JPH0551335B2 - - Google Patents

Info

Publication number
JPH0551335B2
JPH0551335B2 JP63078126A JP7812688A JPH0551335B2 JP H0551335 B2 JPH0551335 B2 JP H0551335B2 JP 63078126 A JP63078126 A JP 63078126A JP 7812688 A JP7812688 A JP 7812688A JP H0551335 B2 JPH0551335 B2 JP H0551335B2
Authority
JP
Japan
Prior art keywords
refractory
gas
inner shell
atmospheric gas
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63078126A
Other languages
Japanese (ja)
Other versions
JPH01254241A (en
Inventor
Yukio Ozaki
Katsuhiro Iwaki
Kenji Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP7812688A priority Critical patent/JPH01254241A/en
Publication of JPH01254241A publication Critical patent/JPH01254241A/en
Publication of JPH0551335B2 publication Critical patent/JPH0551335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電気化学工業などに使用される金属も
しくは金属酸化物の超微粉を作るために、金属塩
化物(FeCl2,CoCl2)など(以下被加熱物とい
う)を溶融してガス化する電気抵抗加熱式溶融ガ
ス化炉(以下、単に溶融ガス化炉という)に関
し、特にその寿命を大幅に延ばすことを目的とす
る。 従来の技術 第3図に示すように、中に単にルツボを置いて
加熱する構造の溶融ガス化炉では、下記の問題が
発生する。 Γ低温部に被加熱物が蒸発、析着する。 Γ発熱体は耐火物が被加熱物の蒸気によつて侵さ
れるので、発熱体及び耐火物を頻繁に取り替え
なくてはならない。 Γ雰囲気ガスを大量に入れる場合、ガスの温度む
らから炉内の均熱性が悪くなり製品(超微粉な
ど)品質が低下する。 発明が解決しようとする課題 本発明は前述の如き従来方式の諸課題を解決
し、均熱性に秀れかつ被加熱物の析着による炉内
耐火物、抵抗発熱体及び炉体の損傷をなくするこ
とを意図するものである。 課題を解決するための手段 本発明者等は種々検討、実験の結果本発明の電
気抵抗加熱式溶融ガス化炉の開発に成功したもの
であり、本発明の技術的構成は前記特許請求の範
囲各項に明記したとおりであり、本発明の一具体
例を示す第1図及び第2図について詳述する。な
お、この例ではガス化炉の水平断面を円形とし、
従つて炉殻(気密容器)、内殻及び通気性耐火物
は何れも円筒状とした場合について説明するが、
水平断面形状を限定するものではない。 第1図に示すように炉殻1は気密容器として、
これに直接N2あるいは空気などの雰囲気ガス1
6を導入する給気管3を設けてある。炉殻1の内
側に内殻2を設け、該内殻に耐火物7を内張り
し、内殻2と内張り耐火物7に貫通して雰囲気ガ
ス16の通気孔4を設ける。耐火物7の内側に電
気抵抗発熱体5(以下、単に発熱体という)を設
置し、その内側に通気性を有する筒状の耐火物6
(以下通気性耐火物という)を設置し、その内側
にルツボ8を置くガス化室20を設ける。 前記炉殻1と内殻2間には所定の間隙13が設
けてあり、雰囲気ガスの通路となる。また内殻内
壁と通気性耐火物間の環状空間は雰囲気ガス溜り
を構成する。 雰囲気ガス16と被加熱物蒸気11の混合ガス
17(以下、混合ガスと呼ぶ)の排気管9は、炉
殻1、内殻2、耐火物7、通気性耐火物6を貫通
して設置し、直接ルツボ8の上部より混合ガス1
7を排出する。場合によつては排気管9に真空ポ
ンプ(図示せず)を接続して、強制的に混合ガス
17を吸引することもできる。 作 用 給気管3から炉内へ入つた雰囲気ガス16(実
線矢印)は、内殻と耐火物に貫通して開いた通気
孔4を通つて、通気性耐火物6の外側のガス溜り
14に入つてくる。 ここで雰囲気ガス16は発熱体5によつて加熱
される。次に通気性耐火物6を通つてガス化室2
0にはいる際に、通気性耐火物6の通気抵抗によ
り、通気性耐火物6の全面から均一なガス流れと
なつてガス化室20へ入つていく。これと同時に
発熱体5で加熱された通気性耐火物6との熱交換
により、雰囲気ガス16の温度はより均一にな
る。 通気性耐火物6から均一なガス流れとして入つ
てきた雰囲気ガス16は、ルツボ8から発生した
被加熱物の蒸気11を包み込んで混合ガス17と
なりルツボ8の上にある排気管9に入り、直接炉
外へ取り出される。したがつて、ルツボ8から発
生した被加熱物の蒸気11は、排気管9以外には
炉内の何れの物にも接することなく炉外に排出さ
れ、本来の目的(超微粉の製造)に使用されるの
で発熱体や耐火物が被加熱物の蒸気に侵されるこ
とがない。ツルボ8の加熱は均一な温度の雰囲気
ガス16と通気性耐火物6から発せられる輻射熱
によつてなされるため非常に均熱性が良い。な
お、真空ポンプ(図示せず)を使用して混合ガス
17の強制取り出しを行なえばより効果的であ
る。 以上、円筒状ガス化室の構成例について説明し
たが、通気性耐火物を両側に設けた角形断面又は
角筒状のガス化室の場合も同様の作用効果を発揮
するものである。 尚、本発明を構成する部材の特性などは下記の
通りである。 (1) 炉殻1,12:気密容器、真空〜常圧に耐え
られる鋼製のもの。 (2) 内殻2:耐熱金属(SUS)が好ましい。 (3) 耐火物7:ルツボの加熱温度より200〜300℃
高温まで耐えられ、しかも高温雰囲気ガスに耐
えられる材質。 (4) 発熱体5:最高使用温度がルツボの加熱温度
より200〜300℃高温であり高温雰囲気ガスに耐
えられる材質。 (5) 通気耐性火物6 Γ耐熱温度はルツボの加熱温度より200〜300℃
高い。 Γ通気率は50〜90%特に70〜80%が望ましい。 通気率が50%より低いと、ガス流れは均一
になるが圧力損失が大きく少量の雰囲気ガス
しか流れない。 通気率が90%より高いと、圧力損失が少な
いので大量の雰囲気ガスを流すことはできる
が、ガス流れの均一性が崩れ物理的強度も落
ちる。 Γ通気性耐火物の厚みは10〜50mm程度がよく、
特に気孔の平均直径の5〜10倍が望ましい。
なお高さは400mm、直径は250mm程度の円筒ま
たは角筒であるが大きさは限定されるもので
はない。 10mmより薄いと、圧力損失が小さく大量の
雰囲気ガスを流せる、抵抗発熱体から熱が内
部につたわりやすい反面ガス流れとガス温度
の均一性が失われる。物理的強度も低い。 また50mmより厚いと、圧力損失が大きく雰
囲気ガスを少量しか流せない、抵抗発熱体か
ら熱が内部につたわりにくい反面ガス流れと
ガス温度の均一性が増す。物理的も高い。 Γ通気性耐火物の気孔の平均直径は2mm〜4mm
が望ましい。 2mmより小さいと圧損大で均熱、ガス流れ
の均一性良好である目ずまりが大である。 また4mmより大きいと圧損小で均熱、ガス
流れの均一性不良であるが目づまりが小であ
る。 (6) ルツボ8、混合ガス排気管9 Γ被加熱物の沸点温度(以下、加熱温度とい
う)より100℃以上高い耐熱性を有する材料。 Γ加熱温度の混合ガスに侵されない材料。 Γ被加熱物に侵されない材料 であつて、例えば周知のカーボン、アルミナなど
のセラミツクスあるいは純ニツケルなどの金属性
のものが使用できる。なお、排気管の炉内端形状
は第2図に示す如く混合ガスを吸い込みやすいよ
うに、ラツパ状、ロート状、径違い管状、釣鐘状
にしてもよい。 発明の効果 被加熱物の蒸気が、炉体はもちろん耐火物や発
熱体の直接接触しないので、その材質選定の自由
度がきわめて大きくなる。具体的には断熱性の高
いセラミツクスフアイバー成形体の使用や、安価
なニクロム線などの発熱体が使用可能になり、炉
全体の熱効率が向上する。 この炉は単に金属塩化物を溶融するだけの溶融
ガス化炉ではなく、溶融時または加熱時に耐火物
や発熱体にとつて有害なガスを放出する亜鉛など
の被加熱物の加熱炉としても有効である。 溶融ガス化炉の耐火物や発熱体が有害なガス
に接触しないので、これによる損傷が全くなく
寿命が約4倍(3か月→1年)延びる。 均一加熱された雰囲気ガスの対流による加熱
と通気性耐火物を介した輻射加熱により、均一
に加熱される。 耐火物の材質が被蒸発物質による影響を考慮
することなく自由に選定できるため、断熱性の
高い耐火物を使用してコンパクトな炉にするこ
とができると同時に、高断熱性耐火物及び雰囲
気ガス流れによつて放散熱料が減少し、熱効率
が向上する。
Industrial Application Field The present invention melts metal chlorides (FeCl 2 , CoCl 2 ), etc. (hereinafter referred to as heated materials) in order to produce ultrafine powder of metals or metal oxides used in the electrochemical industry. The purpose of this invention is to significantly extend the life of an electric resistance heating type melter-gasifier (hereinafter simply referred to as a melter-gasifier). BACKGROUND ART As shown in FIG. 3, in a melter-gasifier having a structure in which a crucible is simply placed and heated, the following problems occur. ΓThe material to be heated evaporates and deposits in the low temperature part. Since the refractory of the Γ heating element is attacked by the steam of the object to be heated, the heating element and the refractory must be replaced frequently. When a large amount of Γ atmosphere gas is introduced, the temperature uniformity in the furnace deteriorates due to the uneven temperature of the gas, resulting in a decrease in product quality (such as ultrafine powder). Problems to be Solved by the Invention The present invention solves the various problems of the conventional method as described above, has excellent heat uniformity, and eliminates damage to the refractory in the furnace, the resistance heating element, and the furnace body due to deposition of objects to be heated. It is intended that Means for Solving the Problems As a result of various studies and experiments, the present inventors have succeeded in developing the electric resistance heating type melter-gasifier of the present invention, and the technical structure of the present invention is within the scope of the above claims. The details are as specified in each section, and FIGS. 1 and 2 showing a specific example of the present invention will be described in detail. In this example, the horizontal cross section of the gasifier is circular,
Therefore, we will explain the case where the furnace shell (airtight container), inner shell, and breathable refractory are all cylindrical.
The horizontal cross-sectional shape is not limited. As shown in Fig. 1, the furnace shell 1 serves as an airtight container.
Atmospheric gas such as N2 or air 1
An air supply pipe 3 for introducing air 6 is provided. An inner shell 2 is provided inside the furnace shell 1, the inner shell is lined with a refractory 7, and a vent hole 4 for atmospheric gas 16 is provided penetrating through the inner shell 2 and the lining refractory 7. An electric resistance heating element 5 (hereinafter simply referred to as a heating element) is installed inside the refractory 7, and a cylindrical refractory 6 with ventilation is installed inside the electric resistance heating element 5.
(hereinafter referred to as a breathable refractory) is installed, and a gasification chamber 20 in which a crucible 8 is placed is provided inside. A predetermined gap 13 is provided between the furnace shell 1 and the inner shell 2, and serves as a passage for atmospheric gas. Further, the annular space between the inner wall of the inner shell and the breathable refractory constitutes an atmospheric gas reservoir. An exhaust pipe 9 for a mixed gas 17 (hereinafter referred to as mixed gas) of the atmospheric gas 16 and the vapor 11 of the object to be heated is installed to pass through the furnace shell 1, the inner shell 2, the refractory 7, and the breathable refractory 6. , mixed gas 1 directly from the top of crucible 8
Eject 7. In some cases, a vacuum pump (not shown) may be connected to the exhaust pipe 9 to forcibly suck the mixed gas 17. Effect Atmospheric gas 16 (solid arrow) entering the furnace from the air supply pipe 3 passes through the vent hole 4 that penetrates the inner shell and the refractory, and enters the gas reservoir 14 outside the breathable refractory 6. Coming in. Here, the atmospheric gas 16 is heated by the heating element 5. Next, the gasification chamber 2 is passed through the breathable refractory 6.
0, due to the ventilation resistance of the breathable refractory 6, a uniform gas flow flows from the entire surface of the breathable refractory 6 into the gasification chamber 20. At the same time, the temperature of the atmospheric gas 16 becomes more uniform due to heat exchange with the breathable refractory 6 heated by the heating element 5. Atmospheric gas 16 enters as a uniform gas flow from the breathable refractory 6, envelops the vapor 11 of the heated material generated from the crucible 8, becomes a mixed gas 17, enters the exhaust pipe 9 above the crucible 8, and is directly It is taken out of the furnace. Therefore, the steam 11 of the heated material generated from the crucible 8 is discharged outside the furnace without contacting anything inside the furnace other than the exhaust pipe 9, and is not used for its original purpose (manufacturing ultrafine powder). Because it is used, the heating element and refractory are not attacked by the steam of the heated object. Since the crucible 8 is heated by the atmospheric gas 16 at a uniform temperature and the radiant heat emitted from the breathable refractory 6, the heating is very uniform. Note that it is more effective to forcibly extract the mixed gas 17 using a vacuum pump (not shown). Although an example of the configuration of a cylindrical gasification chamber has been described above, a gasification chamber having a rectangular cross section or a rectangular cylindrical shape provided with air-permeable refractories on both sides also exhibits similar effects. The characteristics of the members constituting the present invention are as follows. (1) Furnace shells 1 and 12: Airtight containers made of steel that can withstand vacuum to normal pressure. (2) Inner shell 2: Heat-resistant metal (SUS) is preferable. (3) Refractory 7: 200 to 300℃ higher than the heating temperature of the crucible
A material that can withstand high temperatures and also withstand high-temperature atmospheric gases. (4) Heating element 5: A material whose maximum operating temperature is 200 to 300°C higher than the heating temperature of the crucible and can withstand high-temperature atmospheric gas. (5) Ventilation-resistant refractory 6 Γ heat-resistant temperature is 200 to 300℃ higher than the heating temperature of the crucible
expensive. The Γ air permeability is preferably 50 to 90%, especially 70 to 80%. If the ventilation rate is lower than 50%, the gas flow will be uniform, but the pressure loss will be large and only a small amount of atmospheric gas will flow. When the air permeability is higher than 90%, the pressure loss is small and a large amount of atmospheric gas can flow, but the uniformity of the gas flow is disrupted and the physical strength is also reduced. The thickness of the Γ breathable refractory is preferably about 10 to 50 mm.
In particular, it is desirable that the diameter be 5 to 10 times the average diameter of the pores.
Note that the height is 400 mm and the diameter is a cylinder or square tube of about 250 mm, but the size is not limited. If it is thinner than 10 mm, the pressure loss is small and a large amount of atmospheric gas can flow, and heat is easily transferred inside from the resistance heating element, but the uniformity of gas flow and gas temperature is lost. Physical strength is also low. If it is thicker than 50 mm, the pressure loss will be large and only a small amount of atmospheric gas can flow, and heat will be difficult to transfer inside from the resistance heating element, but the gas flow and gas temperature will be more uniform. Physically high too. The average diameter of pores in Γ breathable refractories is 2 mm to 4 mm.
is desirable. If it is smaller than 2 mm, the pressure drop will be large and the uniformity of heating and gas flow will be poor, but clogging will be large. If it is larger than 4 mm, the pressure loss is small and the uniformity of heat and gas flow is poor, but clogging is small. (6) Crucible 8, mixed gas exhaust pipe 9 ΓA material with heat resistance that is 100°C or more higher than the boiling point temperature of the material to be heated (hereinafter referred to as heating temperature). A material that is not attacked by mixed gases at Γ heating temperatures. ΓA material that is not corroded by the object to be heated, such as well-known ceramics such as carbon and alumina, or metals such as pure nickel, can be used. The shape of the end of the exhaust pipe inside the furnace may be shaped like a trumpet, a funnel, a tube with a different diameter, or a bell so that the mixed gas can be easily sucked in, as shown in FIG. Effects of the Invention Since the steam of the object to be heated does not come into direct contact with the furnace body, refractory material, or heating element, the degree of freedom in selecting the material is extremely large. Specifically, it becomes possible to use highly insulating ceramic fiber molded bodies and inexpensive heating elements such as nichrome wire, improving the thermal efficiency of the entire furnace. This furnace is not only a melter-gasifier that simply melts metal chlorides, but is also effective as a heating furnace for materials to be heated, such as zinc, which emit gases that are harmful to refractories and heating elements during melting or heating. It is. Since the refractories and heating elements of the melter-gasifier do not come into contact with harmful gases, there is no damage caused by this, and the lifespan is extended by about four times (from 3 months to 1 year). Uniform heating is achieved by convection of uniformly heated atmospheric gas and radiation heating via breathable refractories. Since the material of the refractory can be freely selected without considering the influence of evaporated substances, it is possible to use highly insulating refractories to create a compact furnace, and at the same time, it is possible to use highly insulating refractories and atmospheric gases. The flow reduces dissipated heat and improves thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第
2図は同じく、本発明に使用される排気管の内端
形状を示す縦断面図、第3図は従来の実施例を示
す縦断面図である。尚、図中の番号はそれぞれ下
記の通りである。 1:気密容器(炉殻)、2:内殻、3:雰囲気
ガス給気管、4:通気孔、5:発熱体、6:通気
性耐火物、7:耐火物、8:ルツボ、排気管、1
0:被加熱物、11:被加熱物蒸気、12:気密
容器(蓋)、13:炉殻と内殻の間隙、14:雰
囲気ガス溜り、15:中蓋、16:雰囲気ガス、
17:混合ガス、20:ガス化室。
FIG. 1 is a vertical cross-sectional view showing an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view showing the inner end shape of an exhaust pipe used in the present invention, and FIG. 3 is a conventional example. FIG. The numbers in the figure are as follows. 1: Airtight container (furnace shell), 2: Inner shell, 3: Atmospheric gas supply pipe, 4: Ventilation hole, 5: Heating element, 6: Breathable refractory, 7: Refractory, 8: Crucible, exhaust pipe, 1
0: object to be heated, 11: vapor of object to be heated, 12: airtight container (lid), 13: gap between furnace shell and inner shell, 14: atmospheric gas reservoir, 15: inner lid, 16: atmospheric gas,
17: Mixed gas, 20: Gasification chamber.

Claims (1)

【特許請求の範囲】 1 雰囲気ガス給気管を設けた気密容器内に、内
張り耐火物を施しかつ雰囲気ガス通気孔を穿設し
た内殻を所要の間隙を介して内奏し、該内殻内に
通気性耐火物を内設して内殻内壁と該通気性耐火
物間に雰囲気ガス溜りを設けるとともに、電気抵
抗発熱体を該ガス溜り内に装着し、前記通気性耐
火物で区画されたガス化室の上方に混合ガス用排
気管の内端開口部を配置したことを特徴とする、
電気抵抗加熱式溶融ガス化炉。 2 該排気管の内端の形状をラツパ状、ロート
状、径ちがい管状、あるいは釣鐘状、または、直
管状としたことを特徴とする、請求項1記載の電
気抵抗加熱式溶融ガス化炉。
[Scope of Claims] 1. An inner shell lined with a refractory material and provided with an atmospheric gas vent is placed inside an airtight container provided with an atmospheric gas supply pipe, with a required gap between the inner shell and the inner shell. A breathable refractory is installed inside to provide an atmospheric gas reservoir between the inner wall of the inner shell and the breathable refractory, and an electric resistance heating element is installed in the gas reservoir to generate the gas partitioned by the breathable refractory. characterized in that the inner end opening of the mixed gas exhaust pipe is located above the conversion chamber;
Electric resistance heating melter-gasifier. 2. The electric resistance heating type melter-gasifier according to claim 1, wherein the shape of the inner end of the exhaust pipe is a trumpet shape, a funnel shape, a tube shape with different diameters, a bell shape, or a straight tube shape.
JP7812688A 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace Granted JPH01254241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7812688A JPH01254241A (en) 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7812688A JPH01254241A (en) 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace

Publications (2)

Publication Number Publication Date
JPH01254241A JPH01254241A (en) 1989-10-11
JPH0551335B2 true JPH0551335B2 (en) 1993-08-02

Family

ID=13653190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7812688A Granted JPH01254241A (en) 1988-04-01 1988-04-01 Electric resistance heating type fusion-gasification furnace

Country Status (1)

Country Link
JP (1) JPH01254241A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273718A (en) * 2009-05-26 2010-12-09 Tadashi Murahira Salt melting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138625A (en) * 1984-07-31 1986-02-24 Res Dev Corp Of Japan Method and apparatus for producing ultrafine particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240474Y2 (en) * 1985-06-10 1990-10-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138625A (en) * 1984-07-31 1986-02-24 Res Dev Corp Of Japan Method and apparatus for producing ultrafine particle

Also Published As

Publication number Publication date
JPH01254241A (en) 1989-10-11

Similar Documents

Publication Publication Date Title
US3603284A (en) Vapor deposition apparatus
JP5394360B2 (en) Vertical heat treatment apparatus and cooling method thereof
US3599601A (en) Internally heated autoclave for metal impregnation
US5323484A (en) Heating apparatus with multilayer insulating structure
JPH0551335B2 (en)
US4707583A (en) Plasma heated sintering furnace
CN110218880B (en) Pyrometallurgical vacuum metallurgy reduction device
JP2008130682A (en) Heating apparatus
US3397873A (en) Fluid bed furnace and the like
JPH0240474Y2 (en)
CN210193965U (en) Pyrometallurgical vacuum metallurgy composite reduction tank
CN110726308A (en) Production device for industrial kiln
TW202408688A (en) Manufacturing method of metal powder and manufacturing apparatus of metal powder
JP7414205B2 (en) heat treatment equipment
JP2007009234A (en) Vapor generator
JPH08189781A (en) Furnace for atmosphere heat treatment
CN216347786U (en) Slag roasting device
JPH08259209A (en) Furnace for highly purifying graphite member
JPH0526580A (en) Continuous baking furnace
CN114774850A (en) Porous material vapor deposition method and device
JP2003042664A (en) Vacuum heating furnace
JP2021038893A (en) Heat treatment furnace
JPH0532531Y2 (en)
JPS62270465A (en) Method of preventing decomposition of silicon carbide product during sintering
JP2989944B2 (en) Film forming equipment