their Effects) This invention promotes evaporation of the material (sample) by sending gas into the molten metal of the substance that becomes the material of the ultrafine particles, thereby increasing the production efficiency of the ultrafine particles. do. The material (sample) is dissolved in an atmosphere consisting of an inert gas, a reducing gas, or a mixture thereof, and the inert gas, reducing gas, or a mixture thereof is preferably made into fine bubbles in the molten metal. When the molten metal is fed, the surface area of the molten metal (material heated and melted) increases, gas that does not contain the vapor of the material is successively supplied, and the gas saturated with steam is transported, promoting evaporation. The material is
Metals and non-metals such as Ni, Co, Fe, Pb, etc. are used. The evaporated material solidifies into ultrafine particles when exposed to a cooled or room temperature atmosphere. If the atmospheric pressure is high, cooling efficiency is high, but evaporation of the sample is hindered. On the other hand, if the pressure of the atmosphere is low, the evaporation of the sample is not hindered, but the cooling efficiency becomes low. Therefore, it is necessary to experimentally find the optimum atmospheric pressure and keep it constant.

また、この発明の超微粒子製造装置は、前記の
方法を実施するために、超微粒子の素材を溶融す
るためのルツボ、ルツボを加熱する手段、捕集器
及びこれらを内部に収納し、一定の圧力の雰囲気
を満たした容器からなり、ガスを素材の溶湯中に
分配するためのガス分配器をルツボに設けること
により素材の蒸発を促進している。
Further, in order to carry out the method described above, the ultrafine particle manufacturing apparatus of the present invention includes a crucible for melting the ultrafine particle material, a means for heating the crucible, a collector, and a collector, and a certain amount of It consists of a container filled with a pressurized atmosphere, and the crucible is equipped with a gas distributor to distribute gas into the molten material to promote evaporation of the material.

(実施例) この発明の方法を実施するための装置を第1図
に示す。装置は気密性のある容器1、ルツボ2、
加熱手段3、及び捕集器4からなる。容器1は例
えばステンレスなどからなる円筒状の容器であ
り、ルツボ2、捕集器4などの操作のため開閉で
きるように2つの部分、すなわち容器蓋部11及
び容器本体12からなる。また容器1には、排気
及び雰囲気ガス注入のための導管13、ルツボ2
に結合された熱電対用アルミナ管24、ガス分配
器22に結合された導管23、加熱手段3に結合
された電線、捕集器4を強制的に冷却するために
銅パイプ44に水等の冷却媒体を循環させる導管
41,42などを容器内の気密を保つて外部へ取
り出す手段が設けられている。容器底部に配置さ
れるルツボ2は、第2図aに示すように、耐熱性
を有し、素材と反応しないアルミナ等の円筒状ル
ツボ容器21からなり、円筒の底部にアルミナセ
メント等からなる多孔質のガス分配器22が固着
されている。ガス分配器22には導管23が結合
され、また素材の温度を検出するための熱電体を
納めたアルミナ管24が貫通して取り付けられて
いる。分配器22の底面には、導管23から供給
される気体が下方に漏出しないよう気密層25が
設けられている。このガス分配器22の形状は任
意であり、この実施例においてはルツボの一部を
兼ねているが、第2図bに示すように、ガス分配
器22をルツボ容器21とは別体として、ルツボ
容器の底部に載置するようにしてもよい。場合に
よつては、単に複数の導管23から直接、溶湯中
に気体を吹き込んでもよい。また、材質も、アル
ミナに限らず、溶湯温度に耐え、溶湯との非反応
性があればよく、粗粒を焼結して多孔体を得る方
法によつて作られる。ルツボは黒鉛パイプ等の加
熱手段3に通電することにより加熱される。超微
粒子を付着させる捕集器4は銅円筒43及び銅パ
イプ44からなり導管41,42を介して流れる
水等の冷却媒体により強制的に冷却するのが好ま
しい。捕集器の形状は任意であり、円筒の上部を
覆つた形状とすることもできる。また加熱手段3
と捕集器4との間には、円筒形の強制的に冷却す
る手段を備えた熱遮蔽体5を配置するのが好まし
い。
(Example) An apparatus for carrying out the method of this invention is shown in FIG. The equipment includes an airtight container 1, a crucible 2,
It consists of a heating means 3 and a collector 4. The container 1 is a cylindrical container made of stainless steel, for example, and consists of two parts, namely a container lid 11 and a container body 12, so that the crucible 2, collector 4, etc. can be opened and closed for operation. The container 1 also includes a conduit 13 for exhausting and injecting atmospheric gas, and a crucible 2.
A thermocouple alumina tube 24 connected to the gas distributor 22, a conduit 23 connected to the gas distributor 22, an electric wire connected to the heating means 3, and a copper pipe 44 for forcibly cooling the collector 4. Means is provided for taking out the conduits 41, 42, etc. for circulating the cooling medium to the outside while keeping the inside of the container airtight. The crucible 2 placed at the bottom of the container is, as shown in FIG. A quality gas distributor 22 is fixed. A conduit 23 is connected to the gas distributor 22, and an alumina tube 24 containing a thermoelectric body for detecting the temperature of the material is installed through the gas distributor 22. An airtight layer 25 is provided on the bottom surface of the distributor 22 to prevent the gas supplied from the conduit 23 from leaking downward. The shape of this gas distributor 22 is arbitrary, and in this embodiment it also serves as a part of the crucible, but as shown in FIG. It may also be placed on the bottom of the crucible container. In some cases, the gas may simply be blown directly into the molten metal through the plurality of conduits 23. Further, the material is not limited to alumina, as long as it can withstand the temperature of the molten metal and is non-reactive with the molten metal, and is made by sintering coarse particles to obtain a porous body. The crucible is heated by energizing heating means 3 such as a graphite pipe. The collector 4 to which the ultrafine particles are attached is preferably composed of a copper cylinder 43 and a copper pipe 44, and is preferably forcibly cooled by a cooling medium such as water flowing through conduits 41 and 42. The shape of the collector is arbitrary, and it can also be shaped to cover the top of a cylinder. Also heating means 3
A heat shield 5 having a cylindrical shape and provided with forced cooling means is preferably arranged between the collector 4 and the collector 4 .

次に第1図の装置の作動を説明する。図のよう
に配置したルツボに超微粒子の素材を充填し、容
器1を気密に保つて導管13から10-5Torrまで
排気し、O2、H2Oなどの活性ガスを除去する。
その後Ar、He等の不活性ガス、H2などの還元性
ガス、またはそれらの混合ガスを、素材の蒸気圧
に応じて定めた所定の圧力(数Torrから数+
Torr)となるように導管13を介して注入する。
次にルツボ2に密着した加熱手段3に通電し、熱
電対で試料の温度を監視しながら、試料を溶融し
一定の温度に保つ。このとき、ルツボのガス分配
器22に前記不活性ガス、還元性ガス、または、
これらの混合ガスを導管23を介して供給して試
料の蒸発を促進する。蒸発した気体状の素材は、
捕集器4により冷却された雰囲気に触れて数十か
ら数百Åの径の超微粒子となつて固化し、捕集器
4の銅円筒43の内壁に付着する。こうして蒸発
した素材のほぼ100%が捕集器4により回収され
る。
Next, the operation of the apparatus shown in FIG. 1 will be explained. A crucible arranged as shown in the figure is filled with ultrafine particle material, and the container 1 is kept airtight and evacuated from the conduit 13 to 10 -5 Torr to remove active gases such as O 2 and H 2 O.
After that, inert gas such as Ar and He, reducing gas such as H2 , or a mixture thereof is heated to a predetermined pressure (several Torr to several +
Torr) through conduit 13.
Next, the heating means 3 in close contact with the crucible 2 is energized, and the sample is melted and kept at a constant temperature while the temperature of the sample is monitored with a thermocouple. At this time, the inert gas, reducing gas, or
A mixture of these gases is supplied via conduit 23 to facilitate evaporation of the sample. The evaporated gaseous material is
When exposed to the atmosphere cooled by the collector 4, the particles solidify into ultrafine particles with a diameter of several tens to hundreds of angstroms, and adhere to the inner wall of the copper cylinder 43 of the collector 4. Almost 100% of the material evaporated in this way is collected by the collector 4.

なお、長時間、蒸発を持続させる場合、雰囲気
の圧力が上昇して生産効率が低下する場合には、
容積の大きい容器を用いたり、ガス分配器22か
らの給気量と同量の雰囲気を導管13から排気
し、排気を導管23へ循環させれば良い。また雰
囲気及びガス分配器への給気成分として、還元性
ガスを用いる場合は、還元作用により酸化物の少
ない純度の高い超微粒子を得ることができる。さ
らに捕集器と容器とを兼用させることも可能であ
り、その場合、半体12の外側から冷却し、その
内壁に超微粒子を付着せしめる。
In addition, if evaporation is continued for a long time, the pressure of the atmosphere increases and production efficiency decreases.
A container with a large capacity may be used, or the same amount of atmosphere as the amount of air supplied from the gas distributor 22 may be exhausted from the conduit 13 and the exhaust gas may be circulated to the conduit 23. Further, when a reducing gas is used as the atmosphere and the gas supply component to the gas distributor, ultrafine particles with high purity and less oxide can be obtained due to the reducing action. Furthermore, it is possible to use both the collector and the container, in which case the half body 12 is cooled from the outside and the ultrafine particles are adhered to its inner wall.

次に素材としてPbを用いた場合の具体的デー
タを示す。
Next, we will show specific data when using Pb as the material.

ルツボ:内径20mmの高密度アルミナ管 容器:容積70 Pb溶融温度:1300℃ 雰囲気:60TorrのHe及びH2の混合ガス ルツボへの導管23からの給気量が0〜3.8
ml/分の場合の捕集量gを図3に示す。ただし蒸
発時間はそれぞれ1時間とし、試料表面からルツ
ボの口までの距離を8mmとする。
Crucible: High-density alumina tube container with inner diameter of 20 mm: Volume: 70 Pb melting temperature: 1300°C Atmosphere: 60 Torr mixed gas of He and H 2 The amount of air supplied from the conduit 23 to the crucible is 0 to 3.8
Figure 3 shows the amount of collected g at ml/min. However, the evaporation time is 1 hour for each, and the distance from the sample surface to the mouth of the crucible is 8 mm.

捕集器4で捕集した粒子はアセトン中で超音波
分散させ、沈降速度の差から粒径毎に選別するこ
とができる。
The particles collected by the collector 4 are ultrasonically dispersed in acetone, and can be sorted by particle size based on the difference in sedimentation speed.

(効果) この発明の方法及び、製造装置によれば、従来
のガス蒸発法に比べて単位時間当りの捕集量が
1.4倍以上に向上し超微粒子の生産効率が飛躍的
に増大する。また製造条件の設定も簡単であり、
従来のガス蒸発法に比べて給気量と温度の制御と
が独立にできるので蒸発状態を長時間安定に保つ
ことができる。さらに還元性の気体を試料に吹き
込むことができるので高純度の超微粒子を得るこ
ともできる。
(Effects) According to the method and manufacturing apparatus of the present invention, the amount collected per unit time can be reduced compared to the conventional gas evaporation method.
The production efficiency of ultrafine particles is increased dramatically by more than 1.4 times. It is also easy to set manufacturing conditions,
Compared to conventional gas evaporation methods, the air supply amount and temperature can be controlled independently, so the evaporation state can be kept stable for a long time. Furthermore, since reducing gas can be blown into the sample, highly pure ultrafine particles can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の超微粒子製造装置の縦断
面を示す。第2図a,bは、ルツボ及びガス分配
器の実施例を示す図である。第3図は、素材とし
てPbを用いた場合の、ガス分配器への給気量と
捕集量との関係を示すグラフである。
FIG. 1 shows a longitudinal section of the ultrafine particle manufacturing apparatus of the present invention. Figures 2a and 2b are diagrams showing an embodiment of the crucible and gas distributor. FIG. 3 is a graph showing the relationship between the amount of air supplied to the gas distributor and the amount of collected air when Pb is used as the material.

Claims (1)

【特許請求の範囲】 1 超微粒子の素材となる物質の溶湯中に、気体
を送り込み、前記物質の蒸発を促進させ、この蒸
気を冷却させることを特徴とする超微粒子の製造
方法。 2 前記気体は、不活性ガス、還元性ガス、また
はこれらの混合ガスである特許請求の範囲第1項
の方法。 3 前記気体は微細な気泡として溶湯中に送り込
まれる特許請求の範囲第1または2項の方法。 4 前記気体の送り込む量だけ雰囲気を排気する
特許請求の範囲第1,2、または3項記載の方
法。 5 気体を溶湯中に送り込むガス分配器を有する
ルツボ、加熱手段、超微粒子の補集器、及びこれ
らを内部に収容する気密な容器からなる超微粒子
製造装置。 6 前記ガス分配器はルツボ容器の1部をなす多
孔質の部材からなる特許請求の範囲第5項記載の
装置。 7 前記ガス分配器はルツボ容器と別体に設けら
れている特許請求の範囲第5項記載の装置。 8 前記捕集器は強制的に冷却されている特許請
求の範囲第5,6、または7項記載の装置。 9 前記捕集器は容器の一部を兼ねている特許請
求の範囲第5,6,7、または8項記載の装置。
[Scope of Claims] 1. A method for producing ultrafine particles, which comprises feeding gas into a molten metal of a substance that is a material for ultrafine particles, promoting evaporation of the substance, and cooling the vapor. 2. The method according to claim 1, wherein the gas is an inert gas, a reducing gas, or a mixed gas thereof. 3. The method according to claim 1 or 2, wherein the gas is fed into the molten metal as fine bubbles. 4. The method according to claim 1, 2, or 3, wherein the atmosphere is evacuated by the amount of the gas to be fed. 5. An ultrafine particle production device consisting of a crucible having a gas distributor for feeding gas into the molten metal, a heating means, an ultrafine particle collector, and an airtight container housing these inside. 6. The apparatus according to claim 5, wherein the gas distributor comprises a porous member forming a part of a crucible container. 7. The apparatus according to claim 5, wherein the gas distributor is provided separately from the crucible container. 8. The device according to claim 5, 6, or 7, wherein the collector is forcibly cooled. 9. The device according to claim 5, 6, 7, or 8, wherein the collector also serves as a part of the container.
JP16126884A 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle Granted JPS6138625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16126884A JPS6138625A (en) 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16126884A JPS6138625A (en) 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle

Publications (2)

Publication Number Publication Date
JPS6138625A JPS6138625A (en) 1986-02-24
JPH0142741B2 true JPH0142741B2 (en) 1989-09-14

Family

ID=15731874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16126884A Granted JPS6138625A (en) 1984-07-31 1984-07-31 Method and apparatus for producing ultrafine particle

Country Status (1)

Country Link
JP (1) JPS6138625A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637442B2 (en) * 1987-12-03 1997-08-06 三菱重工業株式会社 Thermoelectric converter
JPH01254241A (en) * 1988-04-01 1989-10-11 Shinagawa Refract Co Ltd Electric resistance heating type fusion-gasification furnace
KR101122219B1 (en) * 2003-08-28 2012-04-18 테크나 플라즈마 시스템 인코포레이티드 Process for the synthesis, separation and purification of powder materials

Also Published As

Publication number Publication date
JPS6138625A (en) 1986-02-24

Similar Documents

Publication Publication Date Title
US5073193A (en) Method of collecting plasma synthesize ceramic powders
CN100438965C (en) Process for the synthesis, separation and purification of powder materials
US7794784B2 (en) Forming nanostructures
JPS60175537A (en) Preparation of ultra-fine ceramic particles
US20100247752A1 (en) Photocurable resin composition for forming overcoats rgb pixels black matrixes or spacers in color filter production, and color filters
US3107180A (en) Process for deposition of pyrolytic graphite
RU2412108C2 (en) Method to produce nanoparticles and device for its realisation
US3380904A (en) Confining the reaction zone in a plasma arc by solidifying a confining shell around the zone
JP5392695B2 (en) Aluminum metal manufacturing method and manufacturing apparatus
JPH0142741B2 (en)
KR20200056073A (en) Manufacturing apparatus and manufacturing method of nanopowder using DC arc plasma and apparatus for manufacturing the same
US3165396A (en) Deflection of metal vapor away from the vertical in a thermal evaporation process
CN2712505Y (en) Device for preparing nano metal powder by plasma
US3326820A (en) Arc process for forming high melting point compounds
KR100596676B1 (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth
JPH0257476B2 (en)
JPH06122906A (en) Method for supplying chloride and production of magnetic metal powder
CN112756619B (en) Production method of submicron-level CuSn alloy powder with controllable element proportion
KR102162973B1 (en) Method for manufacturing nanopowder using thermal plasma
JPH0458404B2 (en)
Batsanov et al. Electric discharge in materials
RU2685564C1 (en) Method of synthesis of metal nanoparticles by deposition on a porous carbon material
JPS6320480A (en) Method and apparatus for surface treatment of powder or fibrous material
JPS59162204A (en) Method and device for ultrafine powder
JPS6152306A (en) Production of pulverous metallic powder