JPS6152306A - Production of pulverous metallic powder - Google Patents

Production of pulverous metallic powder

Info

Publication number
JPS6152306A
JPS6152306A JP17534784A JP17534784A JPS6152306A JP S6152306 A JPS6152306 A JP S6152306A JP 17534784 A JP17534784 A JP 17534784A JP 17534784 A JP17534784 A JP 17534784A JP S6152306 A JPS6152306 A JP S6152306A
Authority
JP
Japan
Prior art keywords
product
chloride
water
plasma
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17534784A
Other languages
Japanese (ja)
Other versions
JPH0438801B2 (en
Inventor
Susumu Hiratake
平竹 進
Yasunobu Shimomoto
下元 康延
Mamoru Takeda
守 竹田
Kazuo Yanagihara
柳原 和夫
Tadayoshi Shimizu
清水 忠義
Takeshi Kiyono
武志 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Daido Steel Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Daido Steel Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17534784A priority Critical patent/JPS6152306A/en
Publication of JPS6152306A publication Critical patent/JPS6152306A/en
Publication of JPH0438801B2 publication Critical patent/JPH0438801B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain pulverous metallic powder having high purity with good productivity by reducing a metallic chloride by plasma heating in the presence of gaseous hydrogen and capturing and refining the resulted product thereof under specific conditions. CONSTITUTION:The metallic chloride which is a raw material A is supplied to a heating furnace 1 and when said chloride is heated to a high temp. by a plasma arc in the presence of the gaseous hydrogen, the chloride is quickly reduced to a pulverous product B. The product B flows together with the gaseous hydrogen through a discharge port 3 and a valve 4 to a capturing device 5. The product B in the high-temp. state in the device 5 is quickly cooled and captured by water C. The suspension is discharged from the device 5 by a pump 11 and is subjected to a solid-liquid sepn. The separated solid component is indirectly heated in gaseous hydrogen flow so that the hydrate by the impurities sticking to the solid content is desorbed and evaporated. As a result the pulverous metallic powder having high purity is obtd. with a good yield.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はプラズマ加熱による金属微粉末の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing fine metal powder by plasma heating.

近年、金属微粉末は、その金属塊には全く見られないよ
うな磁気特性、光学特性、電気特性、化学反応性及び焼
結性等により、大容量の磁気メモリー、センサ、太陽熱
吸収塗料、超電導材料、高効率触媒、新焼結体等、その
新規利用分野が急展開している。
In recent years, fine metal powders have been used in large-capacity magnetic memories, sensors, solar heat-absorbing paints, and superconductors due to their magnetic, optical, electrical, chemical reactivity, and sintering properties, which are completely absent from metal lumps. New fields of use are rapidly developing, such as materials, high-efficiency catalysts, and new sintered bodies.

本発明は、かかる新規利用に応える高純度の金属微粉末
を生産性良く製造する方法に関するものである。
The present invention relates to a method for producing high-purity metal fine powder with good productivity in response to such new uses.

〈従来の技術とその問題点〉 従来、金属微粉末の製造方法として、化学的方法と物理
的方法が採用されている。前者の化学的方法は、溶液中
での化学反応によシ沈澱物として金属微粉末を得たり、
或いは金属よりも蒸気圧が大きく且つ融点の低い金属化
合物、例えば金属の塩化物を、加熱蒸発させて水素で還
元し、金属微粉末を捕集する方法であるが、これらの従
来法によると、得られる金属微粉末の粒径が大きく、ま
た該金属微粉末が水分や副生成物等で汚染されることを
避けられないために純度の低いものとなる問題点がある
。また後者の物理的方法は、真空蒸発法と通称され、金
属を低圧の不活性ガス中で加熱蒸発させて金属微粉末を
捕集する方法で、現在一般的に採用されているが、この
従来法によると、粒径が小さく且つ純度の高いものが得
られる反面、蒸発速度が遅いために生産性が低く、シた
がって高価なものとなる問題点がある。
<Prior art and its problems> Conventionally, chemical methods and physical methods have been adopted as methods for producing fine metal powder. The former chemical method involves obtaining fine metal powder as a precipitate through a chemical reaction in a solution;
Alternatively, a metal compound with a higher vapor pressure and lower melting point than the metal, such as a metal chloride, is heated and evaporated and reduced with hydrogen to collect fine metal powder.According to these conventional methods, There is a problem that the particle size of the obtained metal fine powder is large, and the purity of the metal fine powder is low because it is unavoidable that the metal fine powder is contaminated with moisture, by-products, etc. The latter physical method, commonly known as the vacuum evaporation method, is a method in which metal is heated and evaporated in a low-pressure inert gas to collect fine metal powder, and is currently commonly used. According to this method, although particles with small particle size and high purity can be obtained, there are problems in that the evaporation rate is slow, resulting in low productivity and therefore high cost.

最近、プラズマ水素ガスの金属に対する反応性を利用し
、金属をプラズマ加熱する金属微粉末の製造方法(通称
、ガス中蒸発法)が提案されている(例えば、雑誌「化
学と工業」、第36巻第8号、72〜74頁、1983
年)。これは、水素ガフ雰囲気下に金属をプラズマ加熱
し、この際、溶融金属の周辺部から激しく発生する所謂
金属煙を捕集する方法であるが、この方法でも依然とし
て、得られる金属微粉末の生産性(例えば生成速度や収
率)の点で問題点がオシ、シかも加熱に伴って生じる溶
融物の飛散で粒径の大きな粒が混入する等信の問題点も
ある。
Recently, a method for producing fine metal powder (commonly known as evaporation in gas method) has been proposed, which utilizes the reactivity of plasma hydrogen gas to metal and heats the metal with plasma. Volume No. 8, pp. 72-74, 1983
Year). This is a method in which metal is plasma heated in a hydrogen gaff atmosphere, and the so-called metal smoke generated violently from the periphery of the molten metal is collected, but even with this method, the production of fine metal powder is still difficult. There are problems in terms of performance (for example, production rate and yield), and there are also problems such as large particles being mixed in due to the scattering of the melt that occurs during heating.

〈発明が解決しようとする問題点〉 本発明は、斜上の如き従来法の問題点を解決するもので
、金属の塩化物を水素ガス存在下にプラズマ加熱して還
元した後、その生成物を特定条件下で捕集し、精製する
ことにより、高純度の金属微粉末を生産性良く製造する
方法を提供するものである。
<Problems to be Solved by the Invention> The present invention solves the problems of the conventional method such as sloping. The present invention provides a method for producing high-purity fine metal powder with good productivity by collecting and refining under specific conditions.

く問題点を解決するための手段〉 しかして本発明者らは、得られる金属微粉末の粒度、純
度及び生産性を平均的に充足する上で従来法の中では比
較的有効なプラズマ加熱による金属微粉末の製造方法に
ついて鋭意研究した結果、この従来法においても生産性
や純度等がなお充分でなく、それらの低い原因が、金属
を加熱蒸発させる場合にはもともとその蒸気圧が低い上
に、溶融物の飛散防止のためプラズマ加熱の電力を充分
に与えられず、また金属の塩化物を加熱蒸発させる場合
には蒸発は充分に速くさせることができるが、プラズマ
加熱で発生させた所謂金属煙(金属蒸気)を、気相で凝
縮させて捕集するだけでは塩素等の除去が充分になし得
ないところにあシ、ここにおいて原料と加熱源の特定及
び捕集関連操作を以下に詳述するような特定条件下で行
なえば、高純度の金属微粉末を生産性良く製造できるこ
とを見出し、本発明を完成するに到った。
Means for Solving the Problems> However, the present inventors have developed a method using plasma heating, which is relatively effective among conventional methods in satisfying the average particle size, purity, and productivity of the obtained metal fine powder. As a result of intensive research on the manufacturing method of fine metal powder, we found that even with this conventional method, the productivity and purity were still insufficient. In order to prevent the molten material from scattering, it is not possible to provide sufficient power for plasma heating, and when evaporating metal chlorides by heating, evaporation can be made sufficiently fast, but the so-called metal generated by plasma heating In cases where it is not possible to sufficiently remove chlorine, etc. by simply condensing and collecting smoke (metal vapor) in the gas phase, the identification of raw materials and heating sources and collection-related operations are detailed below. The present inventors have discovered that high-purity fine metal powder can be produced with good productivity if the process is carried out under the specific conditions described above, and have completed the present invention.

すなわち本発明は、金属の塩化物を水素ガス存在下にプ
ラズマ加熱して還元した後、その生成物を高温状態の′
I:、まで水中に導びいて水中に捕捉させ、次いで水か
ら分離した固形分を水素ガメ存在下に加熱精製すること
を特徴とする金属微粉末の製造方法に係る。
That is, the present invention reduces a metal chloride by plasma heating in the presence of hydrogen gas, and then converts the product into a high-temperature
I: A method for producing a fine metal powder, which is characterized by introducing the powder into water until it is trapped in the water, and then heating and refining the solid content separated from the water in the presence of a hydrogen gas.

以下、図面に基づいて本発明の構成を更に詳細に説明す
る。第1図は本発明の一実施手順を示す系統工程図であ
る。本発明において処理対象となる原料は、例えば鉄や
ニッケルの金属微粉末を製造する場合にそれぞれ塩化第
一鉄(FeCβ2)や塩化ニッケ/L/ (N1Cl2
)等、金属の塩化物である。
Hereinafter, the configuration of the present invention will be explained in more detail based on the drawings. FIG. 1 is a systematic process diagram showing one implementation procedure of the present invention. In the present invention, the raw materials to be treated include ferrous chloride (FeCβ2) and nickel chloride/L/ (N1Cl2
), etc., are metal chlorides.

これらは結晶水を含むものでも(例えばNtC4・6H
20) 、又は無水物でもよく、その形態は粉末状でも
、又はベレット状に成形されたもの等でもよいが、後述
するプラズマ加熱の安定性等の点で、結晶水も含めて脱
水乾燥したものが好ましい。これらの原料Aを、加熱炉
1に供給する。加熱炉1にはプラズマトーチ2が装備さ
れていて、このプラズマトーチ2から水素ガス及び不活
性ガス(以下、アルゴンガスで例示する)を作動ガスと
するプラズマアーク(プラズマジェット)が噴射されて
いる。加熱炉1に供給された原料Aは、水素ガス存在下
にプラズマ加熱され、還元されて、その生成物Bはプラ
ズマアークの噴射流に乗るが如く排出口3から搬出され
る。原料のプラズマ加熱に際して、原料を加熱炉へ供給
する手段、例えば原料を自重落下させたシ或いは原料を
水素ガス及び/又はアルゴンガスの気流で搬入させたり
する手段、またプラズマアークの発生源や加熱炉の種類
並びに形状、更にはプラズマアークの作動ガスの内容等
は、原料の種類や形態その他の条件に応じて、適宜選定
することができる。
Even if these contain water of crystallization (for example, NtC4.6H
20) Or it may be an anhydride, and its form may be a powder or a pellet shape, but from the viewpoint of stability of plasma heating, etc., which will be described later, it is preferable to dehydrate and dry it, including crystal water. is preferred. These raw materials A are supplied to the heating furnace 1. The heating furnace 1 is equipped with a plasma torch 2, from which a plasma arc (plasma jet) using hydrogen gas and an inert gas (hereinafter referred to as argon gas) as working gas is injected. . The raw material A supplied to the heating furnace 1 is plasma heated and reduced in the presence of hydrogen gas, and the product B is carried out from the discharge port 3 as if riding on the jet stream of the plasma arc. When heating raw materials with plasma, there are means for supplying the raw materials to the heating furnace, such as dropping the raw materials under their own weight or transporting the raw materials with an airflow of hydrogen gas and/or argon gas, and sources of plasma arc and heating. The type and shape of the furnace, the content of the working gas for the plasma arc, etc. can be appropriately selected depending on the type and form of the raw material and other conditions.

排出口3から搬出された生成物Bは相当の高温状態にあ
るが、この生成物Bはバルブ4を通って捕集器5に至り
、そのまま水捕集される。図面の場合、捕集器5は、底
部に排水バルブ6を、また側部の上方に排ガヌの排出ロ
アを、更に側部下方の傾斜面に捕集した懸濁物の抜き出
し口8をそれぞれ備えるタンク9内に水Cが充填され、
この水Cは適宜補充されるように々つていて、バルブ4
に連結された生成物Bの誘導管10がその先端開口を水
C中に位置決めされているものである。したがって、生
成物Bは水C中に投入されて捕集されるようになってい
るが、本発明における水捕集はこれに限定されるもので
はなく、例えば充分な水量のシャワ一方式であってもよ
い。いずれにしても肝要な点は、生成物Bを高温状態の
ままで水中に導入して捕捉することにある。
The product B carried out from the discharge port 3 is in a considerably high temperature state, but this product B passes through the valve 4 and reaches the collector 5, where water is collected as it is. In the case of the drawing, the collector 5 has a drain valve 6 at the bottom, a discharge lower of the drain valve above the side, and an outlet 8 for taking out the collected suspended matter on the slope below the side. Each tank 9 is filled with water C,
This water C is constantly being replenished at the valve 4.
A guide tube 10 for product B connected to is positioned with its tip opening in water C. Therefore, the product B is collected by being put into the water C, but the water collection in the present invention is not limited to this. It's okay. In any case, the important point is that product B is introduced into the water while still at high temperature and is captured.

生成物Bは水捕集によりその相当部が水C中に懸濁化す
る。この懸濁液をポンプ11で捕集器5から抜き出し、
例えばフィルりp過等で固液を分離して、分離して得た
固形分を以下、精製して所望通りに製品である金属微粉
末を得る。
A considerable portion of product B is suspended in water C by water collection. This suspension is extracted from the collector 5 with the pump 11,
For example, the solid and liquid are separated by filtration or the like, and the solid content obtained by separation is then purified to obtain a desired product, ie, a fine metal powder.

かくして得た固形分の精製は水素ガス存在下に該固形分
を加熱して行なう。この精製は、本発明の目的に照らし
て、不純物が混入しないように、且つ大気にさらさない
ように行うのが好ましい。
The solid content thus obtained is purified by heating the solid content in the presence of hydrogen gas. In view of the purpose of the present invention, this purification is preferably carried out in a manner that prevents contamination with impurities and exposure to the atmosphere.

したがって、精製の際に固形分が接触することとなる例
えば受器は、原料Aの同種金属製のものやセラミック製
のもの等がよく、また完全な水素ガス気流中で間接加熱
するのがよいのである。第2図は、かかる精製に使用す
る試験装置を例示する略視図であシ、この試験装置は後
述する実施例等の試験に使用したものである。電熱線1
2が埋設されている電気炉13で外周面を囲繞された石
英管14があシ、この石英管14の内部には前述の固形
分りが充填されているセラミック製ポート15が挿入載
置されていて、その入口側と出口側はそれぞれシリコン
キャンプ16.17で密栓されている。そして、入口側
のシリコンキャップ16には温度計18と水素ガスの供
給管19が、また出口側のシリコンキャップ17には水
素ガスの排出管20が、いずれも石英管工4の内部へ通
じて取付けられておシ、排出管20の先端は水封されて
いる。連続的に供給される水素ガスの気流下、所定温度
で固形分りを加熱し、この際の発生ガスを水素ガスで搬
出しつつ、固形分りを還元精製するようになっている。
Therefore, for example, the receiver with which the solid content comes into contact during refining is preferably made of the same metal or ceramic as raw material A, and it is also preferable to heat it indirectly in a complete hydrogen gas flow. It is. FIG. 2 is a schematic diagram illustrating a test apparatus used for such purification, and this test apparatus was used for tests such as Examples described later. heating wire 1
A quartz tube 14 is surrounded on the outer circumferential surface of the electric furnace 13 in which the quartz tube 2 is buried, and a ceramic port 15 filled with the above-mentioned solids is inserted and placed inside the quartz tube 14. The inlet and outlet sides are each sealed with Silicon Camp 16 and 17. The silicone cap 16 on the inlet side has a thermometer 18 and a hydrogen gas supply pipe 19, and the silicone cap 17 on the outlet side has a hydrogen gas exhaust pipe 20, both of which lead to the inside of the quartz pipework 4. Once installed, the tip of the discharge pipe 20 is sealed with water. The solid fraction is heated at a predetermined temperature under a stream of hydrogen gas that is continuously supplied, and the gas generated at this time is carried out as hydrogen gas, while the solid fraction is reduced and purified.

く作用〉 次に本発明の作用を第1図及び第2図に基づいて説明す
る。原料Aを加熱炉1に供給して、水素カス存在下にプ
ラズマアークで高温加熱すると、該原料Aはこれを構成
する金属よシ蒸気圧が著しく高く、しかもプラズマアー
クは10000°Cにも達する超高温を有するため、急
速に蒸発気化し、直ちにプラズマアークの高温で活性化
した水素ガヌ或いは水素イオンと反応して急速に還元さ
れ、微粉末状の生成物Bとなる。この生成物Bは、その
生成反応が極めて高温下の気相或いは電離状態下で行わ
れ、原子や分子等の粒子間の反応で得られるものである
ため、その粒径が極めて小さい。
Function> Next, the function of the present invention will be explained based on FIGS. 1 and 2. When raw material A is supplied to heating furnace 1 and heated at high temperature with a plasma arc in the presence of hydrogen scum, raw material A has a significantly higher vapor pressure than its constituent metals, and the plasma arc reaches as high as 10,000°C. Since it has an extremely high temperature, it evaporates rapidly and immediately reacts with hydrogen gas or hydrogen ions activated by the high temperature of the plasma arc, and is rapidly reduced to become a fine powder product B. This product B has an extremely small particle size because the production reaction is carried out in the gas phase or in an ionized state at extremely high temperatures and is obtained through a reaction between particles such as atoms and molecules.

一般に金属の塩化物を気化して水素で還元する場合、そ
の生成物中には所謂金属煙(金属蒸気)の他に、未反応
の原料A(金属の塩化物)、酸素及び遊離塩素等が含ま
れる。しかし、本発明の如くプラズマ加熱の場合には、
極めて高温の反応であるため、未反応物の含有量は少く
、しかも酸素や遊離塩素の付着の仕方は特殊であって、
次の水捕集と水素精製処理の組合わせによって容易に除
去できるのである。かかる生成物Bは、プラズマトーチ
2からのプラズマア−り(プラズマジェット)の噴射流
に乗るが如く、作動ガスとして使用した水素ガス及びア
ルゴンガスとともに搬送され、排出口3及びパルプ4を
順次通って捕集器5に至る。この捕集器5において、高
温状態の生成物Bは水Cによシ急冷捕集され、その一方
で水素ガスやアルゴンガスは排出ロアから排気されて、
必要に応じ再使用に供される。
Generally, when metal chloride is vaporized and reduced with hydrogen, the product contains, in addition to so-called metal smoke (metal vapor), unreacted raw material A (metal chloride), oxygen, free chlorine, etc. included. However, in the case of plasma heating as in the present invention,
Because the reaction is extremely high temperature, the content of unreacted substances is small, and the way oxygen and free chlorine are attached is special.
It can be easily removed by a combination of water collection and hydrogen purification. This product B is carried along with the hydrogen gas and argon gas used as working gases, as if riding on the jet flow of plasma jet from the plasma torch 2, and passes through the discharge port 3 and the pulp 4 in sequence. and reaches the collector 5. In this collector 5, the product B in a high temperature state is rapidly cooled and collected by water C, while hydrogen gas and argon gas are exhausted from the discharge lower,
Provided for reuse as necessary.

高温状態の生成物Bが水Cによシ急冷捕集されると、生
成物B中の未反応の原料A(金属の塩化物、例えばNi
C#2) ij:水Cに溶けて水溶液となシ、また同じ
く生成物B中の酸素や遊離塩素は水Cによる急冷である
種の水和物状の物質(以下、水和物という)を形成し、
この水和物は生成した金属微粉末と弱い結合力で付着し
た状態であって、水C中にはこのような金属微粉末が懸
濁する。金属微粉末に前記水和物が弱く付着した形態は
正しく特徴的である。それはあたかも、金属微粉末の周
面に藻の如きモヤモヤしたものが付着しているような形
態である。かかる特徴的形態は、生成物Bを従来法のよ
うに気相で凝縮させて捕集したのでは得られない。双方
の差は、捕集した固形分の電子顕微鏡による添付の参考
写真を見ると、一層明らかである(写真1は水で急冷捕
集した場合、写真2は水を使用せずに気相で凝縮捕集し
た場合、ともに50000倍)。
When product B in a high temperature state is rapidly cooled and collected by water C, unreacted raw material A (metal chloride, e.g. Ni
C#2) ij: It dissolves in water C to form an aqueous solution, and similarly, oxygen and free chlorine in product B become a kind of hydrate-like substance (hereinafter referred to as hydrate) when quenched with water C. form,
This hydrate is attached to the generated fine metal powder with a weak bonding force, and such fine metal powder is suspended in the water C. The form in which the hydrate is weakly attached to the fine metal powder is characteristic. It looks like something fluffy like algae is attached to the surface of fine metal powder. Such a characteristic morphology cannot be obtained by collecting the product B by condensing it in the gas phase as in the conventional method. The difference between the two is even more obvious when you look at the attached reference photos taken with an electron microscope of the collected solids (Photo 1 shows the case where the collected solids were quenched with water, and Photo 2 shows the case where the collected solids were collected in the gas phase without using water. When condensed and collected, both are 50,000 times larger).

次いで、捕集器5から懸濁液をポンプ11で抜き出し、
固液分離する。分離された固形分は前述した特徴的形態
のものであり、この固形分りを引き続いて以下第2図に
示すように水素気流中で間接加熱する。加熱温度は、金
属の種類や生成したその微粉末の粒径によって異なシ、
該金属の焼結開始温度以下でなければなら碌いが、通常
300°C程度でよい。この加熱によって、固形分り中
の金属微粉末にあたかも析出して弱く付着している前述
の如き不純物による水和物は容易に水素と反応して該微
粉末から離脱気化し、水素ガス気流で系外へ搬出され、
その結果、高純度の金属微粉末が収率良く得られるので
ある。かくして製造される、本発明による金属微粉末に
ついて、前述の場合と同様の電子顕微鏡による参考写真
(写真3.50000倍)を添付する。
Next, the suspension is extracted from the collector 5 using the pump 11,
Separate solid and liquid. The separated solids are of the characteristic form described above and are subsequently heated indirectly in a hydrogen stream as shown in FIG. 2 below. The heating temperature varies depending on the type of metal and the particle size of the fine powder produced.
The temperature must be lower than the sintering starting temperature of the metal, but usually about 300°C is sufficient. By this heating, the hydrates caused by the impurities mentioned above, which are precipitated and weakly attached to the metal fine powder in the solid fraction, easily react with hydrogen and are separated from the fine powder and vaporized. carried outside,
As a result, highly pure metal fine powder can be obtained in good yield. Regarding the metal fine powder according to the present invention produced in this way, a reference photograph (photograph 3.50000 times) taken by an electron microscope similar to the above case is attached.

〈発明の効果〉 以上説明した通りであるから、本発明には、高純度の金
属微粉末を生産性良く製造することができ、急展開して
いる金属微粉末の新規利用に対して質的及び量的に充分
適応することができる効果がある。
<Effects of the Invention> As explained above, the present invention is capable of producing high-purity fine metal powder with good productivity, and has a qualitative advantage in new uses of fine metal powder, which are rapidly developing. and has an effect that can be sufficiently applied in terms of quantity.

〈実施例〉 第1図及び第2図に準じて行った。先ず、市販の無水塩
化ニッケ)v (純度99.4重量%)を、直径16襲
×厚さiowの円板状にベレット化した。
<Example> The experiment was carried out according to FIGS. 1 and 2. First, commercially available anhydrous nickel chloride (purity: 99.4% by weight) was pelletized into a disk shape with a diameter of 16 mm and a thickness of iow.

そして、このベレットを水素及びアルゴンガス雰囲気下
に10kg/時で加熱炉へ自重落下により連続供給し、
プラズマトーチを装備する該加熱炉においてそのベレソ
l−に、水素及びアルゴンガスを作動ガスとするプラズ
マアーク(プラズマジェット)を噴射した(水素ガス使
用量2tNm’/時、プラズマトーチ出力84 KW 
)。次いで、加熱炉から排出された高温状態の生成物を
そのまま水で急冷捕集し、懸濁液を得た。この懸濁液を
フィルり濾過で固液分離し、分離した固形分をセラミッ
ク製ボートに充填して、充分な水素ガス気流下に、30
0℃で2時間/固形分100gの割合によシ間接加熱し
、金属微粉末を製造した。製造した金属微粉末は平均粒
径が700人程鹿の超微粉であシ、前記固形分の内容と
ともに該金属微粉末の内容を第1表に示した。表中の結
果は各20回の繰シ返し試験の総合であるが、実施例は
以上の方法で金属微粉末を製造した場合、比較例は、他
の条件は実施例と同じにして、実施例のような水による
急冷捕集及び固液分離等その後の処理をすることなく前
記生成物を気相で凝縮捕集した場合である0 第1表 第1表の結果からも本発明の効果が明らかに判る0
Then, the pellets were continuously fed into a heating furnace under a hydrogen and argon gas atmosphere at a rate of 10 kg/hour by falling under their own weight.
In the heating furnace equipped with a plasma torch, a plasma arc (plasma jet) using hydrogen and argon gas as working gas was injected into the beam (hydrogen gas consumption: 2 tNm'/hour, plasma torch output: 84 KW).
). Next, the high-temperature product discharged from the heating furnace was quenched and collected with water to obtain a suspension. This suspension was separated into solid and liquid by filtration, and the separated solid content was filled into a ceramic boat and heated under a sufficient flow of hydrogen gas for 30 minutes.
The mixture was indirectly heated at 0° C. for 2 hours/100 g of solid content to produce fine metal powder. The produced fine metal powder was an ultra-fine powder with an average particle size of about 700 grains, and the contents of the fine metal powder are shown in Table 1 along with the solid content. The results in the table are the sum total of 20 repeated tests. In the example, fine metal powder was manufactured using the above method, and in the comparative example, the test was conducted under the same conditions as the example. This is the case where the product is condensed and collected in the gas phase without any subsequent treatment such as quenching collection with water and solid-liquid separation as in the example 0 Table 1 The results of Table 1 also show that the effects of the present invention are is clearly obvious 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施手順を示す系統工程図、第2図
は本発明において精製に使用する試験装置を例示する略
視図である。 1・・・加熱炉、      2・・プラズマトーチ、
3.7・・・排出口、    4・・パルプ、5・・・
捕集器、      6・・排水パルプ、8・・抜き出
し口、    9・・・タンク、10・−誘導管、  
   11・・ポンプ、12・・・電熱線、     
13・・電気炉、14・・・石英管、 15・・・セラミック製ホード、 16 、17・・・シリコンキャップ、18・・・温度
計、19・・供給管、 20・・排出管、 A・・原料、      B・・・生成物、C・・水、
        D・・・固形分、第1図 第2図
FIG. 1 is a systematic process diagram showing one implementation procedure of the present invention, and FIG. 2 is a schematic diagram illustrating a test apparatus used for purification in the present invention. 1... Heating furnace, 2... Plasma torch,
3.7...Discharge port, 4...Pulp, 5...
Collector, 6. Drainage pulp, 8. Outlet port, 9. Tank, 10.-Guiding pipe,
11...Pump, 12...Heating wire,
13... Electric furnace, 14... Quartz tube, 15... Ceramic hoard, 16, 17... Silicon cap, 18... Thermometer, 19... Supply pipe, 20... Discharge pipe, A ...Raw material, B...Product, C...Water,
D...Solid content, Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 金属の塩化物を水素ガス存在下にプラズマ加熱して
還元した後、その生成物を高温状態のままで水捕集し、
次いで水から分離した固形分を水素ガス存在下に加熱精
製することを特徴とする金属微粉末の製造方法。
1. After reducing metal chloride by plasma heating in the presence of hydrogen gas, the product is collected in a high temperature state and water is collected,
A method for producing fine metal powder, which comprises then heating and refining the solid content separated from water in the presence of hydrogen gas.
JP17534784A 1984-08-22 1984-08-22 Production of pulverous metallic powder Granted JPS6152306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17534784A JPS6152306A (en) 1984-08-22 1984-08-22 Production of pulverous metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17534784A JPS6152306A (en) 1984-08-22 1984-08-22 Production of pulverous metallic powder

Publications (2)

Publication Number Publication Date
JPS6152306A true JPS6152306A (en) 1986-03-15
JPH0438801B2 JPH0438801B2 (en) 1992-06-25

Family

ID=15994475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17534784A Granted JPS6152306A (en) 1984-08-22 1984-08-22 Production of pulverous metallic powder

Country Status (1)

Country Link
JP (1) JPS6152306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188726A (en) * 2005-01-04 2006-07-20 Fujikura Ltd Apparatus for producing metal powder and method for producing metal powder
CN106392058A (en) * 2016-08-31 2017-02-15 有研亿金新材料有限公司 Preparation method for metal ruthenium powder for target material
DE112018001254T5 (en) 2017-08-09 2019-12-19 Sumitomo Riko Company Limited METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE FILM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814841A (en) * 1981-07-20 1983-01-27 Ricoh Co Ltd Production of photoreceptor for electrophotography
JPS58110626A (en) * 1981-12-23 1983-07-01 ウエスチングハウス エレクトリック コ−ポレ−ション Reduction of metal from chloride salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814841A (en) * 1981-07-20 1983-01-27 Ricoh Co Ltd Production of photoreceptor for electrophotography
JPS58110626A (en) * 1981-12-23 1983-07-01 ウエスチングハウス エレクトリック コ−ポレ−ション Reduction of metal from chloride salt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188726A (en) * 2005-01-04 2006-07-20 Fujikura Ltd Apparatus for producing metal powder and method for producing metal powder
CN106392058A (en) * 2016-08-31 2017-02-15 有研亿金新材料有限公司 Preparation method for metal ruthenium powder for target material
DE112018001254T5 (en) 2017-08-09 2019-12-19 Sumitomo Riko Company Limited METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE FILM

Also Published As

Publication number Publication date
JPH0438801B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
US7964172B2 (en) Method of manufacturing high-surface-area silicon
TW201713597A (en) Silica to high purity silicon production process
CN102211771A (en) Method and system for manufacturing silicon and silicon carbide
JP4200703B2 (en) Silicon manufacturing apparatus and method
JPS6152306A (en) Production of pulverous metallic powder
RU2616920C2 (en) Method for obtaining the nanopowder of titanide hydride
JPH0465122B2 (en)
JPH01108322A (en) Distillation refining process
JPH06104869B2 (en) Chemical method
JPH0531487B2 (en)
US5282880A (en) Low pressure plasma metal extraction
JP5574295B2 (en) High purity silicon fine powder production equipment
JPS5942736B2 (en) Method for reducing copper-containing substances
JPH01226709A (en) Production of high-purity aluminum nitride powder
JP2002234719A (en) Apparatus for producing silicon material and method therefor
JPS6152305A (en) Production of pulverous metallic powder
JPS6257642A (en) Method and apparatus for producing ultrafine powder
JPH0470362B2 (en)
US2414294A (en) Production of pure tellurium
JPH02212330A (en) Device and method for purifying reagent
RU2174950C1 (en) Method of preparing silane
JPS62256936A (en) Method for recovering au
TWI482736B (en) Manufacture of high purity silicon micropowder
JP2000016813A (en) High-purity thallium iodide, its sphered substance and its production
JPS62223020A (en) Separation of niobium and tantalum