JPH01254241A - Electric resistance heating type fusion-gasification furnace - Google Patents

Electric resistance heating type fusion-gasification furnace

Info

Publication number
JPH01254241A
JPH01254241A JP7812688A JP7812688A JPH01254241A JP H01254241 A JPH01254241 A JP H01254241A JP 7812688 A JP7812688 A JP 7812688A JP 7812688 A JP7812688 A JP 7812688A JP H01254241 A JPH01254241 A JP H01254241A
Authority
JP
Japan
Prior art keywords
gas
refractory
heated
resistance heating
heating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7812688A
Other languages
Japanese (ja)
Other versions
JPH0551335B2 (en
Inventor
Yukio Ozaki
行雄 尾崎
Katsuhiro Iwaki
岩城 克弘
Kenji Mitsui
光井 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP7812688A priority Critical patent/JPH01254241A/en
Publication of JPH01254241A publication Critical patent/JPH01254241A/en
Publication of JPH0551335B2 publication Critical patent/JPH0551335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating

Abstract

PURPOSE:To prevent direct contact of a refractory material and heating elements with a harmful gas by arranging heating elements inside an inner shell lined with a refractory material and by forming a gasification chamber further inside, which is separated by a gaspermeable refractory and wherein a crucible is placed. CONSTITUTION:An atmosphere gas 18, which is introduced into a furnace through a gas supply pipe 8, is allowed to flow into a gas room 14 outside a gas-permeable refractory 6 through gas holes 4 penetrating an inner shell 2 and a refractory 7, heated there by heating elements 5 and then further allowed to flow into a gasification chamber 20 as a uniform gas flow through an overall face of the gas-permeable refractory 6 on account of its permeation resistance. At that time, the temperature of the atmosphere gas 16 becomes more uniform as a result of heat exchange with the gas-permeable refractory 6 heated by the heating elements 5. This gas becomes a mixed gas 17 after bringing over a vapor generating from a heated material in a crucible 8 placed in the gasification chamber 20 and is taken out directly through an exhaust pipe 9 opened above the crucible 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気化学工業をどに使用される金属もしくは金
t4酸化物の超微粉を作るために、金属塩化物(?@C
12,CoC12)など(以下被加熱物といり)を溶融
してガス化する電気抵抗加熱式溶融ガス化炉(以下、単
に溶融ガス化炉という)に関し、特にその寿命を大幅に
延ばすことを目的とする。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the use of metal chloride (?@C
12, CoC12), etc. (hereinafter referred to as the "heated material"), etc. (hereinafter referred to as the "heated material") and other electric resistance heating type melter-gasifiers (hereinafter simply referred to as melter-gasifiers), in particular, with the purpose of significantly extending their lifespan. shall be.

従来の技術 第3図に示すように、中に単にルツダを置いて加熱する
IR造の溶融ガス化炉では、下記の問題が発生する。
BACKGROUND OF THE INVENTION As shown in FIG. 3, the following problems occur in an IR-built melter-gasifier in which a melter is simply placed inside for heating.

・低温部に被加熱物が蒸発、折着する。・The object to be heated evaporates and creases in the low-temperature area.

・発熱体や耐火物が被加熱物の蒸気によって侵されるの
で、発熱体及び耐火mを頻繁に1&り替えなくてはなら
ない。
・Since the heating element and refractory material are attacked by the steam of the object to be heated, the heating element and refractory material must be replaced frequently.

°雰囲気ガスを大量に入れる場合、ガスの温度むらから
炉内の均熱性が悪くなり製品(超微粉など)品質が低F
する。
°When a large amount of atmospheric gas is introduced, the temperature uniformity of the gas deteriorates, resulting in poor product quality (ultrafine powder, etc.)
do.

本発明は前述の如き従来方式の諸課題を解決し、均熱性
に秀れかつ被IxJ熱物の析着による炉内耐火物、抵抗
発熱体及び炉体の禰傷をなくすることを意図するもので
ある。
The present invention is intended to solve the problems of the conventional method as described above, to provide excellent heat uniformity, and to eliminate damage to the refractory in the furnace, the resistance heating element, and the furnace body due to the deposition of IxJ hot materials. It is something.

本発明者等は種々検討、実験の結果本発明の電気抵抗加
熱式溶融ガス化炉の開発に故功したものであり、本発明
の技術的槽底は前記特許請求の範囲各項に明記したとお
りであり、本発明の一具体例を示す第1図及び第2図に
ついて詳述する。なか、この例ではガス化炉の水平断面
を円形とし、従って炉殻(気密容器)、内殻及び通気性
耐火物は何れも円筒状とした場合について説明するが、
水平断面形状を限定するものではない。
As a result of various studies and experiments, the present inventors have succeeded in developing the electrical resistance heating type melter-gasifier of the present invention, and the technical tank bottom of the present invention is specified in each of the claims above. 1 and 2 showing a specific example of the present invention. In this example, the horizontal cross section of the gasifier is circular, and therefore the furnace shell (airtight container), inner shell, and breathable refractory are all cylindrical.
The horizontal cross-sectional shape is not limited.

第1図に示すように炉殻1は気密容器として、これに直
接N2  あるいは空気などの雰囲気ガス16を導入す
る給気管3を設けである。炉殻lの内側に内殻2を設け
、該内殻に耐火物7を内張りし、内殻2と内張り耐火物
7に貫通して雰囲気ガス16’7)通気孔4を設ける。
As shown in FIG. 1, the furnace shell 1 is an airtight container and is provided with an air supply pipe 3 for directly introducing an atmospheric gas 16 such as N2 or air into it. An inner shell 2 is provided inside the furnace shell 1, and the inner shell is lined with a refractory 7, and an atmospheric gas 16'7) vent hole 4 is provided through the inner shell 2 and the lining refractory 7.

耐火物7の内側に電気抵抗発熱体5(以下、単に発熱体
という)を設置し、その内側に通気性を有する筒状の耐
火物6(以F通気性耐火物という)を設置し、その内側
にルツ〆8を置くガス化室20を設ける。
An electric resistance heating element 5 (hereinafter simply referred to as a heating element) is installed inside the refractory 7, and a cylindrical refractory 6 with ventilation (hereinafter referred to as an air-permeable refractory) is installed inside the electric resistance heating element 5. A gasification chamber 20 is provided in which a rutz finisher 8 is placed.

前記炉殻lと内殻2間には所定の間隙13が設けてあり
、雰囲気ガスの通路となる。また内殻内壁と通気性耐火
物間の環状空間は雰囲気ガス溜りを槽底する。
A predetermined gap 13 is provided between the furnace shell 1 and the inner shell 2, and serves as a passage for atmospheric gas. Further, the annular space between the inner wall of the inner shell and the breathable refractory forms an atmospheric gas reservoir at the bottom of the tank.

雰囲気ガス16と被加熱物蒸気11の混合ガス17(以
下、混合ガスと呼ぶ)の排気管9は・炉殻11内殻2、
耐火物7、通気性耐火物6を貫通して設置し、直接ルツ
ボ8の上部より混合ガス17を排出する。場合によって
は排気管9に真空Iンデ(図示せず)を接続して、強制
的に混合ガス17を吸引することもできる。
The exhaust pipe 9 of the mixed gas 17 (hereinafter referred to as mixed gas) of the atmospheric gas 16 and the vapor 11 of the object to be heated is: Furnace shell 11 Inner shell 2;
It is installed to penetrate the refractory 7 and the breathable refractory 6, and the mixed gas 17 is directly discharged from the upper part of the crucible 8. In some cases, a vacuum inlet (not shown) may be connected to the exhaust pipe 9 to forcibly suck the mixed gas 17.

作用 給気管3から炉内へ入った雰囲気ガス】6(実線矢印)
は、内殻と耐火物に貫通して開い九通気孔4を通って、
通気性耐火物6の外側のガス溜り14に入ってくる。
Atmospheric gas that entered the furnace from the working air supply pipe 3】6 (solid line arrow)
passes through nine ventilation holes 4 that penetrate through the inner shell and the refractory,
It enters a gas reservoir 14 outside the breathable refractory 6.

ここで雰囲気ガス】6は発熱体5によって加熱される0
次に通気性耐火物6を通ってガス化室20にはいる際に
、通気性耐火物6の通気抵抗により、通気性耐火物6の
全面から均一なガス流れとなってガス化室20へ入って
いく、これと同時に発熱体5で加熱された通気性耐火物
6との熱交換により、雰囲気ガス16の温度はより均一
になる。
Here, the atmospheric gas] 6 is heated by the heating element 5.
Next, when entering the gasification chamber 20 through the breathable refractory 6, the gas flows uniformly from the entire surface of the breathable refractory 6 to the gasification chamber 20 due to the ventilation resistance of the breathable refractory 6. The temperature of the atmospheric gas 16 becomes more uniform due to heat exchange with the air-permeable refractory 6 which is simultaneously heated by the heating element 5.

通気性耐火物6から均一なガス流れとして入ってきた雰
囲気ガス16は、ルツぎ8から発生した被加熱物の蒸気
11を包み込んで混合ゴス17となりルツボ8の上にあ
る排気管9に入り、直接炉外へ取り出される。シ九がっ
て、ルツ−8から発生した被加熱物の蒸気11は、排気
1!9以外には炉内の何れの物にも接することなく炉外
に排出され、本来の目的(超微粉の製造)に使用される
ので発熱体や耐火物が被加熱物の蒸気に侵されることが
ない、ツル!If8の加熱は均一な温度の雰囲気ガス】
6と通気性耐火物6から発せられる輻射熱によってなさ
れるため非常に均熱性が良い。な訊真空Iンデ(図示せ
ず)を使用して混合がス170強制取り出しを行なえば
より効果的である。
The atmospheric gas 16 that enters as a uniform gas flow from the breathable refractory 6 envelops the steam 11 of the heated material generated from the crucible 8 and becomes a mixed gas 17, entering the exhaust pipe 9 above the crucible 8. It is directly taken out of the furnace. Therefore, the steam 11 of the heated material generated from Ruth-8 is discharged outside the furnace without coming into contact with anything inside the furnace other than the exhaust gas 1! (manufacturing), so the heating element and refractory will not be attacked by the steam of the heated object. If8 heating is performed using atmospheric gas with uniform temperature]
6 and the radiant heat emitted from the breathable refractory 6, so the heat uniformity is very good. It is more effective to forcefully remove the mixing gas 170 using a vacuum cleaner (not shown).

以上、円筒状がス化室の槽底例について説明し念が、通
気性耐火物を両側に設けた角形断面又は角筒状のガス化
室の場合も同様の作用効果を発揮するものである。
The above is an example of a tank bottom with a cylindrical gasification chamber; however, similar effects can be achieved in the case of a gasification chamber with a rectangular cross section or rectangular cylindrical shape provided with breathable refractories on both sides. .

尚・本発明を槽底する部材の特性などは下記の通りであ
る。
The characteristics of the member forming the tank bottom of the present invention are as follows.

+11  炉殻1.12:気密容器、真空〜常圧に耐え
られる鋼製のもの。
+11 Furnace shell 1.12: Airtight container, made of steel that can withstand vacuum to normal pressure.

(2) 内殻2   :耐熱金属(SU8)が好ましい
(2) Inner shell 2: Preferably a heat-resistant metal (SU8).

(3)  耐火物7  :ルツボの加熱温度より200
〜300’C高温まで耐えられ、 しかも高温雰囲気ガスに耐え られる材質。
(3) Refractory 7: 200% higher than the heating temperature of the crucible
The material can withstand temperatures up to 300'C and can withstand high temperature atmospheric gases.

(41発熱体5  :最高使用温度がルツボの加熱温度
より200〜300’C高 湛であり高温雰囲気ガスに耐 えられる材質。
(41 Heating element 5: A material whose maximum operating temperature is 200 to 300'C higher than the heating temperature of the crucible and can withstand high-temperature atmospheric gas.

(5)  通気性耐火物6 °耐熱温度はルツボの加熱温度よ?200〜3000C
高い。
(5) Breathable refractory 6 °Is the heat resistance temperature the crucible heating temperature? 200~3000C
expensive.

・通気率は50〜9o嘔特に70〜80%が望ましい。- The ventilation rate is desirably 50-90%, particularly 70-80%.

通気率が50俤より低いと、ガス流れは均一になるが圧
力損失が大きく少量の雰囲気がスしか流れない。
If the air permeability is lower than 50 yen, the gas flow will be uniform, but the pressure loss will be large and only a small amount of atmosphere will flow.

通気率が904より高いと、圧力損失が少ないので大量
の雰囲気ガスを流すことはできるが・ガス流れの均一性
が崩れ物理的強度も落ちるO通気性耐火物の厚みは10
〜50m程度がよく・特に気孔の平均直径の5〜10倍
が望ましい。
If the permeability is higher than 904, a large amount of atmospheric gas can flow because the pressure loss is small, but the uniformity of the gas flow deteriorates and the physical strength decreases.The thickness of the permeable refractory is 10.
The diameter is preferably about 50 m, particularly preferably 5 to 10 times the average diameter of the pores.

なお高さは400■、直径は250−程度の円筒または
角筒であるが大きさは限定されるものではない。
The height is 400 cm and the diameter is about 250 mm, and is a cylinder or square tube, but the size is not limited.

lowより薄いと、圧力損失が小さく大量の雰囲気ガス
を流せる、抵抗発熱体から熱が内部につ九わりやすい反
1irfス流れとガス温度の均一性が失われる。物理的
強度も低い。
If it is thinner than low, the pressure loss is small and a large amount of atmospheric gas can flow, but heat is easily transferred inside from the resistance heating element, whereas the 1irf gas flow and gas temperature uniformity are lost. Physical strength is also low.

また50−より厚いと、圧力損失が大きく雰囲気ガスを
少量しか流せない、抵抗発熱体から熱が内部につたわり
にくい反面ガス流れとガス温度の均一性が増す。物理的
強度も高い・・通気性耐火物の気孔の平均直径は2m〜
4mが望ましい。
If it is thicker than 50 mm, the pressure loss is large and only a small amount of atmospheric gas can flow, and heat is less likely to be transferred inside from the resistance heating element, but the gas flow and gas temperature are more uniform. Physical strength is also high: the average diameter of pores in breathable refractories is 2 m~
4m is desirable.

2鰭より小さいと圧損犬で均熱、ガス流れの均一性良好
であるが目すまりが大である。
If it is smaller than 2 fins, there will be a pressure drop and the uniformity of heat and gas flow will be good, but the blinds will be large.

また41I11より大きいと圧損小で均熱、ガス流れの
均一性不良であるが目づまりが小である。
If it is larger than 41I11, the pressure drop will be small and the uniformity of heat uniformity and gas flow will be poor, but clogging will be small.

(6)  ルツ〆8、混合ガス排気管9・被加熱物の沸
点温度(以下、加熱温度という)よりI OO’C以上
高い耐熱性を有する材料。
(6) Ruth〆8, Mixed gas exhaust pipe 9 - A material with heat resistance higher than the boiling point temperature of the object to be heated (hereinafter referred to as heating temperature) by IOO'C or more.

°加熱温度の混合ガスに侵されない材料。° Materials that are not attacked by gas mixtures at heating temperatures.

・被加熱物に侵されない材料 であって、例えば周知のカーダン、アルミナなどのセラ
ミックスあるいは純ニッケルなどの金属性のものが使用
できる。なお、排気管の炉内端形状は第2図に示す如く
混合ガスを牲い込みやすいように、ラツ・I状、ロート
状、径違い管状、釣鐘状にしてもよい。
- A material that is not corroded by the object to be heated, such as well-known ceramics such as cardan and alumina, or metals such as pure nickel, can be used. As shown in FIG. 2, the shape of the end of the exhaust pipe inside the furnace may be a rat-I shape, a funnel shape, a reduced diameter tube shape, or a bell shape so that the mixed gas can be easily absorbed.

発明の効果 被加熱物の蒸気が、炉体はもちろん耐火物や発熱体く直
接接触しないので、その材質選定の自由度がきわめて大
きくなる。具体的には断熱性の高いセラミックファイバ
ー故形体の使用や、安価なニクロム線などの発熱体が使
用可能になり、炉全体の熱効率が向上する。
Effects of the Invention Since the steam of the object to be heated does not come into direct contact with the furnace body, refractories, or heating elements, the degree of freedom in selecting the material is greatly increased. Specifically, it becomes possible to use a ceramic fiber molded body with high heat insulation properties and a heating element such as inexpensive nichrome wire, improving the thermal efficiency of the entire furnace.

この炉は単に金属塩化物を溶融するだけの溶融ガス化炉
ではなく、溶融時または加熱時に耐火物や発熱体にとっ
て有害なガスを放出する亜鉛などの被加熱物の加熱炉と
しても有効である。
This furnace is not only a melter-gasifier that simply melts metal chlorides, but also an effective furnace for heating materials such as zinc, which emit gas harmful to refractories and heating elements during melting or heating. .

■ 溶融ガス化炉の耐火物や発熱体が有害なガスに接触
しないので、これによる損傷が全くなく寿命が約4倍(
3力月→1年)延びる。
■ Since the refractories and heating elements of the melter-gasifier do not come into contact with harmful gases, there is no damage caused by this, and the lifespan is approximately four times longer (
3 months → 1 year) extended.

■ 均一加熱された雰囲気ガスの対流による加熱と通気
性耐火物を介した輻射加熱により・均一に加熱される。
■ Uniform heating by convection of uniformly heated atmospheric gas and radiation heating via breathable refractories.

■ 耐火物の材質が被蒸発物質による影響を考慮するこ
となく自由に選定できるため、断熱性の高い耐火物を使
用してコンノダクトな炉にスルことができると同時に、
高断熱性耐火物及び雰囲気ガス流れによって放散熱量が
減少し、熱効率が向上する・
■ Since the material of the refractory can be freely selected without considering the influence of evaporable substances, it is possible to use refractories with high heat insulation properties and use them in a continuous furnace.
Highly insulating refractories and atmospheric gas flow reduce the amount of heat dissipated and improve thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、牙2図は同
じく、本発明に使用される排気管の内端形状を示す縦断
面図、第3図は従来の実施例を示す縦断面図である。尚
、図中の番号はそれぞれ下記の通りである。 1:気密容器(炉殻)、 2:内殻、 3:雰囲気ガス
給気管、 4:通気孔、 5:発熱体、6:通気性耐火
物、 7:耐火物、 8ニルツメ、 排気管、  】O
:被加熱物、  11:被加熱物蒸気、  12:気密
容器(蓋)、  13:炉殻と内殻の間隙、  14:
雰囲気ガス溜り、15:中蓋、  16:雰囲気ガス、
  17:混合ガス、  20:ガス化室。 第1図 第2図 第3図 σ   107/
Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view showing the inner end shape of an exhaust pipe used in the present invention, and Fig. 3 is a conventional embodiment. FIG. The numbers in the figure are as follows. 1: Airtight container (furnace shell), 2: Inner shell, 3: Atmospheric gas supply pipe, 4: Ventilation hole, 5: Heating element, 6: Breathable refractory, 7: Refractory, 8 Nil hook, Exhaust pipe, ] O
: Heated object, 11: Heated object steam, 12: Airtight container (lid), 13: Gap between furnace shell and inner shell, 14:
Atmospheric gas reservoir, 15: Inner lid, 16: Atmospheric gas,
17: Mixed gas, 20: Gasification chamber. Figure 1 Figure 2 Figure 3 σ 107/

Claims (1)

【特許請求の範囲】 1、雰囲気ガス給気管を設けた気密容器内に、内張り耐
火物を施しかつ雰囲気ガス通気孔を穿設した内殻を所要
の間隙を介して内装し、該内殻内に通気性耐火物を内設
して内殻内壁と該通気性耐火物間に雰囲気ガス溜りを設
けるとともに、電気抵抗発熱体を該ガス溜り内に装着し
、前記通気性耐火物で区画されたガス化室の上方に混合
ガス用排気管の内端開口部を配置したことを特徴とする
、電気抵抗加熱式溶融ガス化炉。 2、該排気管の内端の形状をラッパ状、ロート状、径ち
がい管状、あるいは釣鐘状、または、直管状としたこと
を特徴とする、請求項1記載の電気抵抗加熱式溶融ガス
化炉。
[Scope of Claims] 1. An inner shell lined with a refractory material and provided with an atmospheric gas vent is placed in an airtight container provided with an atmospheric gas supply pipe, with a required gap therebetween; A breathable refractory is installed inside to provide an atmospheric gas reservoir between the inner wall of the inner shell and the breathable refractory, and an electric resistance heating element is installed in the gas reservoir, which is partitioned by the breathable refractory. An electric resistance heating type melter-gasifier, characterized in that an inner end opening of a mixed gas exhaust pipe is arranged above a gasification chamber. 2. The electric resistance heating type melter-gasifier according to claim 1, wherein the shape of the inner end of the exhaust pipe is a trumpet shape, a funnel shape, a tube shape with different diameters, a bell shape, or a straight tube shape. .
JP7812688A 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace Granted JPH01254241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7812688A JPH01254241A (en) 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7812688A JPH01254241A (en) 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace

Publications (2)

Publication Number Publication Date
JPH01254241A true JPH01254241A (en) 1989-10-11
JPH0551335B2 JPH0551335B2 (en) 1993-08-02

Family

ID=13653190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7812688A Granted JPH01254241A (en) 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace

Country Status (1)

Country Link
JP (1) JPH01254241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273718A (en) * 2009-05-26 2010-12-09 Tadashi Murahira Salt melting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138625A (en) * 1984-07-31 1986-02-24 Res Dev Corp Of Japan Method and apparatus for producing ultrafine particle
JPS61203294U (en) * 1985-06-10 1986-12-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138625A (en) * 1984-07-31 1986-02-24 Res Dev Corp Of Japan Method and apparatus for producing ultrafine particle
JPS61203294U (en) * 1985-06-10 1986-12-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273718A (en) * 2009-05-26 2010-12-09 Tadashi Murahira Salt melting device

Also Published As

Publication number Publication date
JPH0551335B2 (en) 1993-08-02

Similar Documents

Publication Publication Date Title
JP5394360B2 (en) Vertical heat treatment apparatus and cooling method thereof
CN107532851A (en) Alloy melting and heat preservation stove
JP5394292B2 (en) Vertical heat treatment equipment and pressure sensing system / temperature sensor combination
CN104990411B (en) A kind of heating furnace structure
CN110760935B (en) Single crystal furnace
JPH01254241A (en) Electric resistance heating type fusion-gasification furnace
KR101461787B1 (en) Heating unit and reduction furnace having thereof
EP0401172B1 (en) A heating mantle with a porous radiation wall
CN205914765U (en) Vacuum sintering stove with metal vapors filter equipment
CN110218880B (en) Pyrometallurgical vacuum metallurgy reduction device
JP4480949B2 (en) Reaction apparatus and reaction method
JPS63127072A (en) High-temperature vacuum furnace
CN203642666U (en) High-temperature hydrogen sintering furnace
JPS6246184A (en) Baking furnace for continuously manufacturing long-sized carbon article
CN110726308A (en) Production device for industrial kiln
JPH0240474Y2 (en)
JPS63156532A (en) Vertical vapor-phase chemical reactor
CN220039129U (en) Energy recovery device and graphitization furnace
CN110144568A (en) A kind of gas phase reaction furnace being used to prepare nano material
CN210193965U (en) Pyrometallurgical vacuum metallurgy composite reduction tank
CN210426036U (en) High-temperature atmosphere rotary furnace
CN210242377U (en) High-temperature furnace for heating and refining granular boron nitride
CN219368354U (en) Smelting furnace capable of preventing smoke dust
KR101482384B1 (en) Heating unit and reduction furnace having thereof
JP4417590B2 (en) Atmospheric firing furnace and firing method